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ABSTRACT

BACKGROUND AND OBJECTIVES: The manipulation of 
peripheral neuronal activity can alter the excitability of the pri-
mary motor cortex; however, it is not known whether this occurs 
after intramuscular injections of lidocaine. Therefore, the inves-
tigation focused on neurophysiological changes, assessed with 
transcranial magnetic stimulation, after lidocaine (0.5mL, 2%) 
injection in the first dorsal interosseous muscle of the dominant 
hand of healthy individuals. 
METHODS: Exploratory, double-blind, parallel laboratory 
study. Twenty-eight healthy subjects (mean age: 29.6 years, 15 
women). Measurements with transcranial magnetic stimulation 
included resting motor threshold, motor evoked potential, in-
tracortical facilitation, and short intracortical inhibition. Li-
docaine injection (LID group) was compared to dry needling 
(DRY group), saline injection (SAL group), and no intervention 
(CTL group). Participants were randomly placed in each group. 
Muscle strength and measures of peripheral excitability (rheo-
base and chronaxie) were also evaluated to detect whether the 
interventions generated changes in the peripheral neuromuscular 
excitability. Evaluations were performed over four time points: 
immediately before and after intervention and 30 and 60 minu-
tes after intervention. 
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RESULTS: A generalized linear model was used to identify dif-
ferences between the LID, DRY, and SAL groups and the CTL 
group. The results showed that motor evoked potentials were 
modified in the LID group (p<0.005). 
CONCLUSION: The injection of lidocaine into the first dorsal 
interosseous muscle in the dominant hand of healthy adults al-
ters motor evoked potentials.
Keywords: Anesthesia, Local anesthesia, Pain, Transcranial mag-
netic stimulation. 

RESUMO

JUSTIFICATIVA E OBJETIVOS: A manipulação da atividade 
neuronal periférica pode alterar a excitabilidade do córtex motor 
primário; entretanto, não se sabe se esse fenômeno ocorre após 
a injeção intramuscular de lidocaína. Investigaram-se alterações 
eletrofisiológicas através de estimulação magnética transcraniana 
após injeção de lidocaína (0,5mL, 2%) no músculo primeiro in-
terósseo dorsal da mão dominante de indivíduos saudáveis. 
MÉTODOS: Estudo paralelo, exploratório, duplo-cego, reali-
zado em laboratório.  Vinte e oito voluntários saudáveis (idade 
média: 29.6 anos, 15 mulheres). Foram avaliados através de es-
timulação magnética transcraniana no limiar motor de repouso, 
potencial evocado motor, facilitação intracortical e inibição in-
tracortical. A injeção de lidocaína (grupo LID)  foi comparada 
com agulhamento a seco (grupo DRY), injeção de solução salina 
(grupo SAL) e nenhuma intervenção (grupo CTL). Os parti-
cipantes foram distribuídos randomicamente em cada grupo. 
Força muscular e medidas de excitabilidade periférica (reobase e 
cronaxia) foram também estudadas. As avaliações ocorreram em 
quatro momentos: imediatamente antes e após a intervenção e 
30 e 60 minutos após a intervenção.  
RESULTADOS: Foi utilizado modelo linear generalizado para 
identificar as diferenças entre os grupos LID, DRY, SAL e CTL. 
Os resultados mostraram que o potencial evocado motor foi mo-
dificado no grupo LID (p<0,005). 
CONCLUSÃO: Em indivíduos saudáveis, a injeção de lidocaína 
intramuscular pode alterar o potencial evocado motor. 
Descritores: Anestesia, Anestesia local, Dor, Estimulação Mag-
nética Transcraniana. 

INTRODUCTION

While consistently demonstrated after neural lesions1, there is 
additional evidence that musculoskeletal disorders, especially in 
the upper limbs, are accompanied by aberrant neurophysiologi-
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cal states within the cerebral cortex2. It is unclear whether this 
altered condition can return to normal in response to interven-
tions that target musculoskeletal pain3 and decrease abnormal 
inputs to the central nervous system (CNS). However, these 
interventions also change inputs to the CNS through the pro-
motion of anesthesia and increased local receptivity to control 
pain. Invasive therapies such as dry needling and injection of 
local anesthetics in trigger points and taut bands in muscles of 
individuals with myofascial pain are widely used4 for treatment 
of musculoskeletal and neurological disorders5. It is possible that 
these procedures may act through the reversal or prevention of 
maladaptive changes in the brain, such as central sensitization6, 
although there are few studies on the actual mechanisms of these 
therapies7. 
Previous studies in healthy humans have used anesthetic nerve 
blocks8,9, cutaneous anesthesia10,11 or ischemic nerve blocks12,13 
of the upper limb to investigate changes in primary motor cortex 
(M1) excitability. This is of special interest, as M1 excitability 
changes happen in parallel with the primary somatosensory cor-
tex (S1), which is activated during sensory peripheral manipula-
tions14. After the reduction of sensory input to the CNS from a 
specific region of the body, the adjacent regions whose sensory 
supply is functioning normally generate evoked responses to a 
greater extent in the S1. Thus, the corresponding areas of deaffe-
rentation appear to be reorganized lead by collateral expansions15 
due to disinhibition or changes in synaptic efficacy of the corti-
cocortical connections. It is proposed that these disinhibitions of 
previously silent neuronal projections are mediated by GABAer-
gic and dopaminergic pathways13,14. Consistently, excitability 
increases in muscles proximal to the nerve block and decreases 
in the anesthetized area, suggesting the occurrence of non-peri-
pheral phenomena associated with peripheral interventions15,16.
Although there is extensive data regarding the central consequen-
ces of anesthetic deprivation of sensory inputs to the CNS, the 
effect of sensory deprivation using local intramuscular anesthetic 
injection on corticomotor pathways has not yet been described. 
This intervention is of extensive use for treatment of muscle and 
myofascial pain; thus, it is important to understand the mecha-
nisms of muscular anesthetic blocks on M1 excitability/plasticity. 
Therefore, the aim of this preliminary study was to evaluate whe-
ther injection of lidocaine in the first dorsal interosseous (FDI) 
muscle of healthy individuals can affect corticomotor pathway 
functions assessed by single- and paired-pulse transcranial mag-
netic stimulation (TMS).

METHODS

Thirty-two healthy volunteers were included in the study and 
were recruited from the local population. Further inclusion 
criteria were adults aged between 18 and 60 years, who wished 
to participate in the study from personal contact and without 
contraindications for performing TMS (presence of metals in 
the skull or implanted devices, history of epilepsy, pregnancy) 
or use of recreational and psychotropic drugs, anticonvulsants, 
antidepressants or antipsychotics. Participants unable to unders-
tand the content of the evaluation tools used, with a history of 

diseases with possible confounding factors, fibromyalgia and 
other chronic pain, with a history of allergies or insensitivity 
to local anesthetics, coagulopathies and use of anticoagulants, 
or infection at the injection site were excluded from the study. 
Participants following data collection who had insufficient elec-
trophysiological data for analysis, with loss of more than 25% of 
the data were excluded.

Experimental procedure
This randomized, parallel, and placebo-controlled study was 
conducted at the Functional Electrical Stimulation Laboratory at 
the Federal University of Bahia. Subjects were assessed with TMS 
at four time points: before treatment (baseline), immediately af-
ter treatment, and 30 minutes and 60 minutes after treatment. 
The treatment assigned to each subject was determined from 
previous randomization and kept in sealed envelopes. Healthy 
participants received an injection of lidocaine (0.5mL, 2%) in 
the FDI of the dominant hand (LID group) to explore changes 
in corticomotor and corticocortical excitability of this muscle 
and adjacent muscles. Three other groups of healthy volunteers 
were also formed: saline injection (0.5mL, 0.9%) (SAL group), 
dry needling (DRY group), and no intervention (CTL group). 
Injection procedures were performed by an experienced anesthe-
siologist using sterile techniques and needle of 29G (12.7mm). 
The investigators who performed the behavioral tasks and TMS 
assessment were blinded to the treatment allocation. 

Electrophysiological measurements
Excitability of the M1 was evaluated using TMS (BIStim, Mags-
tim, United Kingdom). After cleaning the skin with alcohol and 
an abrasive solution (NUPREP, Weaver and company, USA), 
auto-adhesive electromyography (EMG) Ag/AgCl electrodes 
(Miotec, Brazil) were positioned on the FDI muscle of the do-
minant hand. Participants were comfortably seated in a chair and 
kept awake throughout the evaluation protocol. A pre-marked 
polyester cap with a 1x1cm grid oriented in the cartesian plane 
was placed on the participant’s head and served as reference for 
TMS. TMS was applied through a figure-of-eight coil (diameter 
70mm). Randomized single and paired monophasic pulses were 
administered every 6 seconds, while EMG activity was amplified 
and converted to a digital signal (1401 and 1902, CED, United 
Kingdom United Kingdom) and monitored in real time through 
Signal software (CED, UK). The hot spot was identified, and the 
resting motor threshold (RMT) was estimated as the lowest TMS 
intensity capable of generating a motor evoked potential (MEP) 
with a peak-to-peak amplitude of 50 μV using the TMS Motor 
Threshold Assessment Tool (www.clinicalresearcher.org) software. 
The MEP, short intracortical inhibition (SICI), and intracortical 
facilitation (ICF) were estimated using single pulses at 120% of 
the RMT to estimate MEP and paired 80% and 120% pulses of 
RMT to estimate SICI (2 ms interval) and ICF (15 ms interval). 
Twenty random pulses were applied for each measurement, resul-
ting in 60 pulses for each assessment time point. As assessments 
were conducted at baseline, immediately after intervention and 
30 and 60 minutes after intervention, each participant received 
240 pulses by the end of the experiment. This study was approved 
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by the ethics committee of the University of Bahia Institute of 
Health Sciences (CAE 51500615.6.0000.5662) and written Free 
Informed Consent Term (FICT) was obtained from all subjects.

Statistical analysis
Sample size estimation was performed considering an effect 
size of 30% for anesthetic block on MEP, alpha value of 5% 
(p<0.05), power of 80%, four groups (LID, SAL, DRY, CTL), 
four timepoints of assessment, correction between repeated mea-
sures of 0.5, and correction for non-sphericity of 1 for repeated 
measures analysis of variance. Continuous data were presented 
as means and standard deviation, and categorical data represen-
ted by absolute and relative frequencies. Linear mixed models 
were used to identify differences between the LID, DRY and 
SAL groups and the CTL group. Differences in means for each 
outcome at each assessment time point were compared between 
groups. Baseline values for the outcomes were placed in the mo-
del as covariables. When necessary, post-hoc comparisons were 
performed using the Bonferroni adjustment for multiple compa-
risons. All data were analyzed using IBM SPSS Software v.20 for 
Windows. The level of significance was 5% (p≤0.05).

RESULTS

Data from 28 participants, mean age 29.6 years, 15 women, 
were retained for MEP, SICI, and ICF analysis. Data from four 
participants due to the loss of more than 25% of electrophysiolo-
gical measures were excluded. The RMT values ranged between 
40 and 60 (50 ± 10%) of maximum magnetic stimulator output 
for the FDI. 
The behavior of MEP, SICI, and ICF for the FID was evaluated 
at the four assessment time points (Figures 1, 2, and 3). Paired 
t-tests confirmed that there were no between-session differences 

in SICI and ICF analysis for FDI between groups. In the LID 
group, there was intragroup MEP variation immediately after the 
injection in relation to that 30 and 60 minutes after. Lidocaine 
injection was associated with a significant decrease in the MEP 
value from baseline immediately after the procedure and 30 min 
after the procedure (p<0.005). In the comparison between groups, 
the LID group and the DRY group were different 30 minutes after 
each intervention (p<0.005). The LID group was also different 
from the CTL group immediately after the injection and at the 
end of the 60 minutes from the SAL group (p<0.05).
The stimulus–response curves of the LID and DRY groups show 
a significant decrease in stimulus intensity from baseline to the 
30- and 60-min follow-ups (p<0.05).

Figure 3. Amplitudes of motor evoked potentials (MEPs) in the SICI 
at baseline; immediately after lidocaine injection, dry needling, saline 
injection, and no procedure (control group); and 30 min and 60 min 
after interventions

Figure 2. Amplitudes of intracortical facilitation in the first dorsal in-
terosseous at baseline; immediately after lidocaine injection, dry nee-
dling, saline injection, and no procedure (control group); and 30 min 
and 60 min after interventions

Figure 1. Amplitudes of motor evoked potentials (MEP) in the first 
dorsal interosseous at baseline; immediately after lidocaine injection, 
dry needling, saline injection, and no procedure (control group); and 
30 min and 60 min after interventions
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The stimulus–response curves of the LID and DRY groups show 
a significant decrease in stimulus intensity from baseline to the 
30- and 60-min follow-up (p<0.05).
The LID and DRY groups demonstrated a decrease in MEP 
value immediately after the intervention (with a greater decrease 
in the LID group), with an increase in MEP values ​​above the 
baseline at 30 minutes following intervention, for a later decrease 
in MEP, returning to values ​​discreetly larger than those at the 
baseline (p<0.05).

DISCUSSION

This study aimed to investigate the effects of lidocaine injec-
tion on M1 excitability of healthy participants assessed through 
TMS. To assure that the possible effects were not due to nee-
dle insertion or anesthetic volume, the lidocaine injection was 
compared to dry needling, saline injection, and no intervention. 
The results demonstrated that injection of lidocaine on FID and 
MEP in the contralateral M1 did not alter intracortical inhibi-
tion or facilitation in M1. However, it seems that there was a 
slight influence of the interventions in ICF and SICI, although 
not statistically significant. 
Experimental studies have consistently demonstrated the exis-
tence of modifications in cortical excitability after peripheral in-
terventions, with changes observed in the M1 organization of 
the muscle representations proximal to an anesthetized region in 
the upper limb9,11,17-21. This phenomenon appears to be associa-
ted with decreased cortical inhibition and a reactive increase in 
cortical excitability of the representation of those muscles that 
did not receive any intervention. It has also been shown that this 
increase in excitability may be associated with improved func-
tion and tactile discrimination of both the region proximal to 
the anesthetized area and the contralateral region22. Some studies 
suggest that the presence of functionally silent or inhibited sen-
sory pathways, which can be activated during the effective dea-
fferentation period, is a possible mechanism associated to such 
changes15,23. The effect of topical anesthesia, neural blocks, and 
ischemic upper limb blocks has been the subject of many electro-
physiological studies. However, this is the first study to evaluate 
the effect of intramuscular injection of anesthesia through TMS. 
The small occurrence of verifiable effects can be attributed to se-
veral factors. Firstly, the decrease in sensory impulse is not always 
capable of causing changes in electrophysiological parameters in 
healthy individuals10,16,24. Many of the previous studies involved 
patients diagnosed with complex regional pain syndrome or pos-
t-stroke status; since these populations present a pathological 
condition, it is possible that peripheral anesthetic manipulation 
may exert a different effect than those seen in healthy volun-
teers21. This suggests that individuals with previous motor dys-
function and sensory deficits have a greater potential to respond 
to this type of intervention. 
Previous studies have evaluated interventions that had a com-
plete deafferentation9,25-27. It is possible that the magnitude of 
those interventions was a key factor to cause rapid reorganiza-
tional phenomena in latent corticocortical or thalamocortical 
connections. As the intervention only targeted a small muscle, 

it is reasonable to accept that it was not enough to induce M1 
excitability changes. 
This study presents some potential limitations. Interventions 
targeted to muscles also stimulate cutaneous nerve fibers, which 
can be considered an important confounding factor. For this rea-
son, some studies have attempted to perform topical anesthesia 
of the region to minimize skin effects prior to muscle interven-
tion, although the subtraction of the cutaneous stimulus does 
not always have a different effect on the intervention24. The lack 
of ultrasonography to guide the procedure and ensure correct 
dispersion of the anesthetic volume in the muscle can also be 
considered as a limitation26.
Although there is already a considerable number of published 
articles exploring the effects of interventions using local anes-
thetics in cortical excitability, knowledge about this topic is still 
developing. Most of the current research involves heterogeneous 
methodologies, which make the results difficult to compare. 

CONCLUSION

Lidocaine injection in the FDI alters MEP but does not alter the 
SICI and ICF of this muscle in an evaluation verified by TMS in 
healthy individuals.
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