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Abstract: Global warming is attributed to the increase in greenhouse gas (GHG) emissions, such as 
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Land use changes significantly impact 
on GHG emissions, accounting for approximately 44% of the country’s emissions in 2019. This 
review addresses the main pathways of GHG formation in the soil, focusing on the influence of land 
use changes on GHG emissions. It is found that soil CO2 emissions are related to root respiration, 
microorganisms, and organic matter (OM) decomposition in the soil. Changes in land use can alter soil 
characteristics, favoring increased CO2 emissions. Soil CH4 emissions occur under anaerobic conditions 
by methanogenic microorganisms; however, land use changes, such as forest conversion to pasture, 
can increase CH4 emissions due to a higher concentration of methanogenic microorganisms in the 
soil. On the other hand, N2O is produced in the soil during nitrification and denitrification processes by 
microorganisms, and nitrogen fertilization in agricultural areas can increase N2O emissions, especially 
when associated with soil moisture and the availability of organic carbon. It is important to understand 
the dynamics of GHG formation and emissions resulting from land use changes because efficient 
management strategies can reduce these emissions and contribute to Brazil’s goals for GHG reduction 
as established in international agreements.

Keywords: Carbon stock; methane in the soil; nitrous oxide in the soil.

Resumo: O aquecimento global é atribuído ao aumento das emissões de gases de efeito estufa (GEE), 
como dióxido de carbono (CO2), metano (CH4) e óxido nitroso (N2O). As mudanças no uso da terra 
têm impactos significativos nas emissões de GEE, sendo responsáveis por aproximadamente 44% das 
emissões do país em 2019. Essa é uma revisão que aborda as principais rotas de formação dos GEE no 
solo com foco na influência das mudanças do uso da terra nas emissões de GEE. Constata-se que as 
emissões de CO2 pelo solo estão relacionadas à respiração de raízes, microrganismos e decomposição 
da matéria orgânica (MO) do solo, assim mudanças no uso da terra podem alterar as características 
do solo, favorecendo a intensificação das emissões de CO2. As emissões de CH4 pelo solo ocorrem 
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em condições de anaerobiose por microrganismos metanogênicos, no entanto as mudanças no uso 
da terra, como a conversão de florestas em pastagens, podem aumentar as emissões de CH4 devido 
a uma maior concentração de microrganismos metanogênicos no solo. Já o N2O é produzido no solo 
durante o processo de nitrificação e desnitrificação por microrganismos, e a fertilização nitrogenada 
em áreas agrícolas pode aumentar as emissões de N2O, especialmente quando associada à umidade e 
disponibilidade de carbono orgânico no solo. Destaca-se a importância de compreender as dinâmicas 
de formação e emissão de GEE decorrentes das mudanças de uso da terra, pois estratégias eficientes 
de manejo podem reduzir essas emissões e contribuir para o cumprimento das metas do Brasil em 
relação à redução de GEE estabelecidas em acordos internacionais.

Palavras-chave: estoque de carbono; metano no solo; óxido nitroso no solo.

1.	Introduction
Global warming has been attributed to the excessive emission of greenhouse gases 

(GHGs) into the atmosphere, such as carbon dioxide (CO2), methane (CH4), and nitrous 
oxide (N2O). These gases are present in the atmosphere at different concentrations, with 
CO2 reaching the highest mark, followed by CH4 and N2O, respectively. It is important to 
emphasize that among the gases with the highest pollution capacity are CH4 and N2O, with 
pollution capacities 28 and 265 times that of CO2, respectively (1). However, the main GHG 
emitted by Brazil is CO2 

(2).

The production of these gases is optimized in the sectors of energy, agriculture, 
industrial processes, waste, and land use change, the latter being responsible for 45% of 
GHG emissions in Brazil (3). In 2019, in this country the process of land use change accounted 
for approximately 44% of greenhouse gas (GHG) emissions, followed by agricultural activities 
with 27% (3).

Land use changes alter the physical, chemical, and biological characteristics of the soil, 
creating favorable conditions for the intensification of GHG emissions (4, 5). Moreover, the 
magnitude of such emissions is influenced by factors such as temperature, humidity, nitrogen 
and carbon levels, and soil’s microbiological patterns (6).

Given the national and global situation, it is evident that it is crucial the existence of 
research aimed at understanding the dynamics of GHG formation and emissions resulting 
from land use changes. This research helps determine efficient management techniques that 
could reduce emissions and promote greater conservation of natural resources, contributing 
to the achievement of objectives assumed by Brazil in agreements, as the Paris Agreement in 
2016, highlighted at COP26 in 2021.

Therefore, this review addresses the anthropogenic actions that intensify the greenhouse 
effect and, consequently, global warming. It outlines the main pathways of GHG formation, 
indicating the most important factors that influence the formation and emission of these 
gasses, and provides an understanding of how land use changes affect emission pathways.

2.	Greenhouse effect and global warming: a brief explanation
The greenhouse effect and the presence of GHGs in the atmosphere are natural 

phenomena. While a portion of the radiation that reaches the Earth is absorbed by oceans, 
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rivers, soil, and plants, another part of the energy is reflected into space, where it is trapped 
by a layer of gasses in the atmosphere primarily composed of carbon dioxide (CO2), methane 
(CH4), and nitrous oxide (N2O). This phenomenon is known as the greenhouse effect. The 
retention of part of the incoming solar radiation in the atmosphere is responsible for keeping 
the planet warm, preventing it from freezing (7).

Nevertheless, over the past centuries, there have been significant increases in the 
intensity of greenhouse gas production and the amount of emissions. Consequently, the 
layer of GHGs in the atmosphere is becoming gradually thicker, thus retaining more energy 
and fueling global warming in an unrestrained manner (8).

According to the IPCC (Intergovernmental Panel on Climate Change) (9), global warming 
is characterized by a substantial increase in the average temperature of the planet. This 
influences the speed of polar ice melting, sea level rise, extinction of various living organisms, 
such as plants and animals, as well as alterations in climatic conditions, which results in 
negative impacts on agricultural productivity.

GHGs are present in the atmosphere in different concentrations, with the order of 
magnitude being CO2 (66%), CH4 (16%), and N2O (7%). These gasses are expressed in terms 
of CO2 equivalent or Global Warming Potential (GWP) (1). Hence, CO2 weights 1 GWP, CH4 
weights 28 GWP, and N2O weights 265 GWP. It is worth noting that, due to the threat of global 
warming to human survival on planet Earth, numerous nations have mobilized the search for 
alternatives to mitigate GHG emissions. 

In 2016, Brazil signed the Paris Agreement and committed to reducing the amount of 
greenhouse gas (GHG) emissions of 2005 by 37% by 2025, ratifying goals already established 
by national Law No. 12,187 of 2009 and national decree No. 9,578 of 2018 (10, 11-12). During 
COP26 in 2021, the country reaffirmed its objectives stipulating a 50% reduction in GHG 
emissions when comparing 2030 data to 2005 levels (13). Currently, Brazil has implemented 
the ABC+ plan, which aims for a low-emission economy in agriculture through activities such 
as pasture recovery, integrated crop-livestock-forestry systems, agroforestry systems, no-till 
farming, biological nitrogen fixation, planted forests, animal waste treatment, and climate 
change adaptation, with validity until 2030 (14).

3.	Soil CO2 emissions
The soil is the planet’s main carbon reservoir, with soil organic matter (SOM) consisting 

of 55-60% by mass of carbon (C), considered one of the largest reservoirs in the world, with 
1,300 to 1,500 Pg of C in the top meter (15). Soil CO2 emissions are related to root respiration, 
microbial activity, and the decomposition of SOM. Regarding land use changes specifically, 
CO2 emissions mainly result from alterations in the concentrations of different soil organic 
matter fractions, influenced by quality, addition or removal of SOM, and fertility (16).

Land use changes typically cause alterations in soil chemical parameters, mainly due 
to differences in management between the new and old systems (17). Additionally, some 
modifications involve biomass burning (18), leading to losses in carbon stocks and driving CO2 
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emissions (19). Land use changes can also influence soil temperature, considered a limiting 
factor for CO2 production (R2 = 55), as it affects soil microbial activity (20, 21).

The soil disturbance result of some activities involved in land use changes can contribute 
to CO2 emissions because it causes disruptions in soil aggregates, allowing for greater aeration 
and even increased water infiltration (4). This disruption leads to greater exposure of soil 
organic matter (SOM), enabling increased oxidation of soil organic carbon by microorganisms, 
resulting in higher CO2 production (Figure 1) (15, 22, and 23). 

Figure 1: Carbon Cycle (C) in Soil
SOM: soil organic matter, CO2: carbon dioxide, O2: Oxygen.
Source: adapted from Jackson et al.(15); Lavallee et al.(23); Tavanti et al.(6); Chang et al.(18).

Soil organic matter (SOM) is one of the main factors regulating CO2 emissions and it 
is typically divided into two fractions: (1) particulate organic carbon (POC), and (2) mineral-
associated organic carbon (MOC). POC has a density lower than 1.6-1.85 g/cm³ or greater 
than 1.6-1.85 g/dm³, but it is associated with particle sizes larger than 50-63 µm, whereas 
MOC has a density greater than 1.6-1.85 g/dm³, associated with particle sizes smaller than 
50-63 µm (23).

Among the two fractions of soil organic matter, POC stands out as a significant influencer 
of CO2 emissions, considered a coarser fraction of carbon in the soil, meanwhile, MOC is a more 
stable fraction with a lower likelihood of being reduced in the soil, as it holds organomineral 
associations (23, 24). Consequently, higher levels of MOC in the soil are associated with lower 
CO2 emissions.

The role of soil texture in protecting soil organic matter (SOM) and forming more stable 
carbon (C) fractions in the soil, leading to a reduction in greenhouse gas (GHG) emissions, 
remains contradictory. Bruun et al. (25), Miranda et al. (26), and Tavanti et al. (6) demonstrated 
that clay is capable of protecting soil organic matter, hence preventing the oxidation of 
carbon into CO2. In contrast, Midwood et al. (27) stated that soil texture has a low correlation 
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(R² = 0.007 - 0.17) with the process of carbon stabilization and the subsequent formation 
of SOM fractions, especially mineral-associated organic carbon (MOC). According to these 
authors, in clayey soils, the higher presence of MOC is due to mineral weathering associated 
with high humidity, rather than the direct effect of clay.

An alternative for reducing CO2 emissions concerning land use changes is to decrease 
mechanical soil tillage practices, as this will result in an accumulation of soil organic matter 
(SOM). This effect occurs predominantly in the surface layers (0-30 cm), as observed by Riltt et 
al. (28) when converting pastures to agricultural areas, and by Damian et al. (29) when converting 
poorly managed pastures into integrated crop-livestock-forestry systems for well-managed 
pasture areas.

The conversion of certain land uses into pasture systems can lead to reductions in soil 
carbon (C) levels in the first years following conversion. It is expected that after 10 years 
of conversion to well-managed pasture systems, soil organic carbon stocks (SOCs) will be 
similar to or higher than the initial values at system implementation. Much of this result is 
due to the extensive deposition of plant residues and carbon into the soil through the action 
of grasses implanted in the system (30, 31). Conversely, the conversion of pasture or native 
forest areas to agricultural areas can result in a steady decline in SOCs for up to 25 years after 
the conversion due to soil preparation using machinery and low soil cover in some periods 
of the year (32).

According to the compiled data (Figure 2), it is possible to observe that the cumulative 
soil carbon (C) in well-managed pasture systems can offset the CO2eq emissions from 
certain animal stocking rates, indicating these types of land use as alternatives to combine 
economic gain with sustainable production. Based on this research, it is also evident that 
poorly managed pasture systems contribute to CO2 emissions into the atmosphere, not only 
because they emit CO2, but also because they do not sequester carbon.

Figure 2: Comparison between enteric CO2eq emissions by cattle and the exclusively stored recovery 
of CO2eq by the soil from different systems, all equivalent to a period of 2 years
Legend: PMM: poorly managed pasture (productivity of 3.7 Mg ha-1); PF: fertilized pasture, ILP: crop-
livestock integration, IPF: livestock-forest integration. 
Source: adapted from Resende et al.(33) and Damian et al.(29).
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In poorly managed pasture systems, the input of carbon into the soil is primarily reduced 
due to the low efficiency of grass in the system to produce roots and straw, similar to what 
occurs in agricultural areas. This lower input of carbon into the soil fails to mitigate the 
emissions that naturally occur in these two land uses (6).

In agricultural conditions, agroforestry systems (34), crop rotation (35), and the use of 
mulch (36) can positively contribute to carbon sequestration, primarily because these 
systems can deposit a significant amount of plant residue into the soil. Over time, this 
residue undergoes carbon cycling processes, ultimately resulting in its immobilization in 
some fraction of organic matter in the soil. 

In general, CO2 is influenced by soil carbon stocks, as it is the main substrate for microbial 
production of this gas. However, this C can be found in the soil in forms that are more resistant 
or susceptible to oxidation, although both are subject to microbial oxidation. Additionally, 
land use changes influence soil chemical characteristics, which can increase the exposure of 
C to the effects of microbial oxidation.

4.	Soil CH4 emissions
Methane (CH4) has an infrared radiation absorption capacity 28 times greater than CO2 

(1). 
Its production in the soil depends on anaerobic microorganisms that decompose carbon under 
flooded conditions, with the ideal temperature range for production being 37°C to 45°C (37).

The production of CH4 occurs through the action of microorganisms called methanogens, 
which, under anaerobic conditions, use substrates such as acetate, formate, H2, CO2, and 
methylated compounds (38, 39). Its oxidation can be carried out by microorganisms called 
methanotrophs, which use it as the sole food source under aerobic conditions. Additionally, 
methane can also be oxidized by ammonia oxidants (NH3), but in both oxidation pathways, 
CH4 is converted into CO2 in the soil (18).

The process of converting CH4 into CO2 in the soil can be carried out by Ammonia 
Oxidizing Archaea (AOA), Ammonia Oxidizing Bacteria (AOB), and methanotrophs, with 
AOA having a greater affinity for CH4. Consequently, the higher the number of AOA, the 
lower the number of AOB in the soil (R²=0.53) (40). Moreover, AOA is minimally affected by 
soil changes, especially with increased temperature and reduced humidity, thus potentially 
becoming one of the main pathways for CH4 oxidation in the soil after land use changes (40). 
However, the reverse can also be applied since ammonia (NH4), one of the possible products 
of nitrogen used as a fertilizer, can also be oxidized by methanotrophs. Therefore, this 
can be considered a potential competitor with methane for monooxygenase, the enzyme 
responsible for CH4 oxidation (41).

In soil under anaerobic conditions, organic matter (OM) is decomposed by microorganisms 
into smaller fractions through processes of hydrolysis and fermentation. The main products 
of this process are CO2 and CH4. The CH4 produced diffuses into the upper layer of the soil, 
where aerobic conditions prevail, allowing for the oxidation of methane by methanotrophic 
organisms. During the CH4 diffusion process into the upper layer of the soil, a series of 
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reactions between CH4 and electron acceptors (n-receptors) can occur. As a result, part of the 
CH4 produced from OM decomposition is not emitted into the atmosphere (Figure 3) (42). The 
main electron acceptors in the soil include iron and manganese oxides (43).

Figure 3: Methane (CH4) Cycle in Soil
OM: organic matter, CO2: carbon dioxide, CH4: methane
Source: adapted from Silva et al.(43); Keppler et al.(44); Dean et al.(42); Chang et al.(18); Xu et al.(40)

The production of CH4 from the soil is also related to the decomposition of organic matter 
under flooded conditions, often observed in agricultural systems such as rice cultivation (43, 45). 
This process can also occur in other crops due to high precipitation during certain periods 
of the year, possibly leading to some areas producing CH4 due to maximum soil moisture 
saturation (46). However, land use changes, such as conversion from one system to agricultural 
areas, typically result in reduced methane emissions, as these systems experience a decrease 
in soil organic carbon stocks and soil moisture (47, 48).

Soil CH4 emissions are related to intrinsic cultivation factors, such as planting duration, 
fallow period, and applied inputs. In a meta-analysis evaluating greenhouse gas emissions 
in different agricultural systems, Shakoor et al. (49) found that CH4 emissions increased when 
poultry manure was applied to soil with pH > 7 and soil moisture saturation > 60%, in rice 
cultivation areas, and in fallow areas without cover crops. Additionally, higher gas emissions 
were observed in crops with a duration of less than 320 days. Moreover, CH4 emissions can 
also be influenced by the conditions of the soil layer. Cardoso et al. (50) found that higher 
methane emissions occur in the upper soil layer, as it is mainly influenced by the moisture 
and temperature of it. The higher the moisture and temperature of the soil fraction, the 
greater the CH4 emissions (51).

The methane emission also correlates with nitrogen concentrations applied to the 
soil. According to Sainju et al. (52), this correlation for monoculture systems is moderate 
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(R²=0.56), while the correlation for grass-legume crop rotation systems shows a substantial 
correlation (R²=0.91). They concluded that the use of crop rotation with legumes, when 
combined with reduced nitrogen fertilization, can reduce CH4 emissions by -1 kg CO2eq ha-1. 
However, the study highlighted that there is still no consensus on the influence of fertilization 
on CH4 emission.

In addition to the soil and climatic factors that affect CH4 emissions, recent studies (39, 45, 46, and 53) 

on methane emissions in pastures indicate the soil methanogenic microbiota as an influential 
factor in CH4 release, which can be affected by secondary factors such as soil pH, vegetation, 
compaction, nutrient input via animal excreta, levels of organic carbon (COS), drainage, sandy 
texture, total soil nitrogen, soil bulk density, ammonium (NH4), and soil nitrate (NO3).

The main factors contributing to methane emissions from the soil identified in the 
analyzed studies include soil moisture, microbiology, and the availability of organic matter 
(OM) in the soil. The conversion of wetlands into agricultural areas can reduce methane 
production, as it decreases soil moisture and carbon stocks in the soil. 

5.	Soil N2O emissions
Nitrous oxide (N2O) is one of the gaseous forms of Nitrogen (N) produced during 

the nitrification process by certain nitrifying microorganisms (Figure 4A), and it is also 
produced during the denitrification process by denitrifying microorganisms through nitric 
oxide reductase, which is commonly associated as the main process of N2O formation 
(Figure 4B). There are also other processes of N2O emissions, such as codenitrification and 
chemodenitrification, which produce them in smaller proportions (54). In agricultural areas, 
its production mainly occurs through the conversion of nitrogenous fertilizers into N2O. 
In pasture areas, its production is derived from fertilizer application and from nitrogen 
deposition in urine by animals (55).

Figure 4: Nitrification (A), and Denitrification (B) Processes involved in N2O production
NH4

+: Ammonium; NH3
+: Ammonia; NH2OH: Hydroxylamine; NO2

-: Nitrite; NO3
-: Nitrate; NO: Nitric 

oxide, N2: Dinitrogen; N2O: Nitrous oxide
Source: adapted from Vieira (54).
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The production of this gas in the soil depends on the action of bacteria, fungi, and Archaea 
that use ammonium (NH4

+) and nitrate (NO3
-) produced by fertilizers, animal urine, or soil organic 

matter as the main substrate during one of the phases of the nitrogen (N) cycle (56). Ammonia-
oxidizing Archaea (AOA) dominates in soils with low NH4

+ concentration and produces less N2O 
compared to ammonia-oxidizing bacteria (AOB) (57). Fungi, on the other hand, can perform the 
denitrification process, preferring to use NO3

- and NO2
- to form N2O, as they are unable to form 

N2 since they lack the N2O reductase enzyme (58).

Nitrogen fertilization can interact with soil moisture and the availability of organic 
carbon, leading to a higher proportion of nitrate, which is one of the main substrates for the 
N denitrification process, and the consequent emission of N2O as one of the products. This 
effect can be enhanced by the availability of carbon in the soil since it is also an essential 
element for most microbial processes (59, 60). Peaks in soil’s N2O emissions typically occur a few 
days after the application of nitrogen fertilizers (61).

Within the first 24-48 hours after nitrogen fertilizers, mainly urea, are added to the 
soil, they undergo the action of the enzyme urease, which hydrolyzes urea into ammonium 
(NH4

+) and carbonate ions (CO3
2-). The carbonate is subsequently hydrolyzed into 

bicarbonate (HCO3-) and OH ions, drastically increasing the soil pH (pH > 8). This elevated 
pH can cause soil organic matter to release NH3

- because OH affects the NH4
+/NH3

- ratio, 
with the nitrogen from urea tending to remain in the form of ammonia at higher pH levels. 
Ultimately, this increased availability of NH3

- can be oxidized by ammonia-oxidizing bacteria 
(AOB), potentially generating N2O (55). 

Yuttitham et al. (62) corroborated that N2O emissions can be intensified by fertilizer 
application, and Silva et al. (43) observed that N2O emissions may be associated with microbial 
carbon (C) and nitrogen (N) contents. Data from the IPCC (9) demonstrated that under ideal 
environmental conditions, nitrogenous agricultural fertilizers can account for up to 1% of N2O 
emissions. Agricultural areas that use nitrogenous fertilization are subject to the highest N2O 
emissions (9; 63), especially those using urea, as the reaction of this fertilizer with soil water 
leads to the formation of ammonium, which can subsequently be utilized in the denitrification 
process by nitrifiers (54). The use of fertilization with animal residues can also stimulate N2O 
and NOx emissions as there may be inhibition of enzymes that reduce nitrate and nitrite (64).

In livestock farming, N2O emissions are related to the combination of urine and dung 
deposition on the soil, with urine releasing N into the soil and feces providing C (60). However, 
although this is a favorable combination for N2O production, the release of N from dung is 
slow, which may favor the formation of low levels of NH4

+ in the soil, promoting the presence 
of AOA and consequently lower N2O emissions (55).

The concentration of organic matter (OM) in the soil can also influence N2O production, 
as a large amount of OM in the soil acts as a buffer for pH, reducing the concentration of NH4

+ 
in the soil solution in response to this phenomenon. Subsequent concentrations of NH3, NOx

-, 
and N2O are also reduced (65).
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Another inherent soil factor capable of influencing N2O emissions is soil texture. 
According to Carmo et al. (66), soil texture, when associated with moisture, can influence N2O 
emissions because it is directly related to water retention capacity shortly after micro and 
macropores are filled. With water saturation, anaerobic conditions occur, sufficient for some 
microorganisms to produce N2O. Thus, clayey soils tend to emit more N2O (67). It is important 
to note that N2O production can also occur under aerobic conditions due to the action of 
aerobic microorganisms. Therefore, aerobic conditions are not a limiting factor for N2O 
production and should not be disregarded when justifying gas quantification (68).

Soil pH can also influence N2O emissions by inhibiting or enhancing the enzymes involved 
in the nitrification and denitrification processes, as well as influencing the microbial population 
present in the soil (69). pH between 5.4 and 5.9 enhances N2O emissions due to increased 
denitrification processes (70). However, lower pH values also reduce nitrous oxide reductase 
(Figure 4B), which ultimately increases N2O emissions (71). When comparing pasture systems 
with and without liming management over long periods, differences in N2O emissions were 
observed. Pasture soils that were corrected through liming showed an increase in pH and a 
reduction in N2O emissions (61).

Emissions of N2O are influenced by land use changes, especially in areas where native 
forests are replaced by agriculture or pastures (72). In these areas, there are microbial changes 
in the soil that favor the processes of nitrification and denitrification, while natural forests are 
considered sinks for N2O (56).

To attempt to reduce N2O emissions from nitrogen fertilizers, biological nitrogen fixation 
(BNF), crop rotation, and the use of cover crops (from legumes) can be an option (34, 35, and 36). 
According to Sant’Anna et al. (36), who evaluated three legumes used in green manure systems, 
N2O emissions from plant residues were confirmed. However, the emission concentrations 
were lower than those stipulated by the IPCC which demonstrated that the use of crops 
capable of BNF is advantageous as it reduces the need for nitrogen fertilizers, consequently 
reducing CO2 emissions produced during the manufacturing, distribution, and application 
processes. Furthermore, the use of legumes can compensate for the need for nitrogen 
fertilization in pasture systems (73), thus highlighting management alternatives for mitigating 
this greenhouse gas in pasture conditions.

6.	Conclusion
Land use changes interfere with the chemical, physical, and biological parameters of 

the soil, influencing the emission of greenhouse gasses (GHG) into the atmosphere. CO2 
is naturally produced in the soil by the action of microorganisms, and its emission mainly 
depends on soil organic carbon (SOC). The production of CH4 also depends on SOC; however, 
it is produced under anaerobic conditions, meaning that well-drained soils or those with 
low SOC have difficulty producing this gas. On the other hand, N2O emissions depend on 
the availability of substrates (NH4

+ or NO3
-). Agricultural soils are generally associated with 

higher emissions of this gas, but this is a consequence of the greater nitrogen input in this 
land use system.
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