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RESUMO

Um novo algoritmo SVPWM simplificado baseado em si-
nal portador modificada
Este artigo apresenta um algoritmo simplificado da modu-
lação por largura de pulso por vetores espaciais (SVPWM)
para um inversor trifásico de dois níveis, o qual pode ope-
rar em submodulação e sobremodulação. Em outras simpli-
ficações achadas na literatura, as tensões de referência são
modificadas e comparadas com um portador triangular para
estimar os estados de comutação do inversor. Não obstante,
este artigo propõe a modificação do portador, em lugar das
referências. Este procedimento reduz o número de opera-
ções matemáticas e aumenta a velocidade de execução do
algoritmo SVPWM em DSPs ou FPGAs. As ondas de re-
ferência são senoidais, ainda no modo de sobremodulação.
Resultados de simulação e experimentais demonstram que a
simplificação proposta produz o mesmo padrão de chavea-
mento que o SVPWM convencional, é mais simples e rápida
que outras simplificações.

PALAVRAS-CHAVE: Inversor trifásico de dois níveis, modu-
lação por largura de pulso por vetores espaciais, sinal porta-
dor triangular, submodulação, sobremodulação.

ABSTRACT

This paper presents a simplified algorithm of space vector
pulse width modulation (SVPWM) for a two-level three-

Artigo submetido em 23/06/2010 (Id.: 01163)
Revisado em 21/09/2010, 24/03/2011
Aceito sob recomendação do Editor Associado Prof. José Antenor Pomilio

phase inverter, which can operate in undermodulation and
overmodulation modes. In other simplifications founded in
literature, the reference voltages are modified and compared
with a triangular carrier to estimate the switching states of
the inverter. However, this paper proposes the modification
of the carrier signal instead of the references. This proce-
dure reduces the number of mathematical operations and in-
creases the execution speed of SVPWM algorithm in DSPs
or FPGAs. The reference voltages are sinusoidal, even for
overmodulation mode. Simulation and experimental results
proves that the proposed simplification produces the same
switching patterns than conventional SVPWM, is simpler
and is faster than other simplifications.

KEYWORDS: Two-level three-phase inverter, space vector
pulse width modulation, triangular carrier signal, undermod-
ulation, overmodulation.

1 INTRODUCTION

Space Vector PWM (SVPWM) is widely used in variable fre-
quency drive applications, by its superior harmonic quality,
less switching losses and extended linear range of operation
(Holtz, 1994; Van der Broeck et al., 1988; Yu et al., 2008).
However, its conventional implementation requires a high
number of mathematical operations, reducing the maximum
speed that SVPWM can be executed in DSPs or FPGAs.

Different researches were made to simplify SVPWM: The
real and imaginary components of space vectors are used
to calculate the switching times without using trigonomet-
ric functions (Shu et al., 2007; Yu, 1999; Zhai and Li, 2008).
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In Lamich et al. (2002), Zhang et al. (2009), the switch-
ing times are defined in terms of the phase references in-
stead of using space vectors. According to Blasko (1997),
Holmes (1996), SVPWM is equivalent to sinusoidal modu-
lation when a zero-sequence component is added to the ref-
erence signals. In Pinheiro et al. (2005) SVPWM is easily
implemented when the neutral points of the inverter and the
load are connected, establishing the concepts of decomposi-
tion matrices.

On the other hand, the SVPWM algorithm must operate in
overmodulation mode to generate as high AC voltages as
possible for a given DC energy source. Different techniques
in literature (Bakhshai et al., 2000; Filho et al., 2004; Pinto
et al., 2000; Yang et al., 2009) modify the references sig-
nals, adapting the formulas for undermodulation mode to
overmodulation mode. Those values are compared with a
triangular carrier to establish the switching sequence.

In this paper, the number of mathematical operations to im-
plement SVPWM algorithm, even for overmodulation mode,
is reduced by the modification of the carrier signal instead of
the references voltages.

The modified carrier depends on the zero-sequence compo-
nent described in Blasko (1997) and the modulation index.
On the other hand, the reference voltages are sinusoidal, even
for overmodulation mode. This fact simplifies the implemen-
tation of SVPWM.

The proposed technique based on modified carrier is com-
pared with conventional SVPWM, Hybrid PWM and the al-
gorithm described in Filho et.al. (2004). Simulation and ex-
perimental results demonstrate that the proposed simplifica-
tion based on modified carrier generates the same switching
patterns than conventional SVPWM, requires a less number
of arithmetic operations and its execution is faster than other
simplifications.

2 SPACE VECTOR PWM

2.1 Two-Level Three-Phase Inverter

The structure of a two-level three-phase voltage source in-
verter is shown in Figure 1. It is composed by six power
transistors (MOSFTET, IGBT, GTO) Qa, Qan, Qb, Qbn, Qc

and Qcn, which are controlled by the digital signals sa, san,
sb, sbn, sc and scn, respectively. To avoid short circuit in the
energy source and indeterminate output voltages, the switch-
ing states of the upper transistors (Qa, Qb or Qc) and the
lower transistor (Qan, Qbn or Qcn respectively) in the same
leg are opposite.

Pole voltages vaN , vbN and vcN are the terminal voltages of
each leg respect to the neutral point N (reference point of the
DC supply). These voltages depend of the switching states
of the transistors (Yu, 1999), according to equation (1) :

vpN =

{

0, 5vdc; ifsp = 1(switchedon)
−0, 5vdc; ifsp = 0(switchedoff)

(1)

Where p denotes the phase of the inverter (p = a, b, c). Equa-
tion 1 indicates that each output of the inverter has two possi-
ble values. Therefore, there are 23 = 8 switching states, with
their respective output voltages.

In general, the phase voltages (vaO, vbO, vcO) of a balanced
star-connected load fed by a three phase voltage source, as a
two-level inverter, depend on the pole voltages (Bose, 2002):





vaO

vbO

vcO



 =
1

3





2 −1 −1
−1 2 −1
−1 −1 2









vaN

vbN

vcN



 (2)

2.2 Space Vector Representation

A set of balanced three-phase voltages [vavbvc]
T can be rep-

resented through a space vector, a complex number with a
real (vα) and an imaginary (vβ) components defined in the
complex plane, according to equation (3) (Rashid, 2001):

V =

[

vα

vβ

]

=
2

3

[

2va − (vb + vc)√
3 (vb − vc)

]

(3)

Table 1 shows the space vectors that represents the eight
switching states of the two-level inverter. Six non-zero vec-
tors (from V1 to V6) divide the complex plane in six sectors
of a hexagon, as illustrated in Figure 2. On the other hand,
two zero vectors (V0 and V7) are located at the center of the
hexagon.

Table 1: Output Voltages of the Two-Level Inverter

Vector sa sb sc vα vβ

v0 0 0 0 0 0
v1 1 0 0 − 2

3vdc 0
v2 1 1 0 1

3vdc
1
3vdc

v3 0 1 0 − 1
3vdc

1√
3
vdc

v4 0 1 1 − 2
3vdc 0

v5 0 0 1 − 1
3vdc − 1√

3
vdc

v6 1 0 1 1
3vdc − 1√

3
vdc

v7 1 1 1 0 0
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The desired pole voltages [vravrbvrc]
T are represented by

the vector Vr, using equation (3) . According to equation
(2) , if the pole references belong to a balanced system, then
they are equal to the load phase references. This vector is
approximated with a combination of the space vectors V0 to
V7, during the modulation period tm, according to equations
(4) and (5) :

Vrtm = Vxtx + Vyty (4)

tz = tm − (tx + ty) (5)

Where tx, ty and tz are the switching times that Vx, Vy and
the zero vector Vz are used, respectively. If Vr is located in
sector s: Vx = Vs and Vy = Vs+1 (except in sector 6, where
Vy = V1).

Conventionally, the switching times are calculated using
trigonometric functions, according to equations (6) and (7)
(Bose, 2002):

tx =
√

3tm
‖Vr‖
vdc

sin
(π

3
− g

)

(6)

Figure 1: Two-level three-phase inverter.

Figure 2: Zero and non-zero vectors of the inverter.

ty =
√

3tm
‖Vr‖
vdc

sin (g) (7)

Where || Vr || is the magnitude of the reference vector, and
g is the angle between Vr and Vx, as shown in Figure 2.
Trigonometric functions demand many mathematical opera-
tions in DSPs or FPGAs. In order to resolve this problem,
the switching times can also be calculated using the real and
imaginary components of the space vectors. Applying sub-
matrix algebra (Cheng, 1999) to equation (4) :

Vrtm =
[

Vx Vy

] [

tx ty
]T

(8)

Figure 2 proves that the vectors Vx and Vy are not collinear.
Therefore, the matrix [Vx Vy] is invertible (Cheng, 1999).
Considering Vr = [vrα vrβ ]T , Vx= [vxαvxβ ]T and Vy =
[vyαvyβ ]T , the switching times can be calculated as follows:

[

tx
ty

]

=
[

Vx Vy

]−1
Vrtm

[

tx
ty

]

=

[

vxα vyα

vxβ vyβ

]−1 [

vrα

vrβ

]

tm

(9)

Table 2 shows the values of tx and ty for each sector, ac-
cording to equation (8) . The value of tz is obtained us-
ing equation (5) . After those operations, the sequence of
the switching states of the upper transistors must be defined.
This arrangement can be done in different ways (Hariram
and Marimuthu, 2005). This paper considers the software-
determined switching pattern described in Yu (1999) and il-
lustrated in Figure 3.

Table 2: Switching Times in Function of vrα and vrβ

Sector tx ty
1 tm

2vdc

(

3vrα −
√

3vrβ

)

tm

vdc

(√
3vrβ

)

2 tm

2vdc

(

3vrα +
√

3vrβ

)

tm

2vdc

(

−3vrα +
√

3vrβ

)

3 tm

vdc

(√
3vrβ

)

tm

2vdc

(

−3vrα −
√

3vrβ

)

4 tm

2vdc

(

−3vrα +
√

3vrβ

)

tm

vdc

(

−
√

3vrβ

)

5 tm

2vdc

(

−3vrα −
√

3vrβ

)

tm

2vdc

(

3vrα −
√

3vrβ

)

6 tm

vdc

(

−
√

3vrβ

)

tm

2vdc

(

3vrα +
√

3vrβ

)

2.3 Operation Modes of SVPWM

The modulation index m is defined as follows (Holtz, 1994):

m =
‖Vr‖
(

2
π
vdc

) (10)

Where 2vdc/π is the fundamental peak value of the square
voltage wave. The modulation index varies from 0 to 1,
defining three operation modes (Bose, 2002):
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• Undermodulation mode (0 ≤ m < 0,907): The refer-
ence vector always reminds within the hexagon, while
the reference voltages are perfectly sinusoidal.

• Overmodulation mode 1 (0,907 ≤ m < 0,952): The
reference vector crosses the hexagon at two points in
each sector. When SVPWM operates in overmodula-
tion mode, there is a loss in the magnitude of the funda-
mental voltage. To compensate this effect, the reference
voltages must be modified. In overmodulation mode 1,
those references are composed by linear and sinusoidal
segments.

• Overmodulation mode 2 (0,952 ≤ m ≤ 1): The refer-
ence vector increases even further compared with over-
modulation mode 1. The reference voltages are com-
posed only by linear segments.

Figures 4, 5 and 6 show the operation region in sector 1
and the reference voltages for the three operation modes of
SVPWM.

Figure 3: Software-determined switching sequence.

Figure 4: Operation region in sector 1 and reference voltage
for undermodulation mode.

2.4 Turn-on Times

In order to simplify SVPWM algorithm, the turn-on times
ta−on, tb−on and tc−on are defined in Filho et al. (2004) to
estimate the state of the upper transistors, to avoid working

Figure 5: Operation region in sector 1 and reference voltage
for overmodulation mode 1.

Figure 6: Operation region in sector 1 and reference voltage
for overmodulation mode 2.

with the switching times tx, ty and tz . The formulas of the
turn-on times for the sector s (from 1 to 6) are presented in
equations (11) , (12) and (13) :

ta−on =



















tm

2

[

1 + 3fc

2vdc

(

−vrα − vrβ√
3

)]

; s = 1, 4

tm

2

[

1 + 3fc

2vdc
(−2vrα)

]

; s = 2, 5

tm

2

[

1 + 3fc

2vdc

(

−vrα +
vrβ√

3

)]

; s = 3, 6

(11)

tb−on =



















tm

2

[

1 + 3fc

2vdc

(

vrα −
√

3vrβ

)

]

; s = 1, 4

tm

2

[

1 + 3fc

2vdc

(

−2
vrβ√

3

)]

; s = 2, 5

tm

2

[

1 + 3fc

2vdc

(

vrα − vrβ√
3

)]

; s = 3, 6

(12)

tc−on =



















tm

2

[

1 + 3fc

2vdc

(

vrα +
vrβ√

3

)]

; s = 1, 4

tm

2

[

1 + 3fc

2vdc

(

2
vrβ√

3

)]

; s = 2, 5

tm

2

[

1 + 3fc

2vdc

(

vrα +
√

3vrβ

)

]

; s = 3, 6

(13)

The factor fc compensates the attenuation of the fundamen-
tal voltage in overmodulation mode. This compensation fac-
tor can be implemented in a look-up table, and depends on
the modulation index: fc is unity in undermodulation mode,
and it tends to infinite in overmodulation mode (Filho et al.,
2004).
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The advantages of working with turn-on times is that the
switching states can be easily determined by a simple com-
parison with a triangular carrier c(t), as illustrated in Figure
7 (Pinto et al., 2000). However, the formulas of the turn-on
times require many mathematical operations for each sector
and phase. This problem is solved using the concept of mod-
ified carrier signal, which is explained in sequence below.

3 PROPOSED ALGORITHM

3.1 Simplified Formulas about Turn-on
Times

In Zhang et al. (2009), the switching times tx and ty are
expressed in terms of the reference voltages. In this paper,
the same strategy is used, but to express the turn-on times
ta−on, tb−on and tc−on. For example, according to equation
(11) , the turn-on time for the phase a in sector 1 is:

ta−on =
tm
2

[

1 +
3fc

2vdc

(

−vrα − vrβ√
3

)]

; s = 1, 4 (14)

On the other hand, based on equation (3) :

−vrα − vrβ√
3

= − 2vra−(vrb+vrc)
3 − 1√

3

(vrb−vrc)√
3

−vrα − vrβ√
3

= −2(vra−vrc)
3

(15)

As the sum of the three reference voltages is zero in a bal-
anced three-phase system (vra + vrb + vrc = 0):

−vrc = vra + vrb (16)

Figure 7: Comparison between tp−on and the carrier c(t).

Replacing equations (15) and (16) in equation (14) :

ta−on = tm

2

[

1 − fc
(vra−vrc)

vdc

]

; s = 1, 4

ta−on = tm

2

[

1 − fc
(2vra+vrb)

vdc

]

; s = 1, 4
(17)

Using the similar procedure to obtain equation (17) , the turn-
on times are defined in function of the reference voltages:

ta−on =



















tm

2

[

1 − fc
(2vra+vrb)

vdc

]

; s = 1, 4

tm

2

[

1 − fc
(2vra+vra)

vdc

]

; s = 2, 5

tm

2

[

1 − fc
(2vra+vrc)

vdc

]

; s = 3, 6

(18)

tb−on =



















tm

2

[

1 − fc
(2vrb+vrb)

vdc

]

; s = 1, 4

tm

2

[

1 − fc
(2vrb+vra)

vdc

]

; s = 2, 5

tm

2

[

1 − fc
(2vrb+vrc)

vdc

]

; s = 3, 6

(19)

tc−on =



















tm

2

[

1 − fc
(2vrc+vrb)

vdc

]

; s = 1, 4

tm

2

[

1 − fc
(2vrc+vra)

vdc

]

; s = 2, 5

tm

2

[

1 − fc
(2vrc+vrc)

vdc

]

; s = 3, 6

(20)

Equations (18) , (19) and (20) have the following structure:

tp−on =
tm
2

[

1 − fc

(2vrp + vzs)

vdc

]

(21)

Where vrp is the reference voltage in phase p, while vzs is
based on the zero-sequence component described in Blasko
(1997), and depends on the sector s where the reference vec-
tor is located:

vzs =







vrb; s = 1, 4
vra; s = 2, 5
vrc; s = 3, 6

(22)

3.2 Modified Carrier Signal

Equation (21) can be expressed as follows:

tp−on =
tm
2

− fc

(

tm
2vdc

)

(2vrp + vzs) (23)

If the terms tm/2 and tm/(2vdc) are considered as constants,
then six multiplications are needed to calculate the turn-on
times using equation (23) , without considering the estima-
tion of the compensation factor fc.

However, it is possible to reduce even more the number of
mathematical operations using the concept of modified car-
rier proposed in this paper.
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Figure 7 indicates that the upper transistor Qp is switched on
(sp = 1) when the carrier c(t) is greater than the turn-on time:

c (t) ≥ tp−on (24)

From equations (23) and (24) :

c (t) ≥ tm

2

[

1 − fc
(2vrp+vzs)

vdc

]

2c(t)
tm

≥
[

1 − fc
(2vrp+vzs)

vdc

]

2vrp + vzs ≥ vdc

fc

[

1 − 2c(t)
tm

]

2vrp ≥ vdc

fc

[

1 − 2c(t)
tm

]

− vzs

(25)

Dividing equation (25) by the amplitude of the reference vec-
tor ||Vr||:

2vrp

‖Vr‖ ≥ vdc

‖Vr‖fc

[

1 − 2c(t)
tm

]

− vzs

‖Vr‖
2vrp

‖Vr‖ ≥
(

2vdc

‖Vr‖π

) (

π
2fc

) [

1 − 2c(t)
tm

]

− vzs

‖Vr‖
(26)

By the definition of modulating index:

1

m
=

2vdc

‖Vr‖π
(27)

Replacing equation (27) in equation (26) :

2vrp

‖Vr‖
≥ π

2mfc

[

1 − 2c (t)

tm

]

− vzs

‖Vr‖
(28)

Four variables vrpn = vrp/||Vr||, vzsn = vzs/||Vr||, k(t) =
1− [2c(t)/tm] and g(m) = π/(2mfc) are defined as the nor-
malized (from -1 to 1) reference voltage in phase p, the nor-
malized zero-sequence component, a triangular carrier and a
new correction factor, respectively. The waveforms of g(m)
and k(t) are shown in Figures 8 and 9. Equation (28) can be
expressed in function of these new four variables:

2vrpn ≥ g (m) k (t) − vzsn (29)

The modified carrier signal q(t) is defined as follows:

q (t) = g (m) k (t) − vzsn (30)

The value of sp (p denotes the phase a, b or c in the inverter)
can be expressed in terms of the modified carrier q(t):

sp =

{

1(switchon), if2vrpn ≥ q (t)
0(switchoff), otherwise

(31)

�

Figure 8: Correction factor g(m).

�

Figure 9: Normalized triangular wave k(t).

Sector identification is required to calculate vzsn and q(t).
This problem is treated in the next section.

3.3 Sector Identification

In order to identify the sector and estimate the value of vzpn,
variables b1, b2, b3, b4 and b5 are defined as follow:

b1 =

{

1; ifvran ≥ vrbn

0; otherwise
(32)

b2 =

{

1; ifvrbn ≥ vrcn

0; otherwise
(33)

b3 =

{

1; ifvrcn ≥ vran

0; otherwise
(34)

b4 = xor (b1, b2) (35)

b5 = xor (b2, b3) (36)

550 Revista Controle & Automação/Vol.22 no.5/Setembro e Outubro 2011



Table 3: Sector Identification and Selection of vzsn

Sector Relation b1 b2 b3 b4 b5 vzsn

1 vrcn < vrbn <
vran

1 1 0 0 1 vrbn

2 vrcn < vran <
vrbn

0 1 0 1 1 vran

3 vran < vrcn <
vrbn

0 1 1 1 0 vrcn

4 vran < vrbn <
vrcn

0 0 1 0 1 vrbn

5 vrbn < vran <
vrcn

1 0 1 1 1 vran

6 vrbn < vrcn <
vran

1 0 0 1 0 vrcn

Table 3 shows the values of these variables for the six sectors,
calculated using the relations between the reference signals
in each sector described in Zhang et al. (2009). Equation
(39) determines the value of vzsn, based on Table 3 and the
variables b4 and b5.

vzsn =







vrbn; ifb4 = 0andb5 = 1;
vran; ifb4 = 1andb5 = 1;
vrcn; otherwise.

(37)

3.4 Complexity of the Proposed Simplifi-
cation

Sector identification requires three comparisons (b1, b2, b3),
two XOR functions (b4, b5), two AND functions and two IF-
THEN sentences. When vzsn is known, the modified carrier
q(t) is calculated using only one multiplication, one subtrac-
tion and a look-up table. The terms 2vran, 2vrbn and 2vrcn

can be obtained by three additions, to avoid real-number mul-
tiplications.

As a result, the proposed simplification of SVPWM requires:

• Three additions;

• One subtraction;

• One multiplication;

• Two IF-THEN sentences;

• Three comparisons;

• Two XOR functions;

• Two AND functions;

• One look-up table for g(m), with its respective opera-
tions.

One advantage of the proposed algorithm is that vran, vrbn

and vrcn have unitary amplitude, independently of the modu-
lation index. Only their frequencies change according to the
desired electric frequency of the output voltages. Those sig-
nals are perfectly sinusoidal, even for overmodulation mode.

3.5 Comparison with other Modulation
Techniques

The proposed technique is compared with the hybrid PWM
(HPWM) and the simplification of SVPWM based on turn-
on times, respect to their computational complexities (num-
ber of mathematical operations), to prove the advantages
of the concept of modified carrier in the implementation of
SVPWM.

Real-number arithmetic operations complicate the design
and increase the execution time of the algorithms imple-
mented in DSPs or FPGAs (Tzou and Hsu, 1997). Therefore,
an algorithm with a less number of mathematical operations
can be executed faster.

It is considered that the generation of the triangular waves,
sinusoidal functions and look-up tables have the same com-
putational complexity in all cases, while comparisons and
Boolean operations are executed in a negligible time.

3.5.1 Comparison with HPWM

HPWM generates the same switching pattern of conventional
SVPWM, using a triangle-comparison method (Blasko,
1997). In first place, the reference voltages with amplitude
||Vr|| and phase ϕp are produced through equation (40) :

vrp = ‖Vr‖ sin (ϕp) (38)

After that, the zero-sequence voltagevzh is calculated:

vzh = 0, 5 [min (vra, vrb, vrc) + max (vra, vrb, vrc)] (39)

From Table 3 and equation (41) :

vzh = 0, 5vzs (40)

The switching state in the phase p of the inverter is deter-
mined by the comparison established in equation (43) .

sp =

{

1(switchedon), ifvrp + vzh ≥ vt (t)
0(switchedoff), otherwise

(41)
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According to Figure 9 and Blasko (1997):

vt (t) = 0, 5vdck (t) (42)

As HPWM does not operate in overmodulation mode, the
comparison between this modulation technique and the pro-
posed simplification of SVPWM will be made only for un-
dermodulation mode, where fc is unity (Filho et al., 2004)
and g(m) is calculated easily:

g(m) =
π

2m
(43)

Replacing equations (42) , (44) and (45) in equation (30) ,
the upper transistors of the inverter are switched on (sp = 1)
in the proposed technique when the following inequality is
satisfied:

2vrpn ≥ π
2m

k (t) − vzsn

2vrpn ≥ vdc

‖Vr‖k (t) − vzsn

‖Vr‖ vrpn ≥ 0, 5vdck (t) − 0, 5 ‖Vr‖ vzsn

vrp ≥ vt (t) − 0, 5vzs

vrp + vzs ≥ vt (t)

(44)

As a result, the switching states in the proposed simplifica-
tion of SVPWM based on modified carrier signal are deter-
mined by equation (47) :

sp =

{

1(switchedon), ifvrp + vzh ≥ vt (t)
0(switchedoff), otherwise

(45)

Equations (43) and (47) are equal. Therefore, the proposed
technique and HPWM produce the same switching pattern,
both have a gain of 15% in the use of the DC-link volt-
age, their output voltages have the same harmonic distortion
(THD) and dead times affect them in the same way.

The use of a look-up table requires many comparisons and
mathematical operations. However, if the proposed tech-
nique will operate only in undermodulation mode, as HPWM
does, the modified carrier is calculated from equations (32)
and (45) :

q (t) =
1

m

[π

2
k (t)

]

− vzsn (46)

Considering r(t) = 0, 5πk(t) as a new triangular carrier with
the same computational complexity of vt(t) or k(t), the pro-
posed simplification can be implemented using three addi-
tions, one subtraction and one division. On the other hand,

Table 4: Number of Arithmetic Operations for HPWM

Procedure Additions Multiplications
Reference voltages 0 3
Estimation of vzh 0 1
Addition of vzh to
the reference volt-
ages

3 0

Total 3 4

Table 4 indicates that HPWM requires three additions and
four multiplications. Equation (15) could be used in both al-
gorithms to generate the third reference signal (for balanced
three-phase systems). In that case, HPWM requires three
multiplications. As a result, the proposed technique has less
computational complexity than HPWM in undermodulation
mode. It is only necessary a small one-dimensional look-up
table to estimate g(m) when overmodulation operation mode
is needed.

3.5.2 Comparison with Other Simplifications of
SVPWM

The proposed simplification based on modified carrier sig-
nal was deduced from the algorithm explained in Filho et al.
(2004): Firstly, the turn-on times were expressed in terms of
the reference voltages. In second place, the inequality that
controls the switching states was expressed in terms of the
modulation index and the zero-sequence voltage vzsn. Fi-
nally, the modified carrier q(t) was defined.

The main advantage of the proposed algorithm based on
modified carrier signal, respect to other simplifications of
SVPWM as the described in Filho et al. (2004), is that it
requires a less number of mathematical operations because it
works directly with pole references instead of space vectors.
Equations (11) , (12) and (13) can be expressed as follows:

tp−on = k0 + fc (k1vrα + k2vrβ) (47)

Where k0 = 0,5tm, whilek1 andk2 depend of the sector and
the phase. According to equation (??) , the calculus of the
three turn-on times requires nine multiplications, six addi-
tions and two sinusoidal functions (to represent vrα and vrβ).

On the other hand, equation (30) indicates the proposed sim-
plification demands one multiplication, one subtraction and
three additions. It is only necessary two sinusoidal waves
for vran and vrbn, because vrcn can be obtained from equa-
tion (16) As a result, the proposed technique has less compu-
tational than the implementation of SVPWM using turn-on
times.
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4 RESULTS

4.1 Simulation Results

The proposed simplification of SVPWM was simulated in
MATLAB/SIMULINK, as illustrated in Figure 10. The
source voltage vdc and the modulation period tm were set
in 200 V and 250 us (1/4 kHz), respectively.

The conventional SVPWM, HPWM and the algorithm de-
scribed in Filho et.al. (2004) were also simulated, as shown
in Figure 11, in order to make comparisons with the proposed
technique.

Three simulation tests were made, to cover undermodulation
and overmodulation modes:

• Test 1 (Undermodulation mode): m = 0,85 (||Vr|| =
108,23 V) and 60 Hz.;

�

Figure 10: Simulation diagram of the proposed algorithm.

�

Figure 11: Simulation diagram for HPWM, conventional
SVPWM and the simplification based on turn-on times.

Table 5: Peak Values of the Fundamental Components for the
Simulation Tests.

Test Reference (V) Real (V) Error (%)
1 108,23 108,18 0,042
2 119,68 119,57 0,095
3 124,78 124,78 -0,021

Table 6: THD of the Output Voltages for Test 1

Modulation technique THD of pole
voltage vaN

THD of phase
voltage vaO

Conventional
SVPWM

38,58% 22,76%

HPWM 38,58% 22,76%
Turn-on times 38,58% 22,76%
Proposed algorithm 38,58% 22,76%

• Test 2 (Overmodulation mode 1): m = 0,94 (||Vr|| =
119,68 V) and 60 Hz;

• Test 3 (Overmodulation mode 2): m = 0,98 (||Vr|| =
124,78 V) and 60 Hz.

The pole voltages and the line-to-line output voltages for
the three tests are shown in Figures 12, 13 and 14. The
magnitudes of the fundamental components of the pole volt-
ages were founded using the Fourier Analyzer block of
SIMULINK. The comparisons between the reference and the
obtained pole voltages, presented in Table 6, prove that the
proposed simplification can generate the desired voltages.

The total harmonic distortion (THD) of the pole voltage vaN

and the load phase voltage vaO for the mentioned modulation
techniques are shown in Tables 7 and 8. The load phase volt-
ages were obtained through equation (2) , while THD was
measured using the FFT Analysis Tool of MATLAB.

The proposed technique was compared in overmodulation
mode only with the algorithm based on turn-on times be-
cause HPWM are not defined in this operation mode. The
results indicate that the mentioned techniques have the same
THD. Small differences in test 3 are produced by the numer-
ical precision of the look-up tables.

Table 7: THD of the Output Voltages for Test 2 and 3

Modulation technique THD of pole
voltage vaN

THD of phase
voltage vaO

Turn-on times: test 2 29,94% 16,41%
Proposed: test 2 29,94% 16,41%
Turn-on times: test 3 34,21% 17,35%
Proposed: test 3 34,19% 17,31%
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�

Figure 12: Test 1 (m = 0,85): Output voltages.

�

Figure 13: Test 2 (m = 0,94): Output voltages.

�

Figure 14: Test 3 (m = 0,98): Output voltages.

4.2 Experimental Results

The simplification of SVPWM based on the modified car-
rier signal was implemented in the DSP DSPACE DS1104,
which is programmable using SIMULINK block diagrams.

The proposed simplification was applied in the open-loop
speed control of an induction motor (3410 RPM, 60 Hz, 220
Vrms, 0,5 HP). The driver IRAMX16UP60A was used as the
two-level three-phase inverter.

Three experimental tests were done using the same character-
istics of the simulation tests. The line-to-line voltages shown
in Figures 15, 16 and 17 are similar to the respective wave-
forms obtained in the simulation tests.

�

Figure 15: Test 1 (m = 0,85): Line-to-line voltage vab. Vertical
scale: 100V/division.

�

Figure 16: Test 2 (m = 0,94): Line-to-line voltage vab. Vertical
scale: 100V/division.

Figures 18, 19 and 20 show the stator currents of the motor.
An evident distortion in the waveform of the stator current
appears in test 3, because the phase voltages which give en-
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�

Figure 17: Test 3 (m = 0,98): Line-to-line voltage vab. Vertical
scale: 100V/division.

ergy to the motor are near to the six-step operation (m = 1),
where the harmonics of higher energy are concentrated in the
low-frequency spectrum.

�

Figure 18: Test 1 (m = 0,85): Stator current ia. Vertical scale:
200 mA/division.

4.3 Evaluation of Execution Time

The execution times of the proposed simplification and
the algorithm presented in Filho et al. (2004) were com-
pared experimentally. Both algorithms were designed in the
files “proposed.mdl” and “reference.mdl” respectively. The
SIMULINK diagram of the reference algorithm is presented
in Figure 21. The MASTER-BIT-OUT blocks transfer the
logic signals to the digital output ports of the DSP.

The time required in the execution of an algorithm deter-
mines the maximum sampling frequency (fs = 1/ts) that a
DSP or FPGA can operate, because all the mathematical op-
erations must be done before the beginning of the new sam-
pling cycle. Otherwise, the algorithm can not be executed.
Figure 22 illustrates this necessary condition.

�

Figure 19: Test 2 (m = 0,94): Stator current ia. Vertical scale:
200 mA/division.

�

Figure 20: Test 3 (m = 0,98): Stator current ia. Vertical scale:
200 mA/division.

Both algorithms were tested trying to be loaded in the DSP
considering a sampling time of 12,5 us (1/80 kHz). Figures
23 and 24 present their respective loading processes. Only
the proposed simplification was successfully loaded in the
DSP. This fact proves that the proposed technique can be ex-
ecuted faster than the simplification described in Filho et al.
(2004).

A simpler and faster SVPWM algorithm is suitable in the
implementation of closed-loop variable frequency drive ap-
plications, because it allows working with higher sampling
frequency to acquire information of currents, position or me-
chanical speed.

5 CONCLUSIONS

This paper presents a new simplification of SVPWM for un-
dermodulation and overmodulation modes, based on the new
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�

Figure 21: SIMULINK diagram of the SVPWM algorithm used
as reference.

��

Figure 22: Requirement to execute successfully an algorithm
in a DSP.

�

Figure 23: Loading process of the reference SVPWM simpli-
fication.

�

Figure 24: Loading process of the proposed SVPWM simpli-
fication.

concept of the modified carrier signal. This technique uses a
small set of mathematical operations, while the sector iden-
tification is made using reference pole voltages and only re-
quires a small one-dimensional look-up table to operate in
overmodulation mode. The proposed simplification has a
faster execution time in DSPs than other simplifications in
literature, making possible the implementation of SVPWM
algorithm in DSPs or FPGAs using higher sampling frequen-
cies, which is suitable in variable frequency drive applica-
tions.

On the other hand, the proposed technique produces the same
switching pattern that conventional SVPWM and HPWM.
As a result, all these modulation technique produce the same
harmonic distortion and are affected for dead times in the
same way.

A future work consists in the use of the proposed simplifica-
tion in a closed-loop speed control of three-phase motors.
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