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ABSTRACT

The classification of tomato ripening stages involves assigning a tomato to 
a category based on the visual indicators of its maturity. Indeed, the specific 
number of categories and their attributes are determined by the agricultural 
standards of each country, which rely on an empirical understanding of 
visual characteristics. Conversely, automatic unsupervised classification 
techniques, such as deep learning-based methods, autonomously learn their 
characteristics. In this research, a comparison is made between expert-based 
classification and unsupervised classification, with a particular focus on the 
analysis of the number of clusters and their respective features. Remarkably, 
this investigation finds an alignment in the number of clusters identified by both 
methods. This discovery supports the notion that the expert-based classification 
system is compatible with automated approaches. The outcomes of this 
research could aid the agricultural sector in refining automatic classification 
techniques. Furthermore, this work provides the scientific community with 
valuable insights into the clustering of images by machine learning methods

Index terms: Precision farming; deep learning; unsupervised 
learning; clustering.

RESUMO

A classificação do estágio de maturação do tomate envolve atribuir uma classe 
a um tomate com base nos aspectos visuais da sua maturidade. De fato, 
o número de classes e suas características são definidos pelas normas do 
departamento agrícola de cada país, as quais são baseadas no conhecimento 
empírico sobre as características visuais. Por outro lado, métodos de 
classificação automática não supervisionados, como aqueles baseados em 
aprendizado profundo, aprendem suas características de forma independente. 
Neste trabalho, comparamos a classificação baseada em especialistas com a 
classificação não supervisionada, analisando particularmente o número de 
agrupamentos (clusters) e as características de cada um. Surpreendentemente, 
nosso estudo revela uma coincidência no número de agrupamentos para 
ambas as abordagens. Com essa descoberta, fornecemos evidências de que a 
classificação atual baseada em especialistas também é adequada para métodos 
automáticos. As descobertas deste estudo podem ajudar a indústria agrícola a 
desenvolver métodos precisos de classificação automática. Além disso, para a 
comunidade científica, este estudo oferece percepções sobre como os métodos 
de aprendizado de máquina agrupam imagens.

Termos para indexação: Agricultura de precisão; aprendizagem 
profunda; aprendizagem não supervisionados; agrupamento.

Introduction
Recent advancements in computer vision have enabled the 

execution of numerous precision agriculture tasks outdoors with 
considerable accuracy. Such tasks include fruit detection (Sharif 
et al., 2018; Yuan et al., 2020; Ale et al., 2019; Liu et al., 2020; 
Liu , Pi & Xia, 2020), fruit segmentation (Shiu, Lee, & Chang, 
2023; Zhu et al., 2023; Fujinaga & Nakanishi, 2023; Jia et al., 
2022), three-dimensional reconstruction (Tao & Zhou, 2017; 
Jun et al., 2021; Chen, et al., 2020; Yandun, Silwal, & Kantor, 
2020; Louedec, Li, & Grzegorz, 2020), and grasp planning 
(Rong et al., 2022; Guo et al., 2020). The foundation of many of 
these techniques is the artificial intelligence paradigm known as 
connectionist, particularly through supervised learning with deep 
neural networks (DNNs). Despite their efficiency in addressing 
tasks, these methods are not without limitations. They necessitate 
substantial data volumes and frequently do not provide clear 
justifications for their decisions. These limitations serve as the 
impetus for exploring how algorithmic decisions align with 
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human reasoning, with a specific focus on a case study: the 
classification of tomato ripening stages.

The tomato represents one of the most widely consumed 
vegetables in everyday human diets, with its consumption 
reaching millions of individuals daily. In Mexico, the tomato 
stands out as a critical fruit due to its demand, value, and 
production volume, ranking it among the top ten tomato 
producers globally with a production of 3,461,766 tons. 
However, escalating labor costs are increasingly becoming 
a constraint in numerous agricultural sectors. This paper 
concentrates on the classification of ripening stages, which is 
predominantly conducted manually in most of the industry.

The stages of ripening delineate the maturity level of a 
tomato over time, providing essential information for farmers 
to determine the best time for harvest and to make other well-
informed decisions. While the criteria for ripening stages may 
differ from one country or region to another in Mexico (where 
this research is situated), they are based on empirical guidelines 
established in the Mexican Norm. This approach is referred to 
as human expertise, wherein classification relies on observable 
characteristics of the tomato. These guidelines will be elaborated 
upon later in the document. In contrast, DNN-based methods 
utilize their unique feature extraction mechanisms, shaped by 
the architecture of the neural network and the optimization 
strategies employed. The characteristics that are considered 
important by humans may vastly differ from those identified by 
neural networks. Furthermore, the number of stages recognized 
by humans might substantially diverge from the number of stages 
discerned by a computer. Thus, this study aims to investigate 
whether human expertise in classification aligns with state-of-
the-art deep learning-based classification.

During our review of the literature, various studies were 
found to propose supervised methods for fruit classification 
(Chen, Cheng, & Liu, 2022; Chen et al., 2022). However, 
supervised classification essentially seeks to mimic the 
knowledge of experts, particularly through the labels they assign. 
This limitation has led us to employ unsupervised classification, 
a method that autonomously identifies groups to minimize intra-
group differences while maximizing inter-group differences. 
By adopting unsupervised classification, we aim to compare 
algorithmic decision-making with human expertise, focusing not 
only on the features of tomatoes but also on the optimal number 
of groups as determined by the algorithm.

For the comparative analysis, a dataset consisting of 3,000 
images was assembled. These images underwent a conversion 
to a latent representation, mirroring the process utilized by 
state-of-the-art neural networks. Subsequently, unsupervised 
classification was applied to determine the optimal number 
of clusters based on the sum of squared errors. The results of 
this clustering were then compared with the stages delineated 
by human experts. Remarkably, the analysis disclosed a 

correspondence in the number of stages identified by both 
methods, with a similar set of features being recognized.

The outcomes underscore the compatibility of existing 
expert-based classification frameworks with the development 
of accurate automated techniques within the agricultural sector. 
Furthermore, this research offers the scientific community 
profound insights into the image clustering processes employed 
by machine learning algorithms.

Material and Methods

Related Work

Fruit classification is an important task in agriculture. In 
the last decade, it has been automated by the use of appropriate 
methods and technologies. For example, nondestructive 
tools, such as colorimeters, visible and near-infrared (VNIR) 
spectroscopy (Walsh et al., 2020), hyperspectral imaging (Su 
et al., 2021), visible imaging (Zhang et al., 2018), fluorescent 
imaging (Matveyeva et al., 2022) and electronic noses (Baietto 
& Wilson, 2015), have been employed for the collection of 
characteristics that allow fruit sorting, mainly for light sensors 
in the visible and nonvisible range.

Image-based fruit classification systems have been developed 
to reduce reliance on multiple sensors and lower implementation 
costs in real agricultural fields, utilizing artificial intelligence 
models. These models employ various machine learning 
approaches, including supervised learning, where an expert in 
fruit classification provides the correct categorization of fruits 
through labels. This enables the model to learn the necessary 
features for accurate classification. For instance, Chen et al. 
(2021) introduced a fruit classifier using a multiple optimization 
convolutional neural network (MC-CNN), optimizing the 
weights from training on a virtual convolutional network that 
classifies using a Self-Organizing Map (SOM) network. This 
approach significantly enhances fruit generalization, achieving 
a classification accuracy of 99%.

Other methods for fruit classification use convolutional 
neural networks (CNN) and optimization algorithms. Chen, 
Cheng, and Liu (2022) developed a system for fruit quality 
classification that combines fruit detection using YOLO-
Tiny with a condition classification using their custom CNN, 
reaching 88% accuracy in fruit detection. Another approach 
by Chen et al. (2022) for detecting citrus ripeness involves a 
two-step process: initial detection with the YOLOv5 model 
and ripening state classification using a 4-channel ResNet34 
network enhanced by a visual saliency algorithm, achieving an 
average accuracy of 95.07%. Alharbi et al. (2023) introduced 
a fruit classifier using an AFC-ETSAFDL technique, which 
employs a fusion-based feature extraction method with 
three Deep Learning (DL) models—DenseNet, ResNet, and 
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Inceptionv3—optimized with an ETSA. Classification is 
performed using the Extreme Gradient Boosting (XGBoost) 
model, obtaining an average accuracy of 95.68% using 70% of 
the TR database. Conversely, Hernandez et al. (2023) applied 
the YOLOv3-tiny object detector for classifying tomato 
ripening stages into six categories, optimizing the model 
through a search grid to determine the best hyperparameters. 
This detector achieved an average F1-score of 90.0%. Appe, 
Arulselvi, and Balaji (2023) modified YOLOv5 for tomato 
ripening state classification by adding a convolutional block 
attention module (CAM) to the model to improve its accuracy. 
In addition, to prevent object repetition and overlapping, they 
added nonmaximal suppression and distance of intersection 
over junction (DIoU), which they named CAM-YOLO. This 
model reported an average accuracy of 88.1% and was capable 
of detecting small and overlapping tomatoes.

Another type of learning is unsupervised learning, which 
consists of giving the model only the images of the fruit to be 
classified and allowing the model to infer the corresponding 
classes and perform the classification with respect to these. 
This type of learning is less common, but several examples, 
such as Zhang and Xu (2018), proposed using an unsupervised 
image segmentation algorithm based on conditional random 
fields (ULCRF) to perform segmentation to obtain the best-
located object to be subsequently classified. They reported 
that they achieved better classification results using this 
automatic segmentation method than using supervised learning 
methods. Knott, Perez, and Defraeye (2023) proposed a Vision-
Transformer to perform fruit classification but with little data. 
They reported that it is able to achieve 90% classification 
accuracy faster than a CNN-based classifier.

In addition to the aforementioned learning types, there 
exists the potential to enhance results through the integration 
of supervised and unsupervised learning methods. For instance, 
Xue, Liu, and Ma (2023) introduced a hybrid approach for fruit 
classification that merges both supervised and unsupervised 
learning. This innovative method employs a generative 
adversarial network (GAN) to create synthetic images of fruits. 
These images are then utilized to train a convolutional neural 
network (CNN) for the task of classification.

In summary, numerous studies employ supervised learning 
techniques for fruit classification, wherein these studies replicate 
human knowledge. Conversely, a limited number of studies focus 
on unsupervised learning; yet, they fail to offer details regarding 
the distribution of classes. Furthermore, these unsupervised 
methods are not suitable for classifying tomato ripening stages.

Method overview

In this research, we compared human expert-based clustering 
of tomato ripening data to unsupervised clustering. To achieve 
our objectives, we follow the methodology depicted in Figure 1, 
which is explained next.

Initially, a dataset comprising 3,000 RGB images was 
collected. This dataset includes images of tomatoes at various 
maturity stages. Each image within the dataset shows a single 
tomato against a black background to minimize experimental 
variability. Two methodologies were then applied to this dataset: 
one using human expertise and the other utilizing contemporary 
machine clustering techniques. In the first methodology, images 
were manually classified into a predetermined number of clusters, 
referred to as ripening stages, based on the empirical knowledge 
outlined in the Mexican standard. Detailed information on the 

Figure 1: Methodology for comparing the human expert-based (E.B.) clustering of tomato ripening versus a data driven 
clustering.
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expert-based classification of ripening stages is presented in 
the section “Tomato Dataset Collection.” Following this, an 
organized dataset was created by categorizing the images into 
clusters. In the alternate methodology, the collected images were 
transformed into their latent representations. This transformation 
involved converting the image matrices into a more compact 
representation using a pre-trained encoder. The rationale behind 
this conversion is to retain only the primary abstract features 
of the images in this reduced space. The latent representations 
were then clustered through unsupervised learning. Afterward, 
a new dataset was formed based on the automatically generated 
clusters. In conclusion, the clusters formed by each methodology 
were compared to address the research question concerning the 
extent of similarity between human expert clustering and the 
algorithm-driven approach.

Tomato dataset collection

The tomatoes were harvested from a greenhouse situated in 
Chignahuapan, Puebla, Mexico. A greenhouse was chosen for 
this case study due to its prevalent use in tomato cultivation. 
Following the harvest, the tomatoes were manually sorted based 
on their coloration, and each sorted batch was subsequently 
photographed. To capture the RGB images, a specialized 
photography setup was constructed with controlled lighting 
conditions. Figure 2 illustrates the components of this setup, 
which comprises a Logitech C920 camera capable of capturing 
images at a maximum resolution of 1080p and 30 fps. A mobile 
platform powered by a 5 V DC gear motor with a no-load speed 
of 200 rpm and a torque of 800 g/cm was mounted as a base to 

move the tomato plant. At 10 cm from the base, an aluminum 
dome was installed to diffuse the light produced by the LED ring, 
achieving evenly distributed lighting. This was placed opposite 
the base, ensuring that the light did not directly reach the fruit or 
be captured by the camera. For the background of the prototype, 
a black backdrop was used to minimize noise caused by light 
in the scene captured by the camera. In total, 500 images were 
captured for each of the six categories considered by the official 
Mexican Standard NMX-FF-031-1997, resulting in a total of 
3,000 images of tomatoes with dimensions of 800 × 600 pixels.

Human expert-based clustering

Tomatoes can be harvested at different stages of maturity, 
either at physiological maturity or commercial maturity; the 
choice depends on the market’s needs. The color of the tomato 
is the easiest indicator for defining the stage of maturity, 
transitioning from green coloration (indicative of immaturity) 
to red coloration (indicative of maturity), as shown in Figure 3.

In this research, the six maturation stages as defined by the 
Official Mexican Standard NMX-FF-031-1997 were considered. 
These maturation stages include green, breaker, turning,  orange, 
orange-red, and red, as shown in Figure 4. Typically, tomatoes 
intended for export are harvested during the initial three stages, 
ranging from green to turning, to ensure a minimum shelf life of 
two weeks under appropriate temperature conditions. Similarly, 
a classification chart by the USDA (United States Department of 
Agriculture) distinguishes six maturation stages based on color, 
naming them green, breaker, turning, pink, light red, and red. 
However, the analysis of this regulation is left for future work.

Figure 2: Image shooting mechanism. The mechanism includes a rotating platform with controlled illumination to capture 
different points of view of the tomato.
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Once the tomatoes were collected and grouped into six 
categories, they were photographed using an image-shooting 
mechanism. Several pictures of each tomato were taken, resulting 
in 500 pictures for each category. Then, the pictures are stored in 
separate folders to be compared against the automatic clustering.

Automatic clustering

As illustrated in Figure 1, the process of automatic clustering 
begins by mapping the images to a latent space. In deep learning, 

a latent space represents a condensed form of data abstracted or 
encoded from high-dimensional input data, such as HD images, 
into a lower-dimensional format, such as shorter vectors. This 
principle is commonly applied in unsupervised learning models 
like autoencoders and generative adversarial networks (GANs), 
with the objective being to learn a representation of the input 
data that encapsulates its most critical or “latent” characteristics 
(Goodfellow, Bengio, & Courville, 2016). This mapping technique 
facilitates the simplification of the automatic clustering process 
by concentrating on the high-level features rather than addressing 
all photometric variables present in the images.

In this study, the mapping is performed using a convolutional 
feature extractor, which constitutes a section of a convolutional 
network that comprises solely the convolution operations, 
excluding the fully connected layers. The VGG16 (Simonyan 
& Zisserman, 2015) feature extractor is employed for this 
purpose. The convolution kernels were set through transfer 
learning, where the source task involved the classification of 
the ImageNet dataset.

Once the images are transformed into latent vectors, the 
K-means method is employed for clustering. The objective 
is to arrange the data in such a way that points within each 
cluster are closely grouped together while maintaining 
a considerable distance from points in other clusters. In 
K-means, this objective is achieved by minimizing the 
variance within each cluster, which is quantified as the sum of 
squared distances (SSD) between each point and the centroid 
of its respective cluster.

However, a limitation of the K-means method is that the 
number of clusters must be predetermined. To reduce human 
intervention in determining the number of clusters, K, a two-step 
analysis is conducted. Initially, the elbow method is applied. The 
basic idea behind the elbow method is to run K-means across 
a range of cluster numbers (k) and measure the performance 
for each value of k. In this implementarion, the performance is 
measured with  the SSE (Sum of Squared Errors). Then the point 
of maximum curvature is identified by examining the plot and 
looking for a point where the rate of decrease in the performance 
metric sharply changes, resembling an “elbow.” The idea is that 

Figure 3: Tomato fruits with different degrees of coloration 
at maturity.

Figure 4: The six stages of maturation indicated in the official Mexican standard NMX-FF-031-1997.
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adding more clusters beyond this point does not provide much 
better modeling of the data, as the decrease in the performance 
metric starts to level off. Usually only the elbow method output 
is taken as the optimal number of cluster, however, we go 
beyond and we use additional information. In the second step, 
the silhouette coefficient is calculated for each candidate. The 
silhouette coefficient is a metric used to evaluate the quality 
of clusters created by the k-means clustering. It measures how 
similar an object is to its own cluster (cohesion) compared to 
other clusters (separation). The silhouette coefficient provides 
insight into the distance between the resulting clusters and the 
density of the clusters themselves. To combine both methods, the 
local maximum of the silhouette coefficient nearest to the value 
indicated by the elbow method is then selected. This approach 
enables the automatic computation of the optimal number of 
clusters for the K-means method.

Results and Discussion
In this section, we will present the results of the experiments 

and analyze them based on three key aspects: the number of 
clusters automatically formed, the distribution of points in the 
latent space, and the features characterizing each automatic 

Figure 5: Graph of the SSE and coefficient silhouette vs. number of clusters for clusters ranging from 0 to 40. We observe 
that the average silhouette oscillates from the SSE curve after 22 clusters.

cluster. Furthermore, we will conduct a comparative analysis 
between these automatic clusters and those identified by human 
experts.

Number of clusters

Initially, we examined the determination of the number of 
clusters. In this study, we commenced with a predetermined 
range of clusters spanning from 1 to 40. Subsequently, both 
the SSE and the Silhouette coefficient were computed for 
each value within this range. The summarized outcomes are 
depicted in Figure 5. From this preliminary investigation, it 
was observed that beyond 22 clusters, the Silhouette coefficient 
fluctuates, and its value diminishes compared to a previous 
number of clusters, such as 11 centroids. Consequently, we 
opted to confine the experiment to a narrower range, spanning 
from 0 to 15 clusters. Within this revised range, the experiment 
was repeated.

The outcomes of testing the number of clusters from 1 to 
15 are illustrated in Figure 6. These results indicate a decrease 
in the SSE, as anticipated, when employing the elbow method. 
Conversely, the silhouette coefficient demonstrates less 
fluctuation. Consequently, from these findings, a particular 
number of clusters was determined. To ascertain this number, we 
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Figure 6: In the graph of the SSE vs. number of clusters, the inflection point of the curve is at 6 according to the elbow 
method and in combination with the silhouette method.

applied the elbow method to the 15 calculations. The resulting 
number of clusters was identified as six, a determination 
supported by the silhouette coefficient, where six corresponds 
to a local maximum.

Analysis

Our findings have uncovered a remarkable convergence 
in the number of clusters (six) for determining the ripening 
stages. This alignment between the human expert-based 
stages and automatic clustering is unexpected, considering 
that the automatic method extracts its own features, which 
are not defined by human knowledge. We initially anticipated 
a different number of clusters based on these features. 
Consequently, these results underscore the efficacy of the 
current human rule, as six stages are not only discernible by 
humans but also by computers.

To offer a deeper insight into the criteria adopted by 
the automatic clustering, we have undertaken the task of 
“reconstructing” the centroids of each cluster using a decoder 
trained to replicate the input of the feature extractor. The 
methodology for centroid reconstruction involves training an 
autoencoder based on the U-Net architecture (Ronneberger, 
Fischer, & Brox, 2015). An autoencoder comprises two 
components: an encoder and a decoder. In this scenario, the 

encoder corresponds to the feature extractor utilized in this 
study, namely, the VGG16 feature extractor as detailed in the 
section “Automatic clustering.” Subsequently, the decoder is 
constructed to mirror the encoder but in reverse. The autoencoder 
is then trained using all the images in the dataset, where the 
input is an image and the output is compared to the input using 
mean squared error (MSE). Once the autoencoder training is 
completed, only the decoder is utilized by inputting the centroids 
of the formed clusters to obtain reconstructed images. The 
resulting images are displayed in Figure 7.

As observed in Figure 7, the color variation between 
centroids is a significant factor in class identification. The 
centroid colors range from green (Cluster 5) to red (Cluster 4). 
Shape represents a second factor; despite tomatoes belonging to 
the same species, there is a noticeable variation in shape among 
the centroids across clusters. Specifically, Cluster 1 exhibited 
a more rounded shape than the other clusters. Consequently, 
the automatic clustering algorithm anticipates minor shape 
variations from the initial to the final maturity stages.

To provide a deeper analysis of the changes in color between 
clusters, we plotted the RGB histograms for each cluster in 
Figure 8. We observe from the histograms that the clusters with 
more green are clusters five, six, and two, while the clusters with 
more red are clusters four and three.
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Figure 7: Illustration of the reconstructed images originating from the centroids of each class according to the k-means 
algorithm. These images are synthetic and represent the ‘mean’ image for each formed cluster. Thus, they contain the mean 
features of each cluster.

We can utilize this information to compare automatic 
clustering with human-expert clustering. Firstly, it is notable that 
in both cases, the number of clusters is six. This indicates that it 
is equally manageable for both humans and machines to classify 
the degree of maturity into six stages, thereby addressing the first 
question of our experimental design. Moreover, we observe that 
the color of the tomato serves as a crucial feature, as evidenced 
by the reconstruction of the centroids where color serves as 
a distinguishing factor between classes. This aspect fulfills 
the third question of our experimental design, highlighting 
the significance of color in both scenarios. However, for the 
automatic method, shape is also taken into account.

To address the final question regarding the distribution of 
latent points, we applied the t-SNE method to map the latent 
space points to a 2-dimensional plot. This step was essential 
for visually representing the points, as multidimensional 

points cannot be directly visualized. The resulting plot is 
depicted in Figure 9. Despite the limitations of the mapping 
technique, we can observe that the clusters are visually 
grouped. Notably, the fifth cluster appears notably distant 
from the others, presumably representing the green class. 
Conversely, the first cluster appears to be dispersed among the 
others, a phenomenon that can be elucidated by its centroid 
being situated between the red and green classes.

It is essential to note that this experiment was conducted 
under controlled conditions, and the conclusions drawn 
are valid within this controlled environment. To extend the 
applicability of the conclusions, it is imperative to incorporate 
images captured under diverse conditions. However, to the 
best of our knowledge, there are no other public databases 
with the same classes. Therefore, this aspect of the study is 
left for future work.
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Figure 8: Continuation.

(a) Centroid 1

(c) Centroid 3

(b) Centroid 2
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Figure 8: Histogram of the reconstructed centroids from each cluster. We can observe how the colors vary across the 
clusters. Each subfigure provides the histogram for each color channel. With these figures, we can analyze the color variation.

(f) Centroid 6

(e) Centroid 5

(d) Centroid 4



Comparing human and machine clustering for tomato ripening stage classification 11

Ciênc. Agrotec., 48:e019123, 2024

Figure 9: 2D representation of the embedding using t-SNE and color according to each class of tomatoes clustered in an 
unsupervised manner. The number assigned to each color corresponds to each class of tomatoes. We can observe that the 
clusters are relatively well separated. Only some nonlinear confusion is observed between clusters 1 and 2.
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Conclusions
A comparative study between the human expert-based 

determination of ripening stages and automatic clustering has 
been presented. The automatic approach identified six clusters 
as the optimal number, a finding that remarkably aligns with 
the human expert-based classification. Hence, we conclude that 
this number is suitable for developing automatic applications. 
Furthermore, we provide evidence indicating that the primary 
feature learned by the automatic method is color, as it serves as 
a distinct discriminator among the centroids.
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