
ABSTRACT: Returning agricultural waste/by-products to the field is an effective management measure to improve soil fertility and maintain 

crop productivity in agroecosystems. However, we still have limited understanding of the complex response of sisal (Agave sisalana 

Perrine) growth, soil nutrients and microbial communities to the long-term sisal residue return to the ecological system. This study aimed to 

investigate the comprehensive effects of returning sisal residue to the field on sisal yield, soil nutrient, and microbial community. Based on 

a four-year field experiment, the results showed that returning sisal residue to the field increased the annual yield of sisal by 30.77–33.36%. 

Compared with control group, sisal residue inputs significantly improved soil total nitrogen, available phosphorus, and available potassium 

by 46.59, 3.02, and 1.21%, respectively. Under sisal residue input condition, the activities of soil catalase, urease, acid phosphatase, and 

sucrase also significantly increased by 2.01, 17.20, 17.40 and 16.60%, respectively. A higher ratio of bacteria/fungi was observed in the soil 

amended with sisal residue. The microbial diversity analysis showed that the α-diversity of the bacterial community increased, while the  

α-diversity of the fungal community decreased with the sisal residue treatment. However, sisal residue return had a higher impact on  

the α-diversity of fungi. This study provides evidence that returning sisal residue to the field affects sisal productivity by regulating nutrient 

cycling and soil microbial community. Moreover, the study suggests that microbial α-diversity has significant influence on sisal yield. 

Key words: Agave sisalana Perrine; sisal residue returning; soil fertility; microbial community; yield.
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INTRODUCTION

Agaves, belonging to the Asparagaceae family, are a group of perennial monocotyledonous plants in semi-arid to arid 
environments. The genus Agave contains more than 210 species, of which about 70% are economically valuable (Bermúdez-
Bazán et al. 2021). As a tropical fiber crop, sisal is widely grown in America, Africa, Asia, Oceania, the Pacific Ocean, some 
islands of the Indian Ocean, on tropical and subtropical regions between 30° north and south latitude (Klimova et al. 2023).

Since its introduction to China in 1901, sisal has undergone testing and demonstration and has become an important 
fiber crop in tropical regions. Currently, sisal is mainly distributed in southern China, such as Guangxi, followed by 
Guangdong, and Yunnan, while regions like Sichuan, Hainan, and other provinces are also actively introducing sisal. The 
main product of sisal is the hard fiber extracted from the leaves. This fiber is white in color, tough in texture, elastic, strong 
in tension, resistant to friction, and not easy to break, and because it contains less glue, it is not slippery. Because of the 
prementioned characteristics of sisal, its fiber can be used to make ropes for ships and fishing boats, tires of airplanes and 
automobiles, cores of steel ropes for drilling and cranes, conveyor belts of machines, protective nets and other products, 
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which can be also woven into sacks, carpets, hats, and other daily necessities and used in plastic pressed hard boards as 
building materials, so they have great economic value and are widely used in national defense, fishery, forest industry, and 
other sectors (Damiao Xavier et al. 2018).

Sisal residue is a by-product of sisal fresh leaves after extracting the fiber. Sisal leaves only contain 3–5% hard fiber, and 
the remaining 95–97% are by-products. After the sisal leaf is scraped to obtain fiber, the remaining leaf cuticle, epidermal 
layer, palisade tissue, and spongy tissue are called sisal residue. A large quantity of sisal residues is produced annually in 
China. The average annual sisal residue yield in the south of China is 2.1 m. With the continuous development of sisal fiber 
production, the comprehensive utilization of its by-products after blade processing has expanded. It is a carrier of material, 
energy and nutrients, and a precious natural resource (Wang, Y. C. et al. 2014, Oliveira do Carmo et al. 2021). Sisal residues 
are rich in nutrients such as carbon, nitrogen, phosphorus, and potassium.

In modern agricultural production, returning crop residue to the field is one of the techniques to improve the ecological 
environment of sisal fields. The decomposing of crop residue after returning to the field plays an important role in improving 
soil fertility and promoting crop growth (Witt et al. 2012, Chen et al. 2022a, 2022b). The interaction of straw return and 
potassium fertilizer increased maize lodging resistance and yield (Liu et al. 2023). Long-term straw returning increased soil 
available K and slowly available K under rice and wheat cultivation (Zhang et al. 2021). Crop straw return can effectively 
increase the soil aggregate structure and improve soil enzyme activity by increasing the secretion of soil enzymes and 
affecting the soil microbial community (Hu et al. 2021, Miao et al. 2021). 

Soil microorganisms are the driving force for the transformation and circulation of organic matter and nutrients in 
the straw returning ecosystem. They participate in the decomposition of organic matter and the formation of humus, and 
regulate various biochemical processes, such as energy and nutrient cycling, in the soil (Mwafulirwa et al. 2021, Wu et al. 
2021). Crop residues incorporated into the soil affect different soil microorganisms (Chen et al. 2021). 

Research on the effect of sisal residue returning on soil fertility and crop yield is very limited. At present, it has been 
reported that the return of sisal residue to the field is a crucial yield-increasing measure for sisal cultivation (Yang et al. 2017). 
Nevertheless, there are few reports on the overall impact of the sisal residue return on crop productivity, soil nutrient, soil 
enzyme activity and microorganisms. We hypothesized that sisal residue returning could increase crop yield by changing 
soil physicochemical properties and microbial community structure. To examine the actual effects, we designed a four-
year field experiment consisting of two treatments of sisal residue returning under chemical fertilizer application in south 
of China. The aims of the present study were to investigate the changes of sisal yield, soil fertility, enzyme activity, and soil 
microorganisms after returning sisal residue to the field, to reveal how it may affect the sisal yield, and to provide a reference 
for the rational use of sisal residues.

MATERIALS AND METHODS

Experimental site

The sisal residue returning experiment was carried out at Shanxu state-owned farm of Guangxi Agricultural Reclamation, 
in Fusui county (south China, 22°53’N latitude, 107°20’E longitude; 115 m above sea level). The experimental site is 
characterized by subtropical monsoon climate with average annual temperature of 21.3–22.8°C. The lowest and highest 
temperature recorded over the years is -0.6 and 39.5°C, respectively. The average annual precipitation ranges from 1,050 
to 1,300 mm. The total annual radiation is 108.4 kcal·cm-2; the average annual sunshine duration is 1,693 h, and the 
frost-free period lasts up to 346 days. The soil of the experimental site was classified as lateritic red earth derived from 
arenaceous shale. At the depth of 0–20 cm, the basic soil properties prior to the experiment were as follows: 7.26 pH, 
2.45% soil organic matter, 0.13% total N, 5.14 mg·kg-1 available phosphorus (P), and 82.14 mg·kg-1 available potassium 
(K). Before 2011, the experimental field was used for interplanting spring corn with summer soybean. An annual amount 
of NPK (15-15-15) fertilizer (Sinochem, China) of 375 kg·ha-1 was applied to the field as the base fertilizer before spring 
corn was grown. 
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Experimental design

The sisal cultivar H.11648 was cultivated in the field in November 2011. Sisal seedlings with a similar size (about 
2.5 kg) were selected and transplanted in wide-narrow rows, which is a planting pattern of double rows. The planting 
specification was (3.8+1.0) × 1 m (wide-narrow row distance and plant spacing). The planting density was 4,200 plants 
per hectare. In each plot (14.4 × 10.4 m), 60 sisal seedlings were planted with three double rows. All experimental fields 
received uniform water and fertilizer management from 2011 to 2014. In December 2014, the perennial sisal in the 
experimental field reached the harvest standard of 100 growing leaves. Since 2015, the same sisal plants were annually 
harvested for fiber extraction every January, which continues until 10 years later, when the sisal lifespan ends. Mature 
leaves of sisal were harvested manually by cutting with a sharp specialized sickle at the leaf base during mid-January 
coinciding with the inactive growth of sisal at low environment temperatures. Whole leaves with an angle greater than 
45° below the central leaf were collected to measure and calculate the annual fresh leaf yield. Fifty leaves were left behind 
in the plant to maintain photosynthesis after harvest.

Sisal residue was obtained as a by-product. The organic matter content of the sisal residue was 21.30%, the total nitrogen 
content was 0.42%, the P2O5 content was 0.14%, the K2O content was 0.52%, and the carbon–nitrogen ratio was 50.71:1. The 
sisal residue returning experiment was conducted from January 2015 to January 2019. The experimental setup followed a 
completely random block design with four replications. The area for each plot was 150 m2. 

The experimental treatments conducted once a year was divided into two groups. The treatments were based on 
the planting on sisal that received only chemical fertilizer as control (Ctrl) and sisal residue mulching plus chemical 
fertilizer (Sr). The same treatment plots were maintained for the duration of the four-year experiment. The NPK  
(12-20-7) fertilizers (Sinochem, China) were broadcast over the soil at rates of 500 kg·ha-1 after annual sisal leaf 
harvest. Sisal residue was directly returned to the field and mulched on the ground surface at 36 t·ha-1. The sisal 
residues were spread manually on top of the soil as a mulch. Other field management procedures were the same as 
in traditional sisal cultivation.

Every year, sisal residue was returned to the field following leaf yield assessment and soil sampling conducted in January. 
Except for the border row plants, 10 normal-grown plants were randomly selected from each plot at the leaf harvest stage. 

Soil sample collection and analysis

After sisal leaf harvest and before the experimental treatments, soil samples were taken from the control and the sisal 
residue returning plots in January 2016, 2017, and 2018. Surface soil subsamples (0–40-cm depth) were collected from each 
plot with a corner of 40-mm internal diameter and 50-mm height using a diagonal sampling approach (Tian et al. 2023). Five 
subsamples collected from the same plot were pooled to form a composite sample, which served as one biological replicate. 
Every treatment consisted of four replicates. Four composite soil samples were obtained for each treatment, forming a total 
of eight soil samples. All samples were divided into two parts and kept at 4°C. 

The soil was air-dried, homogenized and sieve (< 2 mm) to determine its physical and chemical properties. The 
methods for determining soil nutrients and enzyme activities are as follows: the soil pH was measured at soil/water ratio of  
1/2.5 (w/v) (Lu 2000); the total nitrogen was determined by Kjeldahl method (Abrams et al. 2014); the available phosphorus 
and the available K were determined as described by Gong et al. (2018) and Meng et al. (2014), respectively. 

In order to understand soil nutrient cycling dynamics, we determined the activities of sucrase, urease, catalase, and acid 
phosphate activities. The soil urease activity was measured using the indophenol colorimetry method (Ji et al. 2014); the 
catalase activity was determined by ultraviolet absorption method (Yang et al. 2011); the activity of sucrase was determined 
by the 3, 5-dinitrosalicylic acid colorimetry method (Ji et al. 2014), while the acid phosphatase activity was determined by 
the sodium p-nitrophenyl phosphate method (Du et al. 2018). Assessment of soil enzyme activities was conducted during 
each year of the experiment.
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High-throughput sequencing

To investigate the changes of soil microbial community structure, we performed 16S rRNA and internal transcribed 
spacer (ITS) sequencing on soil samples. High-throughput sequencing was conducted to analyze the microbial community 
structure of soil sampled in 2018 (the third year after the initial residue treatment). Microbial DNA was extracted from 
the soil samples using TIANamp Soil DNA Kit (Tiangen, Beijing, China) according to the manufacturer protocols. A 
SmartSpecTM Plus spectrophotometer (Bio-Rad, United States of America) was used to evaluate the DNA quality based 
on the absorbance ratios of 260/280 nm and 260/230 nm. The extracted DNA was stored at -20°C before being used.

The 16S ribosomal DNA (rDNA) V3-V4 region and ITS region of the ribosomal RNA (rRNA) gene were amplified 
by polymerase chain reaction (PCR). PCR reactions were performed in triplicate using a 50-μL mixture containing 5 μL of  
10 × KOD Buffer, 5 μL of 2.5 mM dNTPs, 1.5 μL of each primer (5 μM), 1 μL of KOD Polymerase, and 100 ng of template DNA.

The universal primers 341 F (5’-CCTACGGGNGGCWGCAG-3’) and 806 R (5’-GGACTACHVGGGTATCTAAT-3’) 
were used to amplify the V3-V4 region of the 16S rRNA gene in each sample for the evaluation of bacterial 
abundance of 16S rRNA gene (Nossa et al. 2010), while ITS3_KYO2F(5’-GATGAAGAACGYAGYRAA-3’) and  
IST4-R(5’-TCCTCCGCTTATTGATATGC-3’) were used to amplify fungal ITS2 gene (Turenne et al. 1999). 

Thermal cycling was performed as follows: initial denaturation at 95°C for 2 min, followed by 30 cycles of 10 s at 98°C, 
annealing for 30 s at 62°C (for 16S) or 52°C (for ITS), and extension at 68°C for 30 s. The final extension was conducted at 
68°C for 10 min, followed by a holding step at 4°C.

The PCR amplicons were combined in equimolar ratios, and sequencing was conducted by Genedenovo (Guangzhou, 
China) on an Illumina HiSeq2500 platform with separate sequencing runs for the 16S and ITS rRNA gene amplicon pools. 
The sequencing data were processed using the UPARSE pipeline (http://drive5.com/usearch/manual/uparse_pipeline.html).  
The raw sequences were subjected to quality control. The singleton and chimeric sequences were removed after dereplication, 
and the remaining sequences were categorized into operational taxonomic units (OTU) with 97% similarity and then 
assigned taxonomy using the Silva (https://www.arb-silva.de/) and the UNITE databases (https://unite.ut.ee/) for the 16S 
and ITS rRNA genes, respectively.

Data analysis

The relative abundance of each microbial species type was expressed as a percentage. The α-diversity of species was 
determined by calculating the Shannon, Chao, and Simpson indices of a single sampling site (Wang, Y. K. et al. 2014), while 
the β-diversity of species was analyzed using PCoA based on FastUnifrac (Hamady et al. 2010). The functional analysis of the 
microbiome was performed using PICRUST software (Langille et al. 2013). The differences between the two groups (control 
and sisal residue returning groups) were analyzed by single factor analysis of variance (ANOVA) and minimum significant 
difference (LSD) test. The Mantel’s test and Spearman’s correlation were used to calculate the correlation coefficient. All 
statistical analysis was conducted using the Vegan package (v.2.4-1) in R software (version 3.3.2). 

RESULTS

Effect of sisal residue return on sisal yield

The sisal leaf width and thickness showed a significant difference when treated with sisal residue in comparison to the 
control group (Table 1). The variance analysis found that year and year × treatment interaction had no significant differences 
in sisal growth traits. Compared to the control group, the annual yield of sisal following sisal residue treatment showed a 
large significant difference and increased by 30.77, 31.97, and 33.36%, respectively, between 2016 and 2018 (Fig. 1). This 
indicates that returning sisal residue to the field can increase sisal yields.  
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Table 1. Average annual effect of returning sisal residue to the soil on leaf size, 2016–2018*. 

Treatment Leaf length Leaf width Leaf thickness

Sr 133.1 ± 2.28a 13.14 ± 0.24a 0.214 ± 0.02a

Ctrl 132.8 ± 1.48a 13.42 ± 0.06b 0.231 ± 0.01b

Sr: annual sisal residue mulch application, plus chemical fertilizer application; Ctrl: control, chemical fertilizer application alone; *different lowercase letters in 
each column indicate significant difference at 0.05 level according to minimum significant difference test. Data indicates mean ± standard deviation.
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Figure 1. The mean annual yield of sisal in the control (Ctrl) and the sisal residue returning treatment (Sr). Different capital letters in the same 
column indicate significant difference at 0.01 level between the treatments in the same year. Vertical bars correspond to standard error. 

Effects of sisal on soil nutrients and enzyme activities

In order to evaluate soil microbial activity and reflect the function of soil nutrient cycling, the activity of catalase, sucrase, 
urease, and phosphatase activity was detected. The results showed that, compared with the control group, returning sisal 
residue to the field increased the content of available phosphorus, total nitrogen, and available potassium by 3.02, 46.59, 
and 1.21%, respectively, over the three-year period. The soil pH showed a statistically significant increase under sisal 
residue returning condition (Table 2). Returning sisal residue to the field significantly increased catalase, urease, and acid 
phosphatase enzyme activities, which were 2.01, 17.20 and 17.40% (p < 0.05) higher than the control group, respectively. 
In the same way, the sisal residue significantly improved the activity of sucrase enzyme by up to 16.60% (Table 2). 

Table 2. Effects of long-term sisal residue returning on soil biochemical properties!. 

Treatment Year pH
Available 

P
mg·kg-1

Available 
K

mg·kg-1

Total N 
%

Sucrase
mg·d-1·g-1

Urease
μg·d-1·g-1

Catalase
μmol·d-1·g-1

Acid 
phosphatase

μmol·d-1 g-1

Ctrl

2016 7.15c 28.51c 145.56b 0.12b 25.21b 999.73c 54.81d 16.86c

2017 7.13c 28.98bc 147.22ab 0.12b 25.89b 972.24c 56.63ab 16.65c

2018 7.25b 29.01bc 147.24ab 0.12b 25.95b 1,013.27bc 55.80c 17.17c

Sr

2016 7.53a 29.30abc 148.63a 0.17a 29.19ab 1,117.49ab 57.21a 19.15b

2017 7.52a 30.14a 148.55a 0.17a 26.97b 1,228.78a 56.14bc 20.43a

2018 7.56a 29.67ab 148.17a 0.18a 33.69a 1,152.46a 57.2521a 19.92ab

F-value

Treatment (T) 363.53** 11.17** 11.96** 751.97** 10.15** 34.70** 33.47** 204.98**

Year (Y) 6.68* 2.20ns 0.86ns 0.20ns 2.35ns 0.70ns 2.51ns 3.02ns

Y×T 1.46ns 0.32ns 1.63ns 2.16ns 2.08ns 2.20ns 19.15** 4.67*

Sr: annual sisal residue mulch application, plus chemical fertilizer application; Ctrl: control, chemical fertilizer application alone; !same lowercase letters in each 
column indicate no significant difference according to minimum significant difference test. Data indicates mean ± standard deviation; *significant difference at 
the 0.05-probability levels; **significant difference at the 0.01-probability levels; ns: not significant.
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Effect of sisal residue return on soil microorganisms

After quality filtering, 4,930 OTUs were identified using 16S rRNA sequencing, and 1,533 OTUs were identified 
using ITS sequencing. While the fungal abundance in the sisal residue returning group showed a decreasing trend 
compared to the control group, the bacterial abundance in both the control and sisal residue returning groups was 
consistently higher than the fungal abundance. We observed that the sisal residue return was associated with a higher 
bacteria/fungi ratio (Fig. 2). The sequencing data showed that the sisal residue return caused significant changes 
in the bacterial and fungus communities. Specifically, Bacteroidetes, Acidobacteria, Chloroflexi, Proteobacteria, 
Actinobacteria, and several other phyla were more abundant in the control group, while Firmicutes, Verrucomicrobia, 
Gemmatimonadetes, Planctomycetes, Nitrospirae, and various other phyla were more prevalent in the sisal residue 
returning group (Fig. 3a). For the soil fungi, the most abundant fungal phyla in the soil treated with sisal residue 
were Ascomycota, Chlorophyta, Basidiomycota, and Anthophyta. Among them, Ascomycota was the most dominant 
phylum, with a relative abundance of 76.15–77.60%; whereas Basidiomycota and Anthophyta showed a higher relative 
abundance in the control group (Fig. 3b). 

Sample

O
TU

s 
N

um
be

r 4000

3000

2000

1000

0

Ctrl     Sr

Fungi

Bacteria

Figure 2. Soil bacteria and fungi operational taxonomic units number in control (Ctrl) and sisal residue returning group (Sr) in 2018. All data 
from high-throughput sequencing were collected in 2018.   

Ten of the most abundant genera of soil bacteria were identified and classified (Fig. 3c). The relative abundance of 
RB41, Gemmata, and Candidatus Udaeobacter was significantly higher in the sisal residue returning group compared to the 
control. The classification of soil fungi genera revealed that Fusarium, Talaromyces, Aspergillus, Lasiodiplodia, and Latorua 
were more dominant in the sisal residue returning group (Fig. 3d).  

Additionally, we also studied soil bacteria and fungi at the species level and found that, among the soil bacteria, the 
relative abundance of Amycolatopsis sp., Nocardioides sp., Bacillus thermoamylovorans, Gemmatirosa kalamazoonesis, 
Lysinibacillus massiliensis, and Catenulispora yoronensis in the sisal residue returning group was significantly higher than 
the control (Fig. 3e). For soil fungi, Fusarium solani, Talaromyces sayulitensis, Latorua caligans, and Arcopilus cupreus had 
higher relative abundances in the sisal residue returning group (Fig. 3f).

Effect of sisal residue return on microbial diversity

The α-diversity indices of soil bacterial and fungal community were calculated, as shown in Table 3. The 
α-diversity of bacterial communities in the field treated with sisal residue was significantly higher than that of 
the control group. For the fungal community, returning sisal residue to the field resulted in a lower soil microbial 
α-diversity (Table 3).
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Figure 3. Changes of microbial composition after returning sisal residue to the field in 2018. Bar graph of relative abundance statistics of (a) 

bacteria phylum and (b) fungi phylum. Heat map of relative abundance statistics of (c) bacteria genus, (d) fungi genus, (e) bacterial species 

and (f) fungal species. All data from high-throughput sequencing were collected in 2018.
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Table 3. α-diversity indices analysis of microbial community in 2018 conducted three years after initial and subsequent annual sisal 
residue applications.

Treatment

Bacteria Fungi

Diversity index Richness index Diversity index Richness index

Shannon Simpson Sobs Chao Shannon Simpson Sobs Chao

Ctrl 9.53 ± 0.42 0.996 ± 0 3,521.00 ± 563.87 4,149.89 ± 698.31 6.14 ± 0.62 0.95 ± 0.04 700.75 ± 78.21 845.53 ± 79.05

Sr 9.90 ± 0.13 0.997 ± 0 4,078.50 ± 380.01 4,790.84 ± 422.07 5.76 ± 0.74 0.95 ± 0.03 508.75 ± 97.33 677.92 ± 96.95

*Data are mean ± standard deviation, n = 4; Sr: annual sisal residue mulch application, plus chemical fertilizer application; Ctrl: control, chemical fertilizer 
application alone. 

In the resulting PCoA scatter plot, the greater distance between points indicated a higher dissimilarity in the microbial 
communities. Conversely, microbial communities with similar compositions were clustered together. At the genus level, the 
bacterial community showed no noticeable change before and after the sisal residue treatment (Fig. 4a), whereas significant 
change was observed for the fungal microbiome (Fig. 4b). The microbial analysis shows that the return of sisal residue to 
the field has a higher impact on the β-diversity of fungi.
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Figure 4. β-diversity analysis of the microbial community in 2018 conducted three years after initial and subsequent annual sisal residue 
applications. (a) Bacterial community; (b) fungal community.

Relationship between microbial α-diversity and sisal productivity

Certain differences in environmental factors affect the structure and diversity of microbial communities in different 
habitats. To investigate how microbial changes respond to environmental factors, the Spearman’s rank correlations between 
the environmental factors of soil and the diversity of bacteria and fungi were analyzed. The activity of the soil enzymes 
(sucrose, catalase, acid phosphatase) was found to be positively correlated with bacterial abundance, but not with fungal 
abundance (Table 4).

Table 4. Spearman’s correlation analysis of environmental factors and soil microbial diversity index.

Environmental 
factors

Bacteria Fungi

Shannon Simpson Chao Ace Shannon Simpson Chao Ace

Available P 1.00** 0.83* 0.94** 0.71 -0.60 -0.31 -0.83* -0.83*

Sucrase 0.83* 0.83* 0.66 0.37 -0.66 -0.43 -0.66 -0.66

Urease 0.60 0.77 0.37 -0.09 -0.77 -0.71 -0.77 -0.77

Continue...
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Table 4. Continuation...

Environmental 
factors

Bacteria Fungi

Shannon Simpson Chao Ace Shannon Simpson Chao Ace

Catalase 0.83* 0.83* 0.66 0.37 -0.66 -0.43 -0.66 -0.66

Acid 
phosphatase 0.77 0.94** 0.60 0.26 -0.71 -0.54 -0.60 -0.60

pH 0.77 0.60 0.60 0.26 -0.486 -0.31 -0.94** -0.94**

Total N 1.00** 0.83* 0.94** 0.71 -0.6 -0.31 -0.83* -0.83*

Available K 0.89* 0.71 0.71 0.49 -0.37 -0.09 -0.71 -0.71

*p < 0.05: different significance at the 0.05-probability level; **p < 0.01: different significance at the 0.01 probability level.

The genus Sphingomonas is one of the probiotic microorganisms characterized with degradation of aromatic and 
xenobiotic compounds, promotion of nutrient recycling and resistance to multiple pathogens (Liu, Z. et al. 2021). It has been 
reported that several Sphingomonas strains with the characteristics of dehydrogenation and nitrogen fixation play a vital 
role in maintaining the nitrogen balance of soil (Liu, H. et al. 2021). In this study, the relative abundance of Sphingomonas 
bacteria was significantly negatively correlated with soil available P, total N, and available K (p < 0.05) (Fig. 5). 
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1

0

-1

P TN K Sucrase

Catalase
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*p < 0.05; **p < 0.01; TN: total N; P: available P; K: available K.
Figure 5. Correlation heatmap of soil properties and relative bacterial abundances of dominant genus. The color intensity indicates the 
correlation between soil property and relative abundance of each genus. 

Functional analysis of bacterial community

In the current study, a functional analysis of the bacterial community revealed that the microbiota related to transcription, 
cell motility, and biosynthetic pathways of secondary metabolites were more abundant in the sisal residue returning group 
compared to the control (Fig. 6).
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Figure 6. Function analysis of bacterial community in soils receiving annual crop residue applications from sisal.

DISCUSSION

The current results suggest that leaf width and thickness are the main factors that influence fresh leaf weight and yield. 
Previous studies have shown that returning straw to the field can improve soil fertility and crop yield (Liu et al. 2023, Wen 
et al. 2019). Various studies have also reported improved enzyme activities in response to crop residue return. The improved 
soil environment can provide nutrient elements, resulting in increased sisal production (Ji et al. 2014, Huang et al. 2016). In 
this study, sisal residue return significantly increased the level of N, and soluble P and K in the soil, which was comparable 
to the findings of Yamoah et al. (2002) and Yang et al. (2017). The significant correlation between the content of NPK 
and the relative abundance of microorganism suggest that the return of sisal residue to the field can affect soil microbial 
community structure. The sisal residue treatment also significantly increased the activities of soil sucrase, catalase, and acid 
phosphatase, which suggests that the secretion of soil enzymes was more active. 

The present research indicates that the return of sisal residue to the field affects soil microbial activity and improves soil 
fertility. Several studies have reported similar findings on increased yields in response to straw return in other crops (Wen 
et al. 2019, Yang et al. 2018). Similarly, soil quality and sisal growth were positively affected by the deep-buried return of 
sisal stem waste (Tan et al. 2019). However, the present study is the first report incorporating microbial analysis after sisal 
residue applications.

Returning of sisal residue to the field significantly affected the composition of soil microorganisms. In the current 
research, we observed that the relative abundance of soil bacteria increased, while the relative abundance of soil fungi 
showed a downward trend after the sisal residue return. Additionally, a high bacteria/fungi ratio also indicated bacteria as 
the dominant microorganisms in the soil. Fungi usually prefer a more stable ecosystem (Tolkkinen et al. 2015), and adding 
sisal residue back to the field causes significant changes in the soil environment, which affects the ecosystem’s stability. 
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Regarding the impact of sisal residue on the composition of microbial communities, we observed that different microbial taxa 
exhibited different behaviors. Firmicutes were relatively more prevalent in the sisal residue returning group. Firmicutes are 
beneficial bacteria involved in the decomposition of cellulose-containing materials, which is in agreement with the carbon-
rich nature of decomposed straw (Pu et al. 2020, Zhu et al. 2014). The control group showed a higher relative abundance 
of Acidobacteria. This observation aligns with previous research demonstrating that Acidobacteria is typically dominant 
in soil environments with low nutrient content (Yang et al. 2019). 

Nitrospirae not only oxidizes nitrite, but may also oxidize ammonia (Daims et al. 2015), which ultimately affects 
crop productivity by stimulating the nitrogen cycle in the soil (Longa et al. 2017). In the present study, sisal residue 
return resulted in significant increases in relative abundances of Nitrospirae. The result is similar to previous research 
demonstrating a higher relative abundance of Nitrospirae in the soil treated with maize straw return (Chen et al. 2017). 
A consistent correlation between taxonomic classification and the microbial communities was observed, such as the 
presence of Planctomycetes (phylum), Gemmata (genus) and G. kalamazoonesis (species) in the bacterial community; 
and of Ascomycotina (phylum), Fusarium (genus), and F. solani (species) in the fungal community. The soil microbial 
analysis indicates that G. kalamazoonesis and F. solani may be primary indicators of microorganisms following the 
reintroduction of sisal residue into the field. 

Fungi adapt slowly to change in their ecological environment. In the current study, returning sisal residue to the field 
increased soil nitrogen, phosphorus, and potassium levels, which may have contributed to fungal β-diversity increases (Chen 
et al. 2020). Additionally, following a functional prediction of the microbial community differentiation, it was found that the 
biological pathway of secondary metabolites synthesis was more dominant in the sisal residue returning group compared 
to the control group. Secondary metabolites have broad-spectrum activities against a variety of pathogens (Maddox et al. 
2010). However, the potential impact of secondary metabolites released from sisal residues on disease suppression needs 
further verification as our study did not evaluate the effect of residues on disease incidence in sisal.

The diversity of the soil bacteria plays a vital role in maintaining agroecosystem stability and improving crop resistance, 
growth, and yield (Bossio et al. 1998). As a result, in the current study, a high bacterial/fungal ratio may have or likely 
contributed positively to sisal production after sisal residue return. The increase of soil microbial diversity not only inhibits 
soil-borne diseases, but also improves the supply capacity of soil nitrogen (Weidner et al. 2015), which may partially explain 
the observed relationship between the increase of bacterial α-diversity and sisal yield after returning sisal residue to the field. 

CONCLUSION

In summary, we found that returning sisal residue to the field affects sisal productivity by possibly regulating the soil 
microbial community and nutrient turnover, and that the increase in sisal productivity may be primarily determined by 
microbial α-diversity. Further research is required to confirm our initial observation from this four-year study. The findings 
presented herein support the practice of returning sisal residues as a means of improving crop productivity and soil fertility. 
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