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ABSTRACT

To quickly and accurately assess tea plant growth, this study aims to find 
a new way to predict the chlorophyll content in tea plant canopies using 
machine learning. Using remotely piloted aircraft equipped with multispectral 
cameras, images of tea plantation areas are captured and reflectance from four 
spectral bands is extracted, leading to the calculation of vegetation indices. 
Simultaneously, chlorophyll relative content in the tea plant canopies was 
collected on the ground using a detector. Four models, namely Random Forest 
(RF), Backpropagation neural network (BPNN), Radial basis function network 
(RBFN), and General Regression Neural Network (GRNN), were constructed to 
predict the chlorophyll relative content in tea plant canopies. Subsequently, 
important remote sensing variables were identified through RF filtering, 
followed by a comparison of the predictive performance of machine learning 
models under different input conditions. Lastly, by integrating the Sparrow 
Search Algorithm (SSA) to optimize the smoothing factor in the GRNN, the study 
explores the impact of optimization algorithms on the predictive performance 
of the GRNN model. Experiments indicate that within the established machine 
learning models, the GRNN demonstrates the highest predictive accuracy. By 
ranking the importance of remote sensing variables through RF, 18 significant 
remote sensing variables were selected, which enhanced the predictive 
accuracy of the machine learning models.  The optimization of the GRNN 
smoothing factor through the SSA algorithm can significantly enhance the 
predictive accuracy of the GRNN model. Based on a series of experiments, 
the established RFSSA-GRNN prediction model demonstrates good predictive 
performance, with an  reaching 0.84.

Index terms: Leaf physiological parameters; vegetation index; fea-
ture screening; intelligent optimization algorithm.

RESUMO

Para avaliar de forma rápida e precisa o crescimento de plantas de chá, este 
estudo visa encontrar uma nova maneira de prever o conteúdo de clorofila 
em dosséis de plantas de chá usando aprendizado de máquina. Utilizando 
aeronaves pilotadas remotamente equipadas com câmeras multiespectrais, 
imagens de áreas de plantações de chá são capturadas e a reflectância 
de quatro bandas espectrais é extraída, levando ao cálculo de índices de 
vegetação. Simultaneamente, o conteúdo relativo de clorofila nos dosséis das 
plantas de chá foi coletado no terreno usando um detector. Quatro modelos, 
nomeadamente Floresta Aleatória (RF), rede neural de retropropagação 
(BPNN), rede de função de base radial (RBFN) e Rede Neural de Regressão 
Geral (GRNN), foram construídos para prever o conteúdo relativo de clorofila 
nos dosséis das plantas de chá. Subsequentemente, variáveis importantes de 
sensoriamento remoto foram identificadas através de filtragem RF, seguidas 
por uma comparação do desempenho preditivo dos modelos de aprendizado 
de máquina sob diferentes condições de entrada. Por último, ao integrar o 
Algoritmo de Busca de Pardal (SSA) para otimizar o fator de suavização no GRNN, 
o estudo explora o impacto dos algoritmos de otimização no desempenho 
preditivo do modelo GRNN. Experimentos indicam que, dentro dos modelos 
de aprendizado de máquina estabelecidos, o GRNN demonstra a maior 
precisão preditiva. Ao classificar a importância das variáveis de sensoriamento 
remoto através de RF, 18 variáveis significativas de sensoriamento remoto 
foram selecionadas, o que melhorou a precisão preditiva dos modelos de 
aprendizado de máquina. A otimização do fator de suavização do GRNN através 
do algoritmo SSA pode melhorar significativamente a precisão preditiva do 
modelo GRNN. Com base em uma série de experimentos, o modelo de predição 
estabelecido RFSSA-GRNN demonstra um bom desempenho preditivo, com 
um  alcançando 0,84.

Termos para indexação: Parâmetros fisiológicos da folha; índice 
de vegetação; triagem de recursos; algoritmo de otimização inte-
ligente.

Introduction
Tea originated in the southwestern part of China around 

600,000 to 700,000 years ago and has since become a crucial 
component of the lifestyles of approximately 300 million 
people globally (Pan et al., 2022). In 2021, China’s annual tea 
production reached approximately 3 million tons, accounting 
for around 50% of the world’s total, making it the leading tea-
producing country worldwide (Miao et al., 2022). Chlorophyll 
content in plant leaves has been widely utilized as a primary 
indicator material and method for estimating photosynthetic 
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capacity, health status, and resistance to various diseases 
(Krause, & Weis 1991). Moreover, the chlorophyll content 
can serve as an indicator of both the stress levels experienced 
by plants and the levels of nitrogen content (Wang et al., 
2019). Wang et al. (2004) demonstrated that chlorophyll is a 
compound affecting the color of dried tea leaves by calculating 
the determination coefficient between greenness and chemical 
composition. By analyzing the characteristics of leaf color, tea 
soup color, chemical composition, and volatile flavor compounds 
of dried tea leaves and their correlation with the perceptual 
quality scores provided by the tea tasting panel, Wang et al. 
(2010) concluded that the overall tea quality score is positively 
correlated with chlorophyll concentration.

Accurately measuring the chlorophyll content in plants 
is often achieved through chemical methods, which require 
specific laboratory equipment and are destructive, time-
consuming, and costly. However, handheld Soil and plant 
analyzer development (SPAD) chlorophyll meters can rapidly 
and non-destructively measure the chlorophyll relative content 
in plant leaves. Although the relationship between SPAD 
readings and chlorophyll content on potato leaves is weaker 
compared to chemical methods, the SPAD readings on wheat 
leaves are affected by the variety, sampling time, and space, 
leading to some discrepancies with the actual chlorophyll 
content of the plant (Uddling et al., 2007). For the leaves of 
potted corn, SPAD readings also change due to the decrease 
in leaf water content and variations in irradiance (Martínez, 
& Guiamet, 2004). Liu, Yang and Yang (2012) demonstrated 
through field-scale research that SPAD readings can estimate 
the chlorophyll relative content in tea leaves without being 
affected by time and spatial factors.

Multispectral imagery is a remote sensing technique widely 
applied in the field of agriculture. By capturing the spectral 
information reflected by plants, it provides valuable insights into 
crop growth and health. Curran (1983) pioneered the utilization 
of multispectral cameras installed on aircraft and satellites to 
gather multispectral reflectance data, enabling the estimation of 
the green leaf area index. Xiao and McPherson (2005) employed 
satellite remote sensing data to assess the health conditions of 
trees at the University of California, Davis. This assessment 
was conducted using three spectral bands: red, red-edge, and 
green. Noh et al. (2006) employed multispectral imaging sensors 
installed on agricultural machinery to estimate the SPAD values 
of maize leaves under varying nitrogen application levels. This 
estimation was achieved by measuring the reflectance of the 
maize canopy in three channels.

In recent years, remotely piloted aircraft (RPA) has been 
widely employed in various fields of plant growth monitoring 
due to its simplicity of operation, high spatiotemporal resolution, 
and dynamic and timely data acquisition. In recent research, 
Shi et al. (2022) utilized multi-source remote sensing images, 
including RPA imagery, and employed machine learning 
algorithms to assess key phenotypic parameters in tea gardens. 

They discovered the optimal combinations of parameters for 
above-ground biomass (AGB) and leaf area index (LAI) across 
multiple tea gardens. By utilizing visible light RPA imagery and 
simultaneously collecting elderberry tea leaves and tea buds to 
measure their nitrogen content, Wang et al. (2023) proposed a 
pixel-level nitrogen content prediction method based on machine 
learning and deep learning. However, to date, the application of 
RPA s in monitoring tea plant growth and predicting vegetation 
parameters remains relatively limited.

In the field of modeling methods, the current methods for 
predicting plant parameters using remote sensing data can be 
categorized into two types: statistical analysis and machine 
learning. Statistical analysis involves establishing regression 
models based on the linear relationship between crop parameters 
and spectral data. For example, Chen et al. (2020) utilized 
univariate and multivariate linear regression methods to select 
six multispectral bands and 13 commonly used vegetation 
indices for the estimation of cotton plant water content. Gano et 
al. (2021) used a least squares linear regression model to analyze 
phenotypic parameters of West African sorghum under two 
different moisture conditions using multispectral RPA remote 
sensing imagery-derived vegetation indices. However, statistical 
analysis models are primarily used for linear problems and have 
lower predictive capabilities for nonlinear problems.

Machine learning methods enable computers to have the 
ability to learn on their own. They can independently analyze 
and process data, thereby establishing a correlation model 
between plant phenotypic characteristics and remote sensing 
variables. Previous studies have compared machine learning 
models with statistical analysis models. For instance, Chen et 
al. (2023) estimated winter wheat canopy chlorophyll relative 
content using both single-factor regression and machine learning 
methods, demonstrating that machine learning models achieved 
higher accuracy. Guo et al. (2022) used a Stepwise Regression 
Model (SRM) to determine the optimal combination of spectral 
and texture indices for estimating SPAD values. Subsequently, 
Support Vector Machine (SVM) and Random Forest (RF) 
models were applied to estimate the SPAD values of maize 
leaves based on the optimal combination. The estimation model 
using SVM achieved better prediction results, with an   of 0.81. 
Yin et al. (2023) utilized multispectral images obtained from 
RPA as input for various machine learning models to predict 
the relative chlorophyll content in the potato crop canopy. 
The study found that the Random Forest model was the most 
effective, achieving  values of 0.61, 0.79, 0.83, and 0.76 for the 
tuber initiation, tuber bulking, starch accumulation, and overall 
growth stages, respectively. This performance was superior to 
other models at all stages. 

However, these studies often lack a comprehensive feature 
importance selection method, relying on either all input features 
or solely on the relationship between a single variable and the 
target variable to confirm feature importance. Additionally, there 
is limited research in the field of tea plant remote sensing on 
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comparing the performance of different machine learning models 
for predicting chlorophyll relative content. Therefore, further 
discussion is needed to determine the best modeling approach 
for predicting chlorophyll in tea plant canopy leaves.

With the rapid development of information technology, inspired 
by human intelligence, social behavior of biological populations, 
and natural phenomena, many intelligent optimization algorithms 
have been invented to address complex optimization problems. 
In recent years, intelligent optimization algorithms have gained 
significant attention and widespread application in fields such 
as financial engineering, bioinformatics, medicine, agriculture, 
and RPAs. These algorithms have overcome the limitations of 
traditional optimization methods and are effective in saving 
time and effort when dealing with large and complex parameter 
optimization problems. Lu et al. (2022) employed the Particle 
Swarm Optimization (PSO) technique to optimize the Extreme 
Learning Machine (ELM) algorithm. They selected six vegetation 
indices and SPAD values for correlation analysis and established 
a model for estimating SPAD values based on vegetation indices. 
By initializing the PSO correlation coefficients with the optimal 
convergence values of the fitness function, they effectively 
addressed issues related to the randomness of ELM model 
weights, thresholds, and network parameters. By initializing the 
coefficients of the PSO with the optimal approximation derived 
from the convergence of fitness function values, this method 
addresses the issues of randomness in weights and thresholds, as 
well as the uncertainty in network parameters in the ELM model. 
Consequently, it improved the model’s prediction accuracy, raising 
the from 0.748 to 0.856. This led to the development of a technique 
for estimating the relative chlorophyll content in leaves affected 
by red date spider mite infestation. 

This approach ultimately led to the development of a method 
for estimating chlorophyll content in jujube leaves under the 
influence of mite infestation. However, overall, the application of 
intelligent optimization algorithms in combination with machine 
learning in the field of agricultural remote sensing parameter 
prediction is relatively limited and requires further research.

In conclusion, the main objective of this article is to achieve 
precise prediction of tea canopy chlorophyll relative content 
using multispectral images collected by RPA. The model 
establishment process is divided into three steps:

(1) Utilizing four machine learning models to predict the 
tea canopy’s chlorophyll relative content and comparing their 
performance.

(2) Constructing a comprehensive remote sensing variable 
importance assessment method and comparing the model 
performance before and after variable selection among the 
chosen machine learning algorithms.

(3) Attempting to integrate intelligent optimization 
algorithms into the selected machine learning models to establish 
a tea canopy chlorophyll relative content prediction model with 
higher prediction accuracy.

Material and Methods
The overall experimental design, as shown in Figure 1, 

begins with the utilization of a RPA with a multispectral 
camera to capture remote sensing images of the study area. 
Simultaneously, a SPAD detector is used on the ground to collect 
data on chlorophyll relative content and record its corresponding 
locations. Subsequently, the multispectral images are cropped, 
stitched together, and background noise is removed. The 
regions of interest are selected, and their reflectance values are 
collected, followed by the calculation of vegetation indices. 
Next, four machine learning algorithms are employed to 
construct predictive models, and feature selection methods and 
optimization algorithms are applied to modify these models. 
Finally, regression evaluation metrics are used to assess the 
predictive performance of the different models.

Study area

The study area is located within the Jiangsu Bocha 
Agricultural Science and Technology Development Co., 
Ltd.’s high-standard tea plantation in the Taiwan Farmers 
Entrepreneurial Park, Hengxi Street, Nanjing, China. It is 
situated at 118°44’ East longitude and 31°43’ North latitude. 
The study area falls within the subtropical northern monsoon 
climate zone, characterized by a mild climate with an annual 
average temperature of 15.7 degrees Celsius. The frost-free 
period averages 224 days, and there is abundant rainfall with an 
annual average precipitation of 1072.9 millimeters. The rainy 
season coincides with the warm season, meeting the growth 
requirements of tea plants. The plantation primarily cultivates 
various high-quality tea varieties, including group planting, 
Yingshuang, Zhongcha 108, Zhongbai 1, and Zhonghuang 3. 
Based on row spacing, tea plant growth status, and inter-row 
weed density, the study area was chosen within the group 
planting zone, characterized by larger inter-canopy spacing 
and lower inter-row weed density. There were no significant 
differences in field management practices, such as fertilization, 
irrigation levels, and planting density within the study area. The 
study area is depicted in Figure 2.

Ground data measurement

Due to the time-sensitive nature of leaf chlorophyll 
relative content, leaf chlorophyll content in the tea canopy 
was determined using the TYS-A handheld chlorophyll meter 
from Beijing Zhongke Weihe Company. The working principle 
involves utilizing the absorption characteristics of chlorophyll 
in plant leaves to specific wavelengths of light, allowing the 
instrument to emit red and near-infrared light towards the plant 
leaves and measure the transmittance or reflectance of these two 
types of light. Since chlorophyll absorbs these two types of light 
to different extents, by calculating the ratio of the absorption 
difference between the two types of light, the instrument can 
determine the relative chlorophyll content in the leaves. 
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Using a 70cm×70cm sampling frame, select 10 rows of tea 
trees near the center of the tea planting area for sampling. In each 
row, choose 10 sampling plots, with each plot’s center points 
being 4 meters apart from each other, resulting in a total of 100 
experimental plots selected within the trial area. Taking into 
consideration the characteristics of tea leaves and the distribution 
of young and old leaves in the canopy, a five-point sampling 
method was applied at the top of the canopy. Five leaves with 
varying degrees of maturity, free from significant pest damage 
or withering, were chosen. Measurements were taken at the leaf 
tip, middle, and mid-lower sections of each leaf, avoiding the leaf 
veins. The average value of these measurements was taken as the 
chlorophyll relative content for that specific leaf. Subsequently, 
the average values of the five leaves were computed to represent 
the reference value for the canopy’s chlorophyll relative 
content in each experimental plot. In total, 100 data points for 
chlorophyll relative content in the tea canopy were collected.

Using a handheld Global Navigation Satellite System 
(GNSS) to determine the specific location of the sampling plots, 
due to the traditional GNSS positioning accuracy of about 3 
meters, we chose the Huace T7 smart measurement system 
equipped with a Real Time Kinematic (RTK) module produced 
by Beijing Huachen Beidou Information Technology Co., Ltd. 
Compared to traditional GNSS measurement systems, the RTK 
module can provide centimeter-level positioning accuracy, 
which is crucial for applications requiring high precision. 
Additionally, the RTK module is more effective in dealing with 
multipath effects and obstructions compared to other traditional 
positioning technologies. This means that even in obstructed 
environments, it can still maintain high-precision positioning. 

All equipment used in ground measurements is shown in Figure 
3. To further ensure accurate acquisition of the sampling frame’s 
location information, we use the center of each sampling frame 
as the sampling point and record the location information of its 
ground projection point. During the sampling process, we use 
a tape measure to ensure that the distance between the centers 
of adjacent sampling frames is 4 meters.

RPA Image collection and image preprocessing

Data collection

The acquisition of multispectral remote sensing data was 
carried out using the DJI Mavic 3M quadcopter. This system 
integrates a multispectral camera with a visible light camera, 
enabling the simultaneous capture of visible light images and 
images in four spectral channels. The visible light camera has a 
resolution of 20 million pixels, a 4/3 Complementary Metal Oxide 
Semiconductor (CMOS) sensor, and a mechanical shutter. The 
four 5-million-pixel monochrome sensors cover the following 
spectral bands: green (G, center wavelength 560 nm, bandwidth 
16 nm), red (R, center wavelength 650 nm, bandwidth 16 nm), red 
edge (RE, center wavelength 730 nm, bandwidth 16 nm), and near 
infra-red (NIR, center wavelength 860 nm, bandwidth 26 nm).

The remote sensing imagery was acquired on April 9, 2023, 
between 10:30 and 13:50. During the capture period, the study 
area experienced partly cloudy weather with ample sunlight, a 
temperature of 23 degrees Celsius, an average wind speed of 
3.9 kilometers per hour, and a solar zenith angle of 66 degrees 
at noon. Flight paths were planned within the experimental site 
boundaries. The DJI Mavic 3M RPA is equipped with a light 

Figure 1: Experimental design for predicting chlorophyll relative content in the canopy of tea plants.
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Figure 2: The geographical position of the study site.

Figure 3: Equipment used for ground measurement. (a) Handheld chlorophyll meter (b) GNSS-RTK positioning module (c) 
GNSS Handheld Notebook.

(a) (b) (c)

intensity sensor, allowing simultaneous collection of illumination 
data during the imaging process for initial radiometric correction. 
To avoid the impact of cloud cover obscuring sunlight on remote 
sensing images, throughout the entire RPA photography process, 
special attention was paid to ensure that the research area was 
always under direct sunlight. To further calibrate reflectance 
values, multispectral images of three polytetrafluoroethylene 
(PTFE) calibration panels with sizes of 200mm×200mm and 
radiance reflectance values of 25%, 50%, and 75% were captured 
prior to the main data acquisition.

During data collection, the RPA’s flight altitude was set at 20 
meters, with a speed of 5 meters per second. The Ground Sampling 
Distancen (GSD) was 3 centimeters per pixel, and automatic 
capture mode was employed. Overlap percentages in the forward 
and side directions were set at 80% and 70%, respectively. To 
enhance image stitching accuracy in post-processing, four ground 
control points were established within the study area, and their 
coordinates were measured using a GNSS geodetic receiver 
equipped with an RTK module for the materialization of the 
terrestrial reference for georeferencing purposes.
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Image preprocessing

After the data collection was completed, the DJI Terra software 
was used to perform the synthesis and stitching of multispectral 
image data and visible light images, as well as radiometric 
calibration. DJI Terra software can automatically match the 
image positions based on the information contained in the images. 
First, 466 sets of measured images were imported, and then the 
previously set ground control points were imported as reference 
points for further rectification of images captured in different 
spectral bands. Images of PTFE calibration boards with different 
reflectances, captured by the multispectral camera at a height 
of 2.3 meters, were selected. The software sets the reflectance 
of the calibration board to 25%, 50%, and 75% respectively. 
The agricultural multispectral modeling mode was chosen. The 
software reconstructs the two-dimensional multispectral model 
through aerial triangulation and automatically performs position 
and radiometric calibration. Finally, it completes the stitching, 
resulting in a Tag Image File Format (TIF) format file containing 
reflectance information for four spectral bands.

Shadow removal

There is a significant difference in reflectance between the 
soil and the tea plant canopy. Additionally, due to the complex 
and three-dimensional structure of the tea plant canopy, some 
areas within the canopy may exhibit withered leaves. As a result, 
the acquired images often contain both soil background and 
canopy shadows, which have a negative impact on the extracted 
reflectance, leading to a reduction in modeling and inversion 
accuracy. According to Meng (2023), in multispectral remote 
sensing images, the Green Normalized Difference Vegetation 
Index (GNDVI) can effectively remove these two types of 
interference and significantly extract the areas of tea plant 
canopy leaves. Therefore, GNDVI was selected as the mask 
for the experimental area images. By setting the pixel values to 
zero for areas with values below the threshold, soil background 
and canopy shadows are eliminated. The calculation method 
for GNDVI is provided in Equation 1. Based on experimental 
results, the threshold is set at 0.135.

GNDVI = ((NIR) – G)/((NIR) + G)			       (1)

Extraction of raw spectral reflectance and 
vegetation index calculation

Single-band image data is obtained through a multispectral 
camera and is processed through image registration using 
DJI Terra software to perform tasks such as image synthesis, 
stitching, and radiometric calibration, resulting in a TIF format 
file. These stitched images are imported into ENVI 5.6. Soil 
and shadow-affected bands are removed, and with the aid of 
GNSS measurements taken in the field, the Regions of Interest 
(ROI) are extracted by manually delineating the imagery of 
each rectangular sampling frame. To calibrate the positions 

of the ROIs accurately, the location of the center point within 
each rectangular ROI is checked individually during selection 
to ensure it aligns with the geographic location previously 
measured in the field. This process yields the average spectral 
reflectance of all vegetation canopy pixels within the ROIs for 
each of the four bands, which is subsequently considered as the 
raw spectral reflectance of the tea plant canopy in each respective 
subarea, as illustrated in Figure 4.

Figure 4: Selection of ROIs and extraction of reflectance 
values in the multispectral image. (a) Delimitation of the 
samples; (b) Spectral response of the samples.

(a)

(b)

The multispectral images, encompassing four spectral bands, 
offer the potential for generating a variety of vegetation indices 
using different computation methods. A total of 37 commonly 
used vegetation indices closely related to plant growth status 
were selected for monitoring the chlorophyll relative content 
in the tea plant canopy. Index formulas, as presented in Table 
1, were constructed using ENVI 5.6 software to calculate the 
corresponding vegetation indices for the regions of interest.
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Table 1: Vegetation Indices Used in the Study.

Vegetation Index Formula Source

Chlorophyll Index-green (CI-GREEN) 1NIR
G

(Gitelson, Gritz, &
Merzlyak, 2003)

Chlorophyll Index-red
(CI-RED) 1NIR

R
(Clevers, Kooistra, & van den Brande, 

2017)

Chlorophyll Index-red edge (CI-
REDEDGE) 1NIR

RE
(Gitelson, Gritz, &
Merzlyak, 2003)

Content Validity Index (CVI) 
NIR R
G G

(Vincini, Frazzi, &
D’Alessio, 2008)

Dynamic Valgus (DVI) NIR R (Rouse et al., 1974)

DVI-REG NIR RE (Rouse et al., 1974)

Enhanced Vegetation Index 2 (EVI2)
 

 



 

2.5
2.4 1

NIR R
NIR R

(Jiang et al., 2008)

Enhanced Vegetation Index2 -2 (EVI2-2)
 

 



 

2.4
1

NIR R
NIR R

(Jiang et al., 2008)

Green Normalized Difference Vegetation 
Index (GNDVI)

 
 





NIR G
NIR G

(Gitelson, Gritz, &
Merzlyak, 2003)

Green Optimized Soil Adjusted 
Vegetation Index (GOSAVI)

 
 




 
1.16

0.16
NIR G

NIR G
(Liu, Pattey, &

Jego, 2012)

Green Red Vegetation Index
(GRVI)     

 
 





G R
G R

(Zhang et al., 2018)

Leaf Chlorophyll Index (LCI)
 
 





NIR RE
NIR R

(Xiao et al., 2014)

Modified Chlorophyll Absorption in 
Reflectance Index (MCARI)        0.2 RERE R RE G

R
(Daughtry et al., 2000)

Modified Chlorophyll Absorption in 
Reflectance Index 1 (MCARI1)         1.2 2.5 1.3NIR R NIR G (Haboudane 

et al., 2004)

Modified Chlorophyll Absorption in 
Reflectance Index 2(MCARI2)

    
   

  

   
2

3.75 1.95

2 1 6 5 0.5

NIR R NIR G

NIR NIR R
 

(Haboudane 
et al., 2004)

Modified Non-Linear Index (MNLI)
 
 



 

2

2

1.5 1.5

0.5

NIR G

NIR R
(Gong et al., 2003)

Modified Simple Ratio (MSR)
 

 



/ 1

/ 1

NIR R

NIR R
(Chen, 1996)

Modified Simple Ratio-Rededge
(MSR-REDEDGE)

 



/ 1

/ 1

NIR RE

NIR RE  
(Chen, 1996)

Continue...
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Normalized Difference Red Edge (NDRE)
 

 
 





NIR RE
NIR RE

(Gitelson, & Merzlyak, 1997)

Normalized Difference Red/Green 
Redness Index (NDREI)  

 
 





RE G
RE G (Hassan et al., 2018)

Normalized Area Vegetation Index (NAVI)
 

1 R
NIR

(Carmona, Rivas, &
Fonnegra, 2015)

Normalized Difference Vegetation Index 
(NDVI)  

 
 





NIR R
NIR R

(Rouse et al., 1974)

Optimized Soil Adjusted Vegetation Red 
Index (OSAVI-RED))  

 
 




 
1.6

0.16
NIR R

NIR R
(Rondeaux, Steven, & Baret, 1996)

Optimized Soil Adjusted Vegetation 
Green Index (OSAVI-GREE)  

 
 




 
1.6

0.16
NIR G

NIR G (Rondeaux, Steven, & Baret, 1996)

Optimized Soil Adjusted Vegetation 
Rededge Index (OSAVI-RE)  

 
 




 
1.6

0.16
NIR RE

NIR RE (Rondeaux, Steven, & Baret, 1996)

Renormalized Difference Vegetation 
Index (RDVI)  

 



NIR R

NIR R
(Roujean, & Breon, 1995)

Renormalized Difference Vegetation red 
Index (RDVI-REG)  

 



NIR RE

NIR RE
(Roujean, & Breon, 1995)

Red-Edge Triangulated Vegetation Index
(RTVI-Core)         100 10NIR RE NIR G (Walsh et al., 2018)

Ratio Vegetation Index (RVI)  
NIR
R (Rouse et al., 1974)

Soil-Adjusted Vegetation Index
(SAVI)  

 
 




 
1.5

0.5
NIR R

NIR R (Huete, 1988)

Soil-Adjusted Vegetation green Index
(SAVI-GREEN)  

 
 




 
1.5

0.5
NIR G

NIR G
(Verrelst et al., 2008)

Simplified Canopy Chlorophyll Content 
Index (S-CCCI)  

NDRE
NDVI

(Raper, & Varco, 2015)

Simple Ratio Index
(SR-REG)  

NIR
RE

(Walsh et al., 2018)

Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI)  

     
      

  
3 0.2 RERE R RE G

R
(Haboudane 
et al., 2002)

TCARI/OSAVI
 
TCARI
OSAVI

(Haboudane 
et al., 2002)

Triangular Vegetation Index (TVI)
 

       120 200

2

NIR G R G
(Broge, & Leblanc, 2001)

Wide Dynamic Range Vegetation Index
(WDRVI)  

 
 





0.2
0.2

NIR R
NIR R

(Gitelson, 2013)

Table 1: Continuation.
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Machine learning modeling

The algorithms used in this study were all implemented in 
the Python 3.8 environment and a Dell server containing a 16-
core Intel processor was used for experiments. Four different 
machine learning methods, namely RF, Backpropagation 
neural network (BPNN), Radial Basis Function network 
(RBFN), and Generalized Regression Neural Network 
(GRNN), were employed to predict the chlorophyll relative 
content in the tea plant canopy. It’s worth noting that the 
GRNN algorithm has been less commonly applied in previous 
studies for predicting vegetation parameters from remote 
sensing imagery. The GRNN algorithm is based on a radial 
basis network and requires only one network parameter, 
namely the smoothing factor σ, to be determined during the 
calculation process. In order to reduce redundancy between 
the original spectral reflectance and vegetation index feature 
sets and further lower feature dimensionality, we conducted 
experiments to assess the importance of multidimensional 
spectral reflectance and vegetation indices in the entire 
chlorophyll relative content prediction model by introducing 
Random Forest. Subsequently, in our experiments, we 
attempted to optimize GRNN by incorporating the Sparrow 
Search algorithm (SSA) algorithm to obtain a more accurate 
determination of the optimal smoothing factor σ, with the 
goal of establishing a more precise predictive model for tea 
plant canopy chlorophyll relative content.

GRNN network

GRNN is a feed-forward neural network based on radial 
basis functions. It has a simple structure and requires only one 
network parameter to be determined during the computation, 

namely the smoothing factor σ (Specht, 1991). GRNN has low 
computational complexity, requires fewer training parameters, 
exhibits high training efficiency, low error rates, and fast 
convergence speed. As a result, it has been widely used in various 
fields for building machine learning models with small data sets.

The GRNN consists of four layers, namely the input layer, 
pattern layer, summation layer, and output layer. Each layer is 
made up of a number of neurons. X = [x1,x1,...,xn]

T stands for 
the network’s input vector, and Y = [y1, y1,...,yn]

T.The network’s 
output vector is denoted by the symbol T. The GRNN network’s 
structure is shown in Figure 5.

Input layer: The input layer is where the signals enter the 
network. The size of the input signal vector affects how many 
neurons are present in the input layer. The input layer neurons 
just send the signals that are received to the pattern layer without 
any signal processing.

Pattern Layer: The pattern layer has the same number of 
neurons as samples in the input model. Each neuron represents 
a distinct sample. The Green’s function is used by neurons 
in the pattern layer to process signals coming from the input 
layer and send them on to the summation layer. Equation 2 is 
the expression for the pattern layer’s neuron transfer function.

Figure 5: Structure of the GRNN Network.

(2)   
2exp 1,2, ,

2

  
    

  

T
i i

i

X X X X
P i n

Where X is the learning sample corresponding to the i-th neuron 
and Xi the network input variable. Using the exponential form of the 
Euclidean distance squared between the learning sample Xi and the 
input variable X, which is defined as Di

2 = (X – Xi)
T(X – Xi), the i-th 

neuron in the pattern layer computes the output value.
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Summation Layer: The summation layer consists of two 
separate types of neurons that use various summing techniques. 
The first type of neuron performs summation by computing the 
arithmetic sum of the output values from every neuron in the pattern 
layer while setting the connection weights between the summation 
layer and the pattern layer to 1. Equation 3 provides the summation 
expression for this sort of neuron, while Equation 4 expresses its 
related transfer function.

steps 1: Utilize the Bootstrap approach to randomly sample 
the original dataset with replacement. Each sampling consists 
of 66 samples, and the remaining samples form the Out-of-Bag 
(OOB) set.

steps 2: For each sampled dataset, randomly select M1 (M1 
< 41) features as input for training a decision tree. Construct 
the decision tree and, at each node of the tree, evaluate the best 
feature for splitting the samples based on these selected features.

steps 3: Repeat steps 1 and 2 K times to generate K decision 
trees, forming a random forest.

To assess the feature importance using random forest, many 
studies adopt the GINI coefficient method. However, this method 
may not perform well when dealing with datasets containing 
high-cardinality features. Therefore, in this study, we employ a 
feature ranking approach to determine the importance of different 
features. The specific method is described as follows.

In random forest, for each tree, the prediction error on the 
OOB test set is recorded as the mean squared error (MSE), as 
shown in the Equation 8.

(3)

(4)

   
21

exp
2

  
  

  


T
n i i

i i

X X X X
P

1
  n

D ii
S P

The weighted total of the output values from every neuron in 
the pattern layer is computed by the second kind of summation 
neuron. The symbol yij stands for the weight of the link between 
the j-th neuron in the summation layer and the i-th neuron in 
the pattern layer. Equation 5 provides the summation expression 
for this sort of neuron, while Equation 6 expresses its related 
transfer function.

(5)   
21

exp
2

  
  

  


T
n i i

i ii

X X X X
P Y

(6)
1

1,2, ,


    n
Nj ij ii
S y P j k

Output Layer: The output layer of the neural network 
generates the output values for each sample, and the output 
parameter’s dimension k determines how many neurons there 
are in the output layer. The summation layer’s neurons’ output 
values are divided into groups by the output layer. The output 
value of neuron j, which is denoted by Equation 7, is the output 
value of the network.

(7)1,2, ,   Nj
i

D

S
y j k

S

Vegetation index importance assessment

The original dataset consists of 100 samples, with each 
sample having four reflectance values and a total of 37 vegetation 
indices, resulting in a parameter space of 41 dimensions. To 
reduce redundancy in the original spectral reflectance and 
vegetation index feature set and further lower the feature 
dimensionality, we introduced random forest feature screening 
for the importance assessment of the multidimensional spectral 
reflectance and vegetation indices.

The main steps for evaluating feature importance using 
random forest are as follows:

(8) 21

1 ˆ


  n
i ii

MSE y y
n

In the formula, n is the number of samples in the OOB set, yi 
is the actual value, and ŷi is the predicted value. Then, the same 
process is performed after permuting each predictor variable. 
The difference is computed as the average across all trees, and 
the data is normalized by dividing it with the standard deviation 
of the differences. If the standard deviation of the differences 
for a variable is equal to zero, no division is performed because 
in this case, the average would be nearly zero. The larger the 
difference in MSE after permutation, the more important the 
variable is considered to be.

For each tree, the elements used to build the tree are 
randomly permuted in the OOB set. A new MSE is calculated, 
and the importance value of the variable is computed using the 
Equation 9.

(9)

In the formula, b represents each tree and j represents each 
variable. j  is the average value across all trees B using variable 
j. The final importance of a feature is obtained by normalizing it 
with the standard error as shown in the Equation 10.

(10)

In the formula, σδbj represents the standard deviation of bj , and 
%IncMSE indicates the increase in mean squared error associated with 
each variable. A higher %IncMSE indicates a more important variable.

 1 1

1 1δ 
 

   j

B B
j permuted bjb b

MSE MSE
B B

%
/




 bj

bj

IncMSE
B
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Sparrow search algorithm

According to Xue and Shen (2020), the SSA is a swarm 
optimisation method that simulates the foraging habits of 
sparrow populations, which include three different sorts of 
groups: finders, followers, and sentinels. Finders locate and 
mark food sources as global optima, continuously updating 
their positions to escape local optima and achieve better global 
search capability. Additionally, a proportion of sentinels is set 
to ensure the safety of the population, providing the algorithm 
with robustness. The combination of strong robustness and 
global search capability in this swarm intelligence optimization 
algorithm is crucial for determining the optimal value of 
the smoothing factor σ in the GRNN model and improving 
prediction accuracy. Therefore, in this study, SSA is selected as 
the method for optimizing the parameter value. The flowchart 
of SSA applied in the GRNN network is illustrated in Figure 6.

The diverse population updating process of SSA is illustrated 
as follows:

Update the position of the discoverer, as shown in Equation 11.

Figure 6: SSA-GRNN Model Flowchart.

 
 

 

2

2

exp ,
1 ,

,


         
   

ij s
ij

ij s

iX t R T
TX t

X t Q L R T
(11)

Within the given equation, t represents the current iteration 
count, while T denotes the maximum iteration count. Xij(t)  
represents the current location of the i -th individual discoverer. 
A random number α is drawn from the range R2 (R2 ϵ [0,1]) as 
the warning value, and another random number α is selected 
from the range Ts (Ts ϵ [0.5,1.0])  as the safety value. Q is a 
random variable following a normal distribution, and L is a 
1×d matrix consisting of ones. If R2 is less than Ts, it indicates 
that the foraging environment of the discoverer is safe. In such 
cases, the individual should depart from the current region and 
explore other secure areas for foraging.
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Update the position of the followers, as shown in Equation 12. values: coefficient of determination (R2), MSE, root mean 
squared error (RMSE), and mean absolute error (MAE). A larger 
value of R2 was utilised as the criterion, with a better inversion 
effect being indicated by a higher value. The MSE measures the 
total model error as the average squared difference between the 
predicted and actual values. The RMSE, which measures the 
overall prediction error while preserving the same scale as the 
initial observations, is the square root of the MSE. The average 
absolute difference between the projected and actual values is 
calculated by the MAE, giving a clear indication of the average 
deviation between the two. Equation 14, 15, 16 and 17, where 
n stands for the number of samples, yi is the actual measured 
value, and ŷi is the predicted value of the model, provides the 
equations for R2, MSE, RMSE, and MAE, respectively:

(12) 

   

     

2exp , ,
21

1 | 1 | ,
2



  
        


      

w ij

ij

b ij b

X t X t nQ i
iX t

nX t X t X t A L i

Within the given equation, Xb represents the optimal position 
of the discoverer, while Xw represents the current worst position 
in the global context. A+ represents the Moore-Penrose pseudo-
inverse of AT (obtained as AAT), the matrix A is a 1×d vector 
where each element is randomly assigned a value of either 1 
or -1. If i is greater than n/2, it indicates that the follower with 
lower energy cannot find food and needs to fly to other areas 
for foraging. Otherwise, the follower will move towards the set 
of optimal foraging positions.

Update the position of the sentinels, as shown in Equation 13.

(13) 
     

 
   

 

| |, ,

1
,

  
            

best ij best i g

ij wij
ij i g

i w

X t X t X t f f

X t X tX t
X t K f f

f f

In the given equation, Xbest represents the current best position 
in the global context. The step size is controlled by the parameter 
β. K is used to control the direction and step size of individual 
movement, taking arbitrary values within the range [-1, 1]. f 
represents the fitness value of the ith individual, fg denotes the 
current global best fitness value, and fw represents the current 
worst fitness value. ϵ is a small random number close to zero, 
introduced to avoid division by zero. If fi is equal to fg, it indicates 
that the sparrow is currently in the best position, allowing for 
random search in the nearby region. Otherwise, the sparrow is 
highly susceptible to attacks.

Through such a design, the SSA ingeniously draws inspiration 
from the foraging strategy of sparrows in nature, transforming it 
into an efficient swarm intelligence optimization method. This 
method not only effectively simulates the dynamic interaction 
among sparrows in different roles, such as the discoverer, 
follower, and scout, but also enables intelligent updating of 
individual positions on this basis, thereby facilitating the 
algorithm in finding the global optimum. Especially in dealing 
with complex optimization problems, such as the optimization of 
the smoothing factor σ in the GRNN model, SSA demonstrates 
its strong global search capability and robustness.

Regression evaluation design

To evaluate the performance of the tea plant canopy 
chlorophyll relative content prediction model, four types of 
parameters were chosen to calculate the error between the 
predicted chlorophyll relative content values and the actual 

(14)
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(16)

(17)
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Results and Discussion

Analysis of chlorophyll relative content in the tea 
canopy

Firstly, an analysis of the chlorophyll relative content in the 
tea canopy leaves collected will be conducted. In the selected 
sampling area of the experiment, there is a row of naturally 
growing trees on the west side, which results in some tea plants 
in the same tea garden being exposed to full sunlight conditions 
while others remain under partial shade in the afternoon. Its 
distribution is shown in Figure 7.

During the measurements, it was observed that there was 
a significant spatial distribution difference in the chlorophyll 
relative content within the tea canopy. The box plot depicting the 
distribution of chlorophyll relative content is shown in Figure 8.

It can be observed that the variations in the sampling area 
have a significant impact on the chlorophyll relative content in 
the leaf canopy. Designated the areas with shading at 2:00 PM as 
having shading conditions. From the figure, it can be seen that tea 
plants growing in shaded environments in the afternoon exhibit 
significantly higher chlorophyll relative content compared to 
those growing in full sunlight conditions. Chlorophyll content 
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in tea leaves is an important indicator for evaluating tea quality. 
Therefore, our measurements also confirm some previous 
studies, indicating that moderate low-light stress contributes 
to increased chlorophyll relative content in tea plants, thereby 
enhancing the quality of tea products (Sonobe, Sano, & Horie, 
2018; Wang et al., 2010).

data were randomly divided into two groups at a 4:1 ratio. Eighty 
samples were used as training data for analysis and modeling, 
while the remaining 20 samples were used as test data to verify 
the accuracy of the constructed model. Table 2 displays the 
standard deviation and coefficient of variation for the training 
samples, test samples, and the overall sample, showing similar 
levels of dispersion and confirming the reliability of the data 
partitioning.

Figure 7: Distribution in a Sheltered Environment.

Figure 8: Distribution of chlorophyll relative content 
measurements in tea canopy under different illumination 
environments.

Although moderate shading benefits the enhancement of tea 
plant’s chlorophyll relative content, most tea gardens still adopt 
open-field cultivation practices and do not deliberately employ 
shading measures. Therefore, in this study, we collected the 
data to establish a more widely applicable predictive model for 
chlorophyll relative content in the tea canopy.

The total sample size of tea canopy leaf chlorophyll relative 
content collected in the experimental plot is 100. To ensure 
the reliability of the data for constructing the tea canopy leaf 
chlorophyll relative content prediction model, we divided the 
collected data into seven equal parts based on their range, as 
shown in Figure 9. This was done to ensure that the collected 
values had a significant degree of dispersion and were distributed 
fairly evenly across the data segments. Subsequently, all sample 

Ranking and selection of remote sensing 
variables based on importance

We employed the RF method to calculate and rank the feature 
importance of the 42 remote sensing variables. This ranking 
provided a reference for variable selection before constructing 
the model. Figure 10 illustrates the relationship between RF 
variable importance results and the predicted chlorophyll 
relative content. We applied a threshold for variable selection 
based on importance, following previous experiments in other 
fields (Genuer, Poggi, & Tuleau-Malot, 2010; Epifanio, 2017). 
Features were sorted in descending order of importance and 
accumulated until their cumulative importance reached 85% 
(Zhu et al., 2022). Based on this criterion, a threshold of 1.3% 
importance was established, resulting in the selection of 18 
optimal remote sensing variables. These variables are MCARI2, 
MCARI, re, r, g, CVI, GRVI, NDREI, S-CCCI, RDVI-REG, 
OSAVI-REG, TCARI/OSAVI, TCARI, CI-GREEN, OSAVI, 
RTVI-CORE, GNDVI, and DVI-REG. Despite comprising 
only 43% of the total parameters, the sum of their importance 
for predicting final chlorophyll content reached 85.1%. This 
underscores the effectiveness of remote sensing variable 
selection in optimizing modeling features.
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Figure 9: Distribution of SPAD data collected in the field.

Table 2: Statistics of SPAD values of tea plant canopy.

Data Type Sample size Minimum  
value

Maximum  
value

Average  
value

Standard 
deviation

Coefficient of 
variation(%)

Training set 80 27.14 49.9 37.08 6.05 16.30
Test set 20 27.46 48.6 37.39 6.86 18.35

All 100 27.14 49.9 37.03 6.14 16.6

Figure 10: Importance assessment of remote sensing variables with importance greater than 1.3%.
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Performance evaluation of machine learning 
models

The test results after training various models are 
shown in Table 3. Among the models that use all remote 
sensing variables as input, the predictive results of the four 
networks are illustrated in Figure 11. In terms of accuracy, 
from highest to lowest, they are GRNN, BPNN, RF, and 
RBFN. GRNN exhibits a slightly higher predictive accuracy 
compared to the other models, with an R2 value of 0.59. It 
has improved by 0.05 compared to the second-best model, 
BPNN. This improvement can be attributed to the fact that, 
especially when dealing with a limited sample size, GRNN 
demonstrates a stronger predictive ability compared to other 
machine learning methods (Izonin et al., 2021). However, 
this advantage is not very pronounced, and it’s worth noting 
that the predictive accuracy of all machine learning models 

is not particularly high. Upon analysis, we believe that for 
small-sample datasets, introducing too many features as input 
can pose challenges during the machine learning training 
process, thereby affecting predictive accuracy.

In the experiment where important features filtered by 
RF were used as model inputs, we decided not to use RF 
for regression testing anymore, as the performance of the 
RF regression model heavily relies on its assessment of 
feature importance. Since the most significant features have 
already been filtered out using the RF model, the potential 
for performance improvement in the RF regression model 
with these features has reached saturation, and continuing 
to use it would not bring significant improvements to model 
performance. Therefore, we proceeded with experiments 
using three different networks: BPNN, RBFN and GRNN. The 
experimental results for the GRNN model were as follows: R2 
= 0.77, MSE = 10.44, RMSE = 3.23, and MAE = 2.20. For 

Table 3: Comparison of parameter settings and predictive accuracy among machine learning models.

Model selection Parameter settings R2 MSE RMSE MAE

RF
Bootstrap = True 

Maximum depth = 9 
Number of trees =100

0.53 21.8 4.67 3.76

Enter all 
remote 
sensing 

variables

BPNN

Hidden layer dimension =14 
Optimizers=Adam 

Activation functions = Sigmoid 
Early Stop Method=True 

Epochs=5000

0.54 21.41 4.63 3.46

RBFN

Hidden layer dimension =10 
Optimizers=Adam 

Early Stop Method=True 
Epochs=5000

0.51 22.48 4.74 3.68

GRNN Smoothing factor=0.7 0.59 18.92 4.34 3.72

SSA-GRNN

Number of individuals = 30   
Number of iterations = 30   

Dimensionality = 1   
Lower bound = 0.01 

Upper bound = 2

0.61 18.62 4.31 2.57

Enter 
important 

remote 
sensing 

variables

BPNN

Hidden layer dimension =12 
Optimizers=Adam 

Activation functions = Sigmoid 
Early Stop Method=True 

Epochs=5000

0.58 19.26 4.39 3.73

RBFN

Hidden layer dimension =6 
Optimizers=Adam 

Early Stop Method=True 
Epochs=5000

0.66 15.45 3.93 3.27

GRNN Smoothing factor=0.55 0.77 10.11 3.18 2.42

SSA-GRNN

Number of individuals = 30   
Number of iterations = 30   

Dimensionality = 1   
Lower bound = 0.01 

Upper bound = 2

0.84 7.04 2.65 1.92
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the RBFN model, the metrics were R2 = 0.66, MSE = 15.45, 
RMSE = 3.93, and MAE = 3.27, which were higher than those 
of BPNN but considerably lower than GRNN. After using the 
important remote sensing variables as inputs, the BPNN model 
showed only a slight improvement in prediction accuracy. The 
different machine learning algorithms’ prediction results are 
shown in Figure 12, where models using important variables 
as inputs (BPNN, RBFN, and GRNN) exhibited increases in 
R2 of 0.04, 0.15, and 0.16, respectively, compared to models 
using all variables as inputs.

Figure 13 displays the residual plots for the three machine 
learning algorithms using both the full set of remote sensing 
variables and the important remote sensing variables as inputs. 
To facilitate observation, the test set was arranged in ascending 
order of actual measurement values after obtaining the prediction 
results.

It is evident that after training with the selected remote 
sensing variables as input data, the prediction accuracy of 
the BPNN improved slightly, while the RBFN and GRNN 
networks showed a significant improvement. Both the RBFN 

and GRNN networks use radial basis functions as activation 
functions and do not require data normalization during input. 
Therefore, each feature has a considerable impact on prediction 
accuracy, as supported by a study by Binh Thai et al. (2018), 
which emphasizes the significant impact of feature selection 
on machine learning models using radial basis functions as 
activation functions.

Random Forest effectively selected the most influential 
features on the overall model and eliminated the interference 
of redundant data on model accuracy during the modeling 
process, resulting in a significant improvement in the prediction 
accuracy of these two models. The BPNN model requires data 
normalization during training and relies more on adaptive 
adjustment of feature weights through backpropagation. 
Therefore, it exhibits some robustness against redundant data, 
with factors such as the choice of the number of hidden layer 
nodes (Shen, Wang, & Gao, 2008) and activation functions (Bai, 
Zhang, & Hao, 2009) being more critical for BPNN performance. 
Thus, the feature importance selection by Random Forest only 
marginally improved prediction accuracy for the BP network.

Figure 11: Predictive performance of various machine learning models with all remote sensing variables as inputs. (a) RF, 
(b) BPNN, (c) RBFN, (d) GRNN.
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Figure 12: Predictive performance of various machine learning models with important remote sensing variables as inputs. 
(a) BPNN, (b) RBFN, (c) GRNN.

In previous studies, scholars relied more on individual 
correlation analysis for selecting remote sensing variables 
when predicting various plant phenotypic parameters (Chen 
et al., 2023; Guo et al., 2022). Although this method could 
identify features related to the target parameters to some 
extent, it overlooked the interactions and combined effects 
between variables, potentially leading to the omission of 
important features or the inclusion of too much unnecessary 
information. In contrast, the RF feature selection method 
adopted in this  study evaluates the importance of 
each variable in the decision tree construction process 
comprehensively. It considers not only the correlation 
between individual variables and the target variable but also 
automatically takes into account the interactions between 
variables. This approach can more effectively identify the 
feature set that contributes most to the predictive model, 
thereby improving the model’s accuracy and generalizability. 
A series of experiments also confirmed that this step could 
reduce the model’s training difficulty while simultaneously 
increasing the high accuracy of machine learning models 
in predicting the relative chlorophyll content in the tea tree 
canopy.

Analysis of prediction performance and stability 
of the RFSSA-GRNN model for canopy chlorophyll 
content in tea plants

In recent years, group intelligent algorithms have been widely 
applied in various fields due to their fast convergence speed and 
simplicity in computation (Tang, Liu, & Pan, 2021). However, 
their applications in predicting vegetation parameters using remote 
sensing data have been relatively limited. In this study, we explored 
this area by optimizing the previously selected GRNN model with 
the application of SSA. We used both all remote sensing variables 
and important remote sensing variables as model inputs to predict 
the test dataset. The results are shown in Figure 14.

Whether using all remote sensing variables as inputs or 
important remote sensing variables as inputs, both models achieved 
higher R2 values compared to other machine learning models with 
the same inputs. When using all remote sensing variables as inputs, 
SSA found the optimal smoothing factor σ to be 0.267. The overall 
accuracy of the predictive model built with this factor exceeded 
that of various other machine learning models previously used. 
The R2, MSE, RMSE, and MAE were 0.61, 18.62, 4.31, and 2.57, 
respectively. Compared to the GRNN model with the same remote 
sensing variable inputs, the R2 improved by 0.02.
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Figure 13: Residual analysis of predictive results for three machine learning models under different input scenarios. (a) 
BPNN, (b) RBFN, (c) GRNN.
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When selecting important remote sensing variables as inputs, 
the RFSSA-GRNN model demonstrated excellent predictive 
performance. SSA identified the optimal smoothing factor as 
0.174, resulting in R2, MSE, RMSE, and MAE values of 0.84, 
7.04, 2.65, and 1.92, respectively. The R2 improved by 0.07 
compared to the GRNN model using important remote sensing 
variables as inputs. By comparing the predictive performance 
on a separate test set, it was found that its predictive accuracy 
significantly surpasses the results of previous models. 

To further validate the predictive performance of the 
RFSSA-GRNN model, we conducted a comparison with the 
RF-GRNN and SSA-GRNN models. Figure 15 presents a 
residual analysis when employing the RFSSA-GRNN model 
and the RF-GRNN model. When the number of samples to 
be predicted is small, the smoothing factor chosen by the 
RF-GRNN is also obtained through trial and error as a better 
parameter, resulting in the predictive results of the two models 
produced after training being quite similar. However, when 
dealing with larger values of samples to be predicted, the 
incorporation of the SSA algorithm can further optimize the 
selection of the smoothing factor, enhancing the stability of 
the model’s predictions.

Figure 16 illustrates the residual analysis of the RFSSA-
GRNN model and the SSA-GRNN model’s predictions. It 
can be observed that when the relative chlorophyll content 
to be predicted falls within a moderately medium range, both 
models achieve good results, and the prediction outcomes are 
quite similar. This indicates that SSA is capable of assisting the 
GRNN network in training models with high accuracy under 
varying input parameters. However, when the SPAD values to 
be predicted are either extremely high or extremely low, using 
selected important remote sensing parameters as inputs can still, 
to some extent, eliminate the interference of redundant features 
on model training, thereby improving the model’s predictive 
accuracy on the relative chlorophyll content.

The fitness function is one of the crucial metrics for evaluating 
the network during the process of network training. In this 
experiment, we used the sum of mean squared errors between the 
training set and the test set at each training round as the fitness 
function. Figure 17 illustrates the variations in the fitness function 
for different remote sensing variable inputs. It can be observed that 
in both input scenarios, the SSA model reached a stable state by 
the 7th iteration, demonstrating the stability and rapid convergence 
of the SSA model during training.

Unlike the trial-and-error approach used to obtain the optimal 
values for parameters in other models in this experiment, the 
SSA-GRNN model autonomously selects the best parameters 
by setting only the dimensionality and upper and lower bounds. 
This effectively eliminates the extensive manual work required 
to determine parameters during the model establishment process. 
Additionally, the fitness function of the SSA model using 
important variables as input is lower than that of the SSA model 
using all variables as input. This further confirms that variable 
selection contributes to achieving better predictive performance 
in the prediction model.

Intelligent optimization algorithms are currently underutilized 
in predicting the relative chlorophyll content of plant canopies. 
Lu et al. (2022) applied the PSO optimization algorithm to 
enhance the ELM model for predicting the relative chlorophyll 
content in jujube leaves affected by mite infestation. We have 
improved upon this by introducing the SSA to optimize the 
smoothing factor of the GRNN model. The application of 
the SSA algorithm not only enhances the model’s predictive 
accuracy but also simplifies the complexity and randomness 
associated with manual tuning, making the optimization process 
more efficient and stable. This advancement could be crucial for 
future large-scale remote sensing data prediction models, as it 
facilitates more automated and intelligent decision support in 
applications like monitoring the relative chlorophyll content in 
the canopy of tea trees.

Figure 14: Prediction of chlorophyll values by the SSA-GRNN model. (a) Input with all remote sensing variables. (b) Input with 
important remote sensing variables.
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Figure 15: Residual Analysis of GRNN and SSAGRNN Models Using Important Remote Sensing Variables as Inputs. 

Figure 16: Residual Analysis of SSAGRNN Model Predictions Under Two Different Input Scenarios.

In this study, we introduce a novel approach for rapidly and 
non-destructively monitoring the growth status of tea trees by 
combining multispectral RPA imagery with machine learning 
models to predict the chlorophyll content of the tea tree canopy. 
The chlorophyll content in tea leaves is closely related to their 
growth status and the quality of the final product. By developing 
the RFSSA-GRNN model for predicting the relative chlorophyll 
content in the tea tree canopy, we can utilize multispectral RPA 
for non-destructive monitoring of chlorophyll content, facilitating 
accurate assessments of the health status of tea trees. This enables 
the timely identification of issues in plant growth, allowing for 
appropriate management and intervention measures to be taken.

While remote sensing technology has been used to assess 
the relative chlorophyll content of other plants and monitor the 
AGB and LAI of tea trees (Yin et al., 2023; Shi et al., 2022), 
the application of RPA remote sensing imagery for monitoring 
the relative chlorophyll content of tea crops is not yet common. 
Wahono et al. (2021) conducted preliminary exploration, 
predicting the relative chlorophyll content of tea trees using 
visible light images and linear regression equations. Our study 
further expands this work by utilizing multispectral images 
and introducing more complex machine learning algorithms, 
comparing four different machine learning models. We discovered 
the potential of the GRNN network for accuracy in prediction, 
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and based on subsequent RF for remote sensing variable selection 
and SSA for optimization of the GRNN smoothing factor, we 
established an RFSSA-GRNN model for predicting the relative 
chlorophyll content in the tea tree canopy. Experimental results 
show that this model can accurately predict the relative chlorophyll 
content in the tea tree canopy in field conditions.

In this study, there are certain limitations to be acknowledged. 
Firstly, the sample size is relatively small. Although existing 
experiments have demonstrated the high accuracy of the 
chlorophyll content prediction in the canopy leaves of the 
current tea plant variety proposed in this paper, further research 
is needed to assess the predictive accuracy on different tea plant 
varieties at different time periods. Additionally, tea plants are 
often subjected to multiple stresses during their growth, such 
as nitrogen deficiency and drought (Lv et al., 2021). Therefore, 
future research could focus on how to use machine learning 
models to simulate chlorophyll changes when these stresses 
occur, thus mitigating the damage caused by various stressors 
to tea plant growth.

Conclusions
Based on RPA multispectral remote sensing data and machine 

learning, this study compared the prediction effects of four 
machine learning models and selected GRNN. By integrating 
the use of RF for remote sensing variable selection and the SSA 
optimization algorithm to optimize GRNN, the RFSSA-GRNN 
model for predicting the relative chlorophyll content of the tea 
tree canopy was proposed. This model achieved good prediction 
results in experiments, facilitating the rapid and effective 
monitoring of the growth status of tea trees.

Author Contribution 
Conceptual idea: Zhou, Q.Y.; Zhang, Y.H.; Methodology 

design: Zhang, J.C.; XING, W.; Data collection: Zhang, J.C.; 
WEI, T.W.; Data analysis and interpretation: Zhou, Q.Y.; 
Zhang, J.C., and Writing and editing: Zhang, J.C.; WEI, T.W.; 
Wang, J.

 Acknowledgments 
We would like to express our gratitude to the Talent Research 

Program of Anhui Agricultural University for providing 
financial support under grant numbers rc482003. Additionally, 
we extend our thanks to Jiangsu Bocha Agricultural Science 
and Technology Development Co., Ltd. for providing the 
experimental site and to Mr. Guo Chao from Nanjing Yunyue 
Information Technology Co., Ltd. for his technical support 
related to RPA.

References
Bai, Y., Zhang, H.-X., & Hao, Y. (2009). The performance of the 

backpropagation algorithm with varying slope of the activation 
function. Chaos, Solitons & Fractals, 40:69-77.

Binh Thai, P. et al. (2018). A hybrid machine learning ensemble 
approach based on a radial basis function neural network and 
rotation forest for landslide susceptibility modeling: A case study 
in the himalayan area, India. International Journal of Sediment 
Research, 33(2):157-170.

Figure 17: Changes in fitness function during the training process of the SSA-GRNN Model. (a) Input with all remote sensing 
variables (SSA-GRNN). (b) Input with important remote sensing variables (RFSSA-GRNN).



Ciênc. Agrotec., 48:e016123, 2024

22 Zhou, Q. et al.

Broge, N. H., Leblanc, E. (2001). Comparing prediction power 
and stability of broadband and hyperspectral vegetation 
indices for estimation of green leaf area index and canopy 
chlorophyl l  density.  Remote Sensing of  Environment , 
76(2):156-172.

Carmona, F., Rivas, R., & Fonnegra, D. C. (2015). Vegetation 
index to estimate chlorophyll content from multispectral 
remote sensing data. European Journal of Remote Sensing, 
48(1):319-326.

Chen, J. M. (1996). Evaluation of vegetation indices and a modified 
simple ratio for boreal applications. Canadian Journal of Remote 
Sensing, 22(3):229-242.

Chen, S. et al. (2020). Retrieval of cotton plant water content by uav-
based vegetation supply water index (vswi). International Journal 
of Remote Sensing, 41(11):4389-4407.

Chen, X. et al. (2023). Estimation of winter wheat canopy chlorophyll 
content based on canopy spectral transformation and machine 
learning method. Agronomy, 13(3):783.

Clevers, J., Kooistra, L., & Van Den Brande, M. (2017). Using sentinel-2 
data for retrieving lai and leaf and canopy chlorophyll content of 
a potato crop. Remote Sensing, 9(5):405.

Curran, P. (1983). Multispectral remote sensing for the estimation 
of green leaf area index. Philosophical Transactions of the Royal 
Society of London Series A, Mathematical and Physical Sciences, 
309(1508):257-270.

Daughtry, C. S. T. et al. (2000). Estimating corn leaf chlorophyll 
concentration from leaf and canopy reflectance. Remote Sensing 
of Environment, 74(2):229-239.

Epifanio, I. (2017). Intervention in prediction measure: A new 
approach to assessing variable importance for random forests. 
BMC Bioinformatics, 18(1):230.

Gano, B. et al. (2021). Using uav borne, multi-spectral imaging for the 
field phenotyping of shoot biomass, leaf area index and height 
of west african sorghum varieties under two contrasted water 
conditions. Agronomy-Basel, 11(5):850.

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection 
using random forests. Pattern Recognition Letters, 31(14):2225-
2236.

Gitelson, A. A. (2013). Remote estimation of crop fractional vegetation 
cover: The use of noise equivalent as an indicator of performance 
of vegetation indices. International Journal of Remote Sensing, 
34(17):6054-6066.

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships 
between leaf chlorophyll content and spectral reflectance 
and algorithms for non-destructive chlorophyll assessment 
in higher plant leaves. Journal of Plant Physiology, 160(3):271-
282.

Gitelson, A. A., Merzlyak, M. N. (1997). Remote estimation of 
chlorophyll content in higher plant leaves. International Journal 
of Remote Sensing, 18(12):2691-2697.

Gong, P. et al. (2003). Estimation of forest leaf area index using 
vegetation indices derived from hyperion hyperspectral data. IEEE 
Transactions on Geoscience and Remote Sensing, 41(6):1355-1362.

Guo, Y. et al. (2022). Machine learning-based approaches for 
predicting spad values of maize using multi-spectral images. 
Remote Sensing, 14(6):1337.

Haboudane, D. et al. (2004). Hyperspectral vegetation indices and 
novel algorithms for predicting green lai of crop canopies: 
Modeling and validation in the context of precision agriculture. 
Remote Sensing of Environment, 90(3):337-352.

Haboudane, D. et al. (2002). Integrated narrow-band vegetation 
indices for prediction of crop chlorophyll content for application 
to precision agriculture. Remote Sensing of Environment, 81(2-
3):416-426.

Hassan, M. A. et al. (2018). Time-series multispectral indices from 
unmanned aerial vehicle imagery reveal senescence rate in bread 
wheat. Remote Sensing, 10(6):809.

Huete, A. R. (1988). A soil-adjusted vegetation index savi. Remote 
Sensing of Environment, 25(3):295-310.

Izonin, I. et al. (2021). A grnn-based approach towards prediction 
from small datasets in medical application. Procedia Computer 
Science, 184:242-249.

Jiang, Z. et al. (2008). Development of a two-band enhanced vegetation 
index without a blue band. Remote Sensing of Environment, 
112(10):3833-3845.

Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and 
photosynthesis: The basics. Annual Review of Plant Physiology and 
Plant Molecular Biology, 42(1):313-349.

Liu, J., Pattey, E., & Jego, G. (2012). Assessment of vegetation indices for 
regional crop green lai estimation from landsat images over multiple 
growing seasons. Remote Sensing of Environment, 123:347-358.

Liu, Z. A., Yang, J. P., & Yang, Z. C. (2012). Using a chlorophyll meter 
to estimate tea leaf chlorophyll and nitrogen contents. Journal of 
Soil Science And Plant Nutrition, 12(2):339-348.

Lu, J. et al. (2022). Inversion of chlorophyll content under the stress 
of leaf mite for jujube based on model pso-elm method. Frontiers 
in Plant Science, 13:1009630.

Lv, Z. et al. (2021). Research progress on the response of tea catechins 
to drought stress. Journal of the Science of Food and Agriculture, 
101(13):5305-5313.

Martínez, D., & Guiamet, J. (2004). Distortion of the spad 502 
chlorophyll meter readings by changes in irradiance and leaf 
water status. Agronomie, 24(1):41-46.



Prediction of chlorophyll relative content in tea plant canopy using optimize GRNN algorithm and RPA multispectral images 23

Ciênc. Agrotec., 48:e016123, 2024

Meng, Q. (2023). Evaluation technology of urban green space 
with remote sensing. In Q. Meng. Remote sensing of urban 
green space. Singapore: Springer Nature Singapore, (pp.207-
237).

Miao, S. et al. (2022). Extraction methods, physiological activities and 
high value applications of tea residue and its active components: A 
review. Critical Reviews in Food Science and Nutrition, 63(33):12150-
12168.

Noh, H. et al. (2006). A neural network model of maize crop nitrogen 
stress assessment for a multi-spectral imaging sensor. Biosystems 
Engineering, 94(4):477-485.

Pan, S. Y. et al. (2022). Tea and tea drinking: China’s outstanding 
contributions to the mankind. Chinese Medicine, 17(1):27.

Raper, T. B., & Varco, J. J. (2015). Canopy-scale wavelength and 
vegetative index sensitivities to cotton growth parameters and 
nitrogen status. Precision Agriculture, 16(1):62-76.

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-
adjusted vegetation indices. Remote Sensing of Environment, 
55(2):95-107.

Roujean, J.-L., & Breon, F.-M. (1995). Estimating par absorbed by 
vegetation from bidirectional reflectance measurements. Remote 
Sensing of Environment, 51(3):375-384.

Rouse, J. W. et al. (1974). Monitoring vegetation systems in the great 
plains with erts. NASA. Goddard Space Flight Center 3d ERTS-1 
Symptoms, 351(1):309.

Shen, H. Y., Wang, Z., & Gao, C. Y. (2008). Determining the number of 
bp neural network hidden layer units. Journal of Tianjin University 
of Technology, 24:13-15, 2008.

Shi, Y. et al. (2022). Using unmanned aerial vehicle-based 
mult ispectral  image data to monitor the growth of 
intercropping crops in tea plantation. Frontiers in Plant Science, 
13:820585.

Sonobe, R., Sano, T., & Horie, H. (2018). Using spectral reflectance to 
estimate leaf chlorophyll content of tea with shading treatments. 
Biosystems Engineering, 175:168-182.

Specht, D. F. (1991). A general regression neural network. IEEE Trans 
Neural Netw, 2(6):568-576.

Tang, J., Liu, G., & Pan, Q. (2021). A review on representative swarm 
intelligence algorithms for solving optimization problems: 
Applications and trends. IEEE/CAA Journal of Automatica Sinica, 
8(10):1627-1643.

Uddling, J. et al. (2007). Evaluating the relationship between leaf 
chlorophyll concentration and spad-502 chlorophyll meter 
readings. Photosynthesis Research, 91(1):37-46.

Verrelst, J. et al. (2008). Angular sensitivity analysis of vegetation 
indices derived from chris/proba data. Remote Sensing of 
Environment, 112(5):2341-2353.

Vincini, M., Frazzi, E., & D’alessio, P. (2008). A broad-band leaf 
chlorophyll vegetation index at the canopy scale. Precision 
Agriculture, 9(5):303-319.

Wahono, D. I. et al. (2021). Comparing visible light based vegetation 
index and chlorophyll meter to estimate chlorophyll and nitrogen 
content of tea (camellia sinensis l. Kuntze) leaves. Annals of the 
Romanian Society for Cell Biology, 25(1):5033-5043.

Walsh, O. S. et al. (2018). Assessment of uav based vegetation indices 
for nitrogen concentration estimation in spring wheat. Advances 
in Remote Sensing, 7(2):19.

Wang, J. et al. (2023). Research on rapid and low-cost spectral device 
for the estimation of the quality attributes of tea tree leaves. 
Sensors, 23(2):571.

Wang, K. et al. (2010). Analysis of chemical components in oolong 
tea in relation to perceived quality. International Journal of Food 
Science and Technology, 45(5):913-920.

Wang, L. F. et al. (2004). The compounds contributing to the greenness 
of green tea. Journal of Food Science, 69(8):S301-S305.

Wang, Y. et al. (2019). Rapid prediction of chlorophylls and carotenoids 
content in tea leaves under different levels of nitrogen application 
based on hyperspectral imaging. Journal of the Science of Food and 
Agriculture, 99(4):1997-2004.

Xiao, Q., Mcpherson, E. G. (2005). Tree health mapping with 
multispectral remote sensing data at uc davis, california. Urban 
Ecosystems, 8(3-4):349-361.

Xiao, Y. F. et al. (2014). Sensitivity analysis of vegetation reflectance 
to biochemical and biophysical variables at leaf, canopy, and 
regional scales. IEEE Transactions on Geoscience and Remote 
Sensing, 52(7):4014-4024.

Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization 
approach: sparrow search algorithm. Systems Science & Control 
Engineering, 8(1):22-34. 

Yin, H. et al. (2023). Multi-temporal uav imaging-based mapping of 
chlorophyll content in potato crop. PFG-Journal of Photogrammetry 
Remote Sensing and Geoinformation Science, 91(2):91-106.

Zhang, L. G. et al. (2018). Density weighted connectivity of grass 
pixels in image frames for biomass estimation. Expert Systems 
With Applications, 101:213-227.

Zhu, Y. et al. (2022). Image classification method of cashmere and 
wool based on the multi-feature selection and random forest 
method. Textile Research Journal, 92(7-8):1012-1025.


	_Hlk147924475
	_Hlk159425845
	_Hlk147924605
	_Hlk157860753
	_Hlk157864713
	_Hlk139893890
	_Hlk147601094
	_Hlk147601195
	_Hlk147601208
	_Hlk147925504

