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ABSTRACT

This paper presents a control strategy for robot manipulators
to perform 3D cartesian tracking using visual servoing. Con-
sidering a fixed camera, the 3D cartesian motion is decom-
posed in a 2D motion on a plane orthogonal to the optical axis
and a 1D motion parallel to this axis. An image-based visual
servoing approach is used to deal with the nonlinear control
problem generated by the depth variation without requiring
direct depth estimation. Due to the lack of camera calibra-
tion, an adaptive control method is used to ensure both depth
and planar tracking in the image frame. The depth feedback
loop is closed by measuring the image area of a target object
attached to the robot end-effector. Simulation and experi-
mental results obtained with a real robot manipulator illus-
trate the viability of the proposed scheme.
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RESUMO

Este trabalho apresenta uma estratégia de controle para robôs
manipuladores realizarem rastreamento cartesiano 3D utili-
zando servovisão. Considerando uma câmera fixa, o movi-
mento cartesiano 3D é decomposto em um movimento 2D
sobre um plano ortogonal ao eixo óptico e em outro mo-
vimento 1D paralelo ao mesmo eixo. Uma abordagem de
servovisão baseada em imagem é utilizada para tratar o pro-
blema de controle não-linear, gerado pela variação de profun-
didade, sem a necessidade de estimar esta medida. Devido
à ausência de calibração da câmera, um método de controle
adaptativo é utilizado para assegurar rastreamento planar e de
profundidade nas coordenadas da imagem. A malha de con-
trole de profundidade é fechada através da medição da área
da imagem de um objeto fixado no efetuador do robô. Simu-
lação e resultados experimentais, obtidos com um robô ma-
nipulador real, ilustram a viabilidade do esquema proposto.

PALAVRAS-CHAVE: Servovisão Adaptativa, Rastreamento,
Controle de Profundidade, Sistemas Robóticos Incertos.
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1 INTRODUCTION

For many years researchers have been actively investigating
the use of visual servoing in the control of robotic systems.
The feedback provided by vision has been used to develop
several control strategies with proven stability (c.f. Hutchin-
son et al. (1996)).

Solutions to the problem of robot motion control in a 3D
environment were proposed with different choices of cam-
era configurations, e.g., fixed (eye-to-hand) or moving cam-
era (eye-in-hand) (Espiau et al., 1992; Corke and Hutchin-
son, 2000; Kelly et al., 2000; Conticelli and Allotta, 2001a).
A restriction of some of these solutions is that they require
direct estimate of the depth information with respect to the
image frame. In Malis et al. (1999) an off-line learning stage
is required to estimate the distance of the camera to the ob-
ject of interest. In Fang et al. (2002), the off-line phase is not
required to determine the unknown depth distance. Instead,
an estimate is obtained at each interaction by means of an
Euclidean homography method.

Other authors have considered the lack of depth informa-
tion. For instance, Conticelli and Allotta (2001b) designed an
adaptive kinematic controller to ensure uniformly ultimately
bounded set-point regulation under some restrictions on the
translational velocities and bounds on the uncertain depth pa-
rameter. Hsu et al. (2001) designed an adaptive controller to
allow trajectory tracking on smooth surfaces non-orthogonal
to the optical axis. Since the system model for visual servo-
ing is nonlinear due to the depth displacement, an approxi-
mate linearly parameterized function representing the system
was used in order to design a suitable linearly parameterized
adaptive control law. The dependence of depth with respect
to the 2D image coordinates was then adaptively compen-
sated without measuring the depth.

In this work, a novel adaptive visual controller for cartesian
robots using a fixed camera is developed in order to per-
form 3D tracking, when the camera calibration parameters
are assumed uncertain. The main interest for compensating
the lack of exact knowledge about the system parameters or
environment, is to increase robot autonomy through sensor-
based control without explicit human intervention or repro-
gramming. The cartesian motion is decomposed in a 2D mo-
tion on a plane orthogonal to the optical axis and a 1D motion
parallel to this axis, which corresponds to the depth varia-
tion with respect to the image frame. An image-based visual
servoing approach is used to deal with the nonlinear control
problem generated by the varying depth without requiring its
measurement.

The paper is organized as follows: Section 2 describes the
tasks to be achieved and presents the basic description of
the visual servoing model. In Section 3, an Image-Based

approach is introduced and a depth MRAC controller is de-
veloped. The SDU method (Costa et al., 2003) is used in
Section 4 to solve a 2D adaptive visual tracking control prob-
lem which accounts for the depth variation. Then, the overall
system stability is analysed. Simulation results obtained with
the proposed strategy are discussed in Section 5. In Section
6 the experimental results obtained with a robot manipulator
are presented. Finally, conclusions are presented in Section
7.

2 PROBLEM FORMULATION

Consider the problem of controlling a robot manipulator to
perform tracking on 3D environment, based on a desired im-
age trajectory. As it can be seen in Figure 1, the key idea is to
use vision feedback obtained from a fixed and uncalibrated
camera to allow tracking along the x, y, z directions with no
measurement of the depth displacement.

Figure 1: Depth and planar tracking.

Since motions are performed in a 3D environment, 3 degrees
of freedom have to be controlled by the visual servoing sys-
tem. Thus, at least three independent features need to be
extracted from the image of a target object attached to the
robot end-effector in order to accomplish a specified task. In
this paper, the image centroid will be used to provide stable
tracking control of the robot with respect to a desired image
trajectory. Simultaneously, the image area will be extracted
to provide depth tracking. Although those two tasks might
interact significantly, we will show in the following that they
are in fact only partially coupled. This facilitates the con-
troller design.

2.1 2D planar subsystem

Let (X, Y, Z) be the coordinates of an object centroid pro-
jected in the camera frame and (x, y, z) be the coordinates of
the object centroid in the base frame of the robot. Here, we
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assume that the camera and robot frames have the same ori-
entation with affine z-axis. The two coordinates are related
as follows: 

 X
Y
Z


 = R(φ)


 x

y
z


 + T , (1)

where R(φ)∈SO(3) is an elementary rotation matrix around
the z-axis, which considers the camera misalignment angle φ
with respect to the base frame, and T is a translational vector.
Using a pinhole model of the camera with focal length f and
meter-to-pixel scale factors αi (i =1,2), the coordinates of the
object centroid in the image frame are given by

[
xc1

xc2

]
=

f

Z

[
α1 0
0 α2

] [
X
Y

]
. (2)

The differential kinematics relationship in the image frame is
established by

[
ẋc1

ẋc2

]
=

1

Z

[
fα1 0 −xc1

0 fα2 −xc2

] 
 Ẋ

Ẏ

Ż


 , (3)

that is,

[
ẋc1

ẋc2

]
=

1

Z

[
fα1 0 −xc1

0 fα2 −xc2

]
R(φ)


 ẋ

ẏ
ż


 . (4)

In this paper, we assume that the robot is purely kinematic
and that the end-effector velocity can be directly controlled,
that is, v = [ẋ ẏ ż]T , where v is the control variable to be
designed.

2.2 1D depth subsystem

For the depth description, we need to make the following
assumptions:

Assumption 1 The motions in the 3D environment are such
that the object attached to the robot end-effector is planar and
always parallel to the image frame.

Assumption 2 The object projected surface Sc is assumed
to be within the image range 0<Smin <Sc <Smax for all t.

The dynamics of the object projected surface Sc, expressed in
the image frame, is described by (Flandin et al., 2000; Zachi
et al., 2004)

Ṡc = −

(
2Sc

Z

)
Ż . (5)

2.3 Complete translational model

Since from (1) Ż = ż, the overall kinematic model of the
planar/depth system is given by

 ẋc1

ẋc2

Ṡc


 =

1

Z


 fα1 0 −xc1

0 fα2 −xc2

0 0 −2Sc




︸ ︷︷ ︸
L0(sT )

R(φ)


 ẋ

ẏ
ż


 .

(6)
Now, let sT = [xT

c Sc]
T be the image feature vector and

v=[ẋ ẏ ż]T be the translational velocity vector in the robot
frame, the model (6) can be rewritten as

ṡT =
1

Z
LT (sT )v , (7)

with

LT (sT ) = L0(sT )R(φ)

=


 fα1 cos(φ) −fα1 sin(φ) −xc1

fα2 sin(φ) fα2 cos(φ) −xc2

0 0 −2Sc


 ,

where the matrix LT (sT ) is also known as image Jacobian
(Hutchinson et al., 1996). In what follows, we will show that
by extracting the object projected surface from the image, a
cartesian controller can be designed even when a direct mea-
sure of Z is not available.

3 ADAPTIVE DEPTH TRACKING

In this section, the goal is to design an adaptive control law
that drives the system (7) to a specific depth position in accor-
dance to a known desired image projected surface S∗

c . Note
from (7) that ż is the only control variable which interacts
with Sc and thus, a scalar control strategy can be adopted for
the depth tracking problem.

Let Sc0
denote a known surface corresponding to some depth

Z0. Then, we can integrate both sides of (5) to obtain the
following relationship (Zachi et al., 2004):

Z = Z0

(
Sc0

Sc

) 1

2

. (8)

From (7) and (8), we define a scaled version of the transla-
tional velocity vector v

W =


 w1

w2

w3


 =

(
Sc

Sc0

) 1

2

v , (9)

where Sc is continuously captured by the camera. Then,
rewriting Ṡc based on (7), (8) and (9), we finally obtain the
following affine system model:

Ṡc = kpScw3 , (10)
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with
kp = −2/Z0 . (11)

Assumption 3 Z0 is assumed positive, but otherwise un-
known.

3.1 MRAC design

Since the dynamics of Sc, in the third row of (7), is only af-
fected by ż, an adaptive controller can be designed via stan-
dard Model Reference Adaptive Control (MRAC) method
(Ioannou and Sun, 1996).

A simple reference model for this subsystem, in terms of a
reference projected surface S∗

c , is given by

ṠcM
= −λmScM

+ λmS∗
c , λm >0 . (12)

In this case, the ideal signal w∗
3 which provides perfect

matching between (10) and (12), is given by

w∗
3 = θ∗3 ξ , (13)

θ∗3 =
λm

kp

, ξ =
S∗

c − Sc

Sc

.

Using the certainty equivalence principle (Ioannou and Sun,
1996), we set

w3 = θ3ξ , (14)

which leads to the following closed loop error equation:

ės = −λmes + kpθ̃3ξ , (15)

where es = Sc − ScM
is the depth tracking error and θ̃3 =

θ3 − θ∗3 is the parametric error. From the standard adaptive
control theory, if the sign of kp is known, then an adaptation
law that guarantees asymptotic convergence of es(t) and the
uniform boundedness of the system signals, is given by

˙̃
θ3 = γ3esξ , γ3 > 0 . (16)

To prove it, the following Lyapunov function is used

Vs(es, θ̃3) =
1

2

(
e2

s + γ−1
3 |kp|θ̃

2
3

)
. (17)

The time derivative of (17) along (15) is given by

V̇s(es, θ̃3) = −λme2
s + eskpθ̃3ξ + γ−1

3 |kp|θ̃3
˙̃
θ3 , (18)

which by virtue of (16), leads to

V̇s(es, θ̃3) = −λme2
s ≤ 0 . (19)

The boundedness properties of the closed loop system signals
are demonstrated from (17) and (19). By differentiating (19),
we can verify that V̈s(es, θ̃3) is bounded and finally conclude,
from Barbalat’s Lemma, that limt→∞ es(t) → 0.

4 ADAPTIVE PLANAR TRACKING

Once we have shown that the end-effector can be properly
positioned by the MRAC controller developed in the previ-
ous section, our goal now is to perform asymptotic tracking
of some predefined image trajectory. However, as can be ob-
served from (7), both xc1 and xc2 interact with all the com-
ponents of the scaled control W generating a coupled multi-
variable subsystem. Indeed, reproducing the first two rows of
the nonlinear system (7), also based on (8) and (9), we have

ẋc = KT u + GT wT , (20)

with

KT =
f

Z0

[
α1 cos(φ) −α1 sin(φ)
α2 sin(φ) α2 cos(φ)

]
, u =

[
w1

w2

]
,

GT =
1

Z0
, wT = w3

[
xc1

xc2

]
,

which is a linearly parameterized plant. Then, an adequate
control parameterization must follows since now we are deal-
ing with matrix control gains instead of a scalar gain. Some
works have gone toward this issue (Ioannou and Sun, 1996),
however assuming restrictive conditions and/or conditions
very difficult to satisfy in practice (a detailed discussion
about such conditions can be found in Hsu and Costa (1999)).
Most recent methods have proven to be less restrictive (Hsu
and Costa, 1999; Costa et al., 2003; Ortega et al., 2003).
Here, we will adopt the one introduced in Costa et al. (2003),
which uses a Symmetric-Diagonal-Upper (SDU) factoriza-
tion of the system gain matrix.

4.1 Control design

In this section, the control design will follow the one in Zachi
et al. (2004). For the subsystem (20), consider the following
reference model:

ẋcM
= −λMxcM

+ λMrc(t) , (21)

ycM
= xcM

, (22)

where λM > 0 and rc(t) ∈ �2 is a bounded exogenous ref-
erence signal. The ideal control signal u = u∗ that perfectly
matches (20) and (21), is given by

u∗ = K−1
T [λM (rc − xc) − GT wT ] , (23)

which can be written as u∗=P ∗σ with

P ∗ =

[
p∗11 p∗12 p∗13 p∗14
p∗21 p∗22 p∗23 p∗24

]
, (24)

σ =
[

(rc − xc)
T wT

T

]T
. (25)

Since P ∗ is an uncertain matrix, we again use the certainty
equivalence principle to design u as

u = Pσ , (26)
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where P is the matrix of the adaptive parameters pij . Thus,
to obtain the closed loop error equation we first add and sub-
tract (23) in (20), that is,

ẋc = KT u + GT wT + KT u∗ − KT u∗

= −λMxc + λMrc + KT (u − u∗) . (27)

Denoting ũ = u − u∗ and the planar tracking error by ec =
xc − xcM

, we subtract (21) from (27) and finally obtain

ėc = −λMec + KT ũ . (28)

4.2 Parameterization via SDU factoriza-
tion

According to Costa et al. (2003), if KT has non-zero leading
principal minors, then it is always possible to factorize KT

as

KT = SDU , (29)

where S denotes a symmetric and positive definite matrix, D
denotes a diagonal matrix and U an unitary upper triangular
one.

Assumption 4 The sign of the leading principal minors of
KT are known.

Then, from (27) and (29) we can write

ėc = −λMec + SDU(u − P ∗σ)

= −λMec + SD(Uu − UP ∗σ) . (30)

Here, employing the decomposition Uu=u − (I − U)u we
also have

ėc = −λMec + SD[u − Λσ − (I − U)u] , (31)

with Λ=UP ∗. If we introduce a new ideal control vector
[

Θ∗T
1 Ω1

Θ∗T
2 Ω2

]
≡ Λσ + (I − U)u , (32)

where Ω1 = [σT u2]
T and Ω2 = σ, the closed loop error

equation (31) reduces to

ėc = −λMec + SD

(
u −

[
Θ∗T

1 Ω1

Θ∗T
2 Ω2

])
, (33)

from which we can extract the final control parameterization

u = [ΘT
1 Ω1 ΘT

2 Ω2]
T . (34)

4.3 Adaptation laws

Based on the Assumption 4 and the factorization properties
discussed in (Costa et al., 2003), we conclude that the en-
tries of D = diag{d1, d2} have known signs. Since S is a
symmetric and positive definite matrix, we follow the stan-
dard Lyapunov design by choosing the following Lyapunov
function candidate

2Vc(ec, Θ̃) = eT
c S−1ec + γ−1

2∑
i=1

(|di|Θ̃
T
i Θ̃i) . (35)

The time derivative of (35) along (33) yields

V̇c(ec, Θ̃) = −λMeT
c S−1ec +

2∑
j=1

(ecjdjΘ̃
T
j Ωj) +

γ−1
2∑

i=1

(|di|Θ̃
T
i

˙̃Θi). (36)

Then, by choosing the adaptation laws as

˙̃Θi = −γ sign(di)eci
Ωi , (i = 1, 2) , (37)

equation (36) reduces to

V̇c(ec, Θ̃) = −λMeT
c S−1ec ≤ 0 . (38)

From (35) and (38), we conclude that ec(t), Θ̃(t) ∈ L∞,
which implies that xc(t), Θ(t) ∈ L∞. From the boundedness
properties of (25), (33) and (34), we verify that the second
derivative of Vc(ec, Θ̃) is also bounded. Then, by using the
Barbalat’s Lemma, we can conclude that limt→∞ ec(t) → 0.
Thus, the convergence and boundedness properties of all the
closed loop signals can be demonstrated.

The following theorem states the stability properties of the
overall visual servoing system.

Theorem 1 Consider the adaptive visual servoing system
composed by (7), reference models (12) and (21), control
laws (14) and (34), and adaptation laws (16) and (37). If As-
sumptions 1-4 are satisfied and the camera misalignment an-
gle φ∈(−π

2 , π
2 ) then: (a) all the closed loop signals are uni-

formly bounded; (b) for e(t) := [eT
c es]

T , e(t) ∈ L2

⋂
L∞,

limt→∞ e(t) → 0.

Proof: From (17) and (35), define V = Vs + Vc which is
positive definite. Thus V̇ ≤ 0 follows that all signal are
uniformly bounded and from the Barbalat’s Lemma e(t) ∈
L2

⋂
L∞, limt→∞ e(t) → 0.

Remark 1 Note that, the cartesian control v can be recov-
ered from (14) and (34) using the equation (9).
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Remark 2 (General Robotic Systems) In the previous sec-
tions, the key reason to adopt Assumption 1 was to exclude
rotational motions of the object, ensuring that its projected
surface only changes with depth. Indeed, it is well-known
from Haralick and Shapiro (1993),page 50, that non-affine
rotations of a planar object relatively to the camera optical
axis modify its image projected surface.

It is important to emphasize that the Assumption 1 is vio-
lated, for general robotic systems, when object rotations are
performed. Then, relation (8) would no longer hold. How-
ever, if a spherical object (Figure 2) is used instead of the
planar one, it is possible to broaden the proposed strategy to
consider the more general case. Indeed, adopting this par-
ticular object, the image projected surface becomes invariant
with respect to the object rotation. Note that in this case rela-
tion (8) can still be used, at least for motions not too far away
from the optical axis.

Figure 2: Image projection of a spherical object.

5 SIMULATION RESULTS

In order to illustrate the performance of the proposed adap-
tive scheme, we present simulation results with a 3DOF robot
manipulator. The parameters of the visual servo system are:
f = 6.0 [mm], φ = π/6 [rad], α1 = α2 = 83.0 [pixel/mm].
Also we consider Sc0 = 1 [pixel] for Z0 = 1.0 [m] and
S∗

c = 1 [pixel]. For the adaptive controllers (14),(16) and
(34),(37), we have set γ3 = 0.4, λm = 1.0 and γ = 20.0,
λM = 2.0 respectively. Other simulation parameters are
set to: ωn = 0.5 [rad/s]; rc(t) = [sin(ωnt) cos(ωnt)]T ;
θ3(0)=0; Θ1(0)=[0 0 0 0 0]T ; Θ2(0)=[0 0 0 0]T .

The system behavior is presented in Figures 3– 8. The asymp-
totic convergence of image tracking errors (planar and depth)
can be observed in Figure 3.

The parameters behavior is illustrated in Figure 4, where it
can be observed that the parameters tend to a steady state

0 5 10 15 20 25 30 35

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

image tracking errors [pixel]

[s]

Figure 3: Image tracking errors: ec1(-·-); ec2(- -); es(-).

value after a adaptation period. The cartesian control signals
can be considered adequate and they are depicted in Figure 5.
The depth variation due to the tracking control is illustrated
in Figure 6. The tracking of trajectory in the image frame is
illustrated in Figure 7. Note that the tracking is well behaved
despite the presence of input disturbances introduced by the
depth control. Figure 8 shows the end-effector behavior in
the 3D environment.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained by
the implementation of the adaptive visual tracking controller
proposed in Sections 3 and 4.

6.1 Workspace

The experiments are performed on a 6DOF Zebra Zero ma-
nipulator (IMI Inc.). A KPD-50 CCD camera (Hitachi Ltd.),
with a lens of focal length f = 6.0 [mm], is mounted in
front of the robot (see Figure 9 for a camera point of view).
The extracted visual features are the image coordinates of a
white sphere centroid located at the robot wrist and its im-
age projected surface. The images of 640 × 480 [pixel] are
acquired using a Meteor frame-grabber (Matrox Ltd.) at 30
frames per second (FPS) with 256 grey levels. The image
processing is performed on a 50 × 50 [pixel] sub-window,
in order to guarantee that the sphere remains within the sub-
window. The first estimations of the white sphere coordinates
and area are performed off-line using a Graphical User In-
terface (Figure 9), named VServo, developed in Tcl/Tk lan-
guage. During task execution, features (centroid and area)
are computed using the image moments algorithm (Haralick
and Shapiro, 1993).

The visual servo controller is coded in C language and exe-
cuted on a Pentium 200 SBC running Linux OS at 35.0 [ms].
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−1.6
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−1

−0.8

−0.6

−0.4

−0.2

0
θ3

[s]

Figure 4: Adaptive parameters: Θ1, Θ2 and θ3.

The joint velocity command generated by the adaptive con-
trol law feeds the Zebra Zero (ISA board) which closes the
velocity loop using an HCTL1100 microcontroller (HP Inc.)
working in proportional velocity mode at 0.52 [ms].

Due to noise sensitivity, the proportional gain in the velocity
loop is not high enough to eliminate steady state error due to
gravity effect. This disturbance is identified off-line (using a
least square method) and effectively compensated.

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

[s]

cartesian control [mm/s]

Figure 5: Control signals: v1(-·-); v2(- -); v3(-).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

1.1

[s]

depth [m]

Figure 6: Depth behavior.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

image frame [pixel]

Xc1

X
c
2

Figure 7: Trajectories: xcM
(-·-); xc(-).

6.2 Analysis of Results

The experimental tests are performed without regarding any
calibration procedure. The camera parameters are: φ ≈
0, f = 6.0 [mm], α1 = 119 [pixel/mm] and α2 = 102
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Figure 8: End-effector trajectory.

Figure 9: Experimental setup.

[pixel/mm]. The initial conditions for the adaptive param-
eters are θ3(0) = 0; Θ1(0) = [0 0 0 0 0]T ; Θ2(0) =
[0 0 0 0]T . The control parameters are γ3 = 5 × 10−3,
λm = 1.0, γ = 2 × 10−3 and λM = 1.0 respectively.
Other parameters are: Sc0 = 860 [pixel] for Z0 = 1.0 [m]
and S∗

c =700 [pixel].

Figure 10 shows the tracking errors ec and es. It can be ob-
served that ec and es tends to small residual regions of orders
4 [pixel] and 10 [pixel] respectively. Figure 11 presents the
time history of the centroid position and the projected sur-
face in the image frame. The cartesian control signal and the
joint control signal are depicted in Figure 12. The tracking of
trajectory in the image frame and the end-effector trajectory
described in the workspace are shown in Figures 13 and 14
respectively.
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Figure 10: Image errors: ec1(-·-); ec2(- -); es(-).
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Figure 11: xc1(-·-) , xcd1(- -) , ; xc2(·) , xcd2(-); Sd(-) ,
Sc(- -).
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Figure 12: Control signals : v1(-·-) , v2(– ) , v3(- -); u1(-·-)
, u2(– ) , u3(- -).

Remark 3 It is worth mentioning that the area is computed
by using a pixel counting method (i.e., zero-order moments).
In general this measurements is contaminated by noise. In
gray scale mode this is critical because boundary pixels can
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Figure 13: Trajectories: xcM
(-·-); xc(-).
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Figure 14: End-effector trajectory.

vary in an unknown pattern even in a well-conditioned envi-
ronment. In order to overcome this drawback a filtering stage
is used to reduce the noise in the area estimate.

7 CONCLUSION

In this paper, we have developed an adaptive visual servoing
scheme, using an uncalibrated camera, that provides stable
3D cartesian tracking for robot manipulators without requir-
ing depth measurement. The controller was designed to in-
clude the general case of robotic systems in which all the im-
age features were extracted from a spherical object. For the
1D depth subsystem, the MRAC control method was applied,
whereas for the multivariable 2D tracking subsystem, the
recently proposed SDU factorization method was adopted.
Since a linearly parameterized model was obtained, no ex-
plicit inverse image Jacobian estimation was required in the
control structure. The stability analysis for the proposed
strategy was also presented with global properties. Simu-
lation and experimental results with a real robot manipulator
were included to illustrate the performance of the proposed
strategy.

Future research topics following the ideas developed here
are: navigation of autonomous vehicles using visual servo-
ing, extension to full dynamics robots and application to hy-
brid vision-force robot control.
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