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1 Introduction

In this paper we consider an inverse problem for the linear Boltzmann equation
U+ w-Vyu+qu=gK,.[u] in (0,T) xS x Q, (1.1

whereT > 0, Q is a smooth bounded convex domainif, N > 2, S denotes
the unit sphere oRN, g € L>®(Q) andK, is the integral operator with kernel
k(X, o', w) defined by

Kc[ullt, o, X) = f/c(x, o, w)u(t, o, X) do'. 1.2
S
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332 THE COLLISION KERNEL IN THE LINEAR BOLTZMANN EQUATION...

In applications, the equation (1.1) describes the dynamics of a monokinetic
flow of particles in a body2 under the assumption that the interaction between
them is negligible (which allows us to discard nonlinear terms). For instance,
in the case of a low-density flux of neutrons (see [7], [18]% O is the total
extinction coefficient and the collision kerneis given by

kX, ', w) = c(xX)h(X, o - w),

wherec corresponds to the within-group scattering probability hrdkscribes
the anisotropy of the scattering process. In this magied)u(t, w, X) describes
the loss of particles atin the directiornw at timet due to absorption or scattering
andgq(X) K, [u](t, w, X) represents the production of particlex @t the direction
o from those coming from directions'.

Our focus here is the inverse problem of recovery the coefficients in (1.1) via
boundary measurements. More precisely, we are interested to recaner by
giving the incoming flux of particles on the boundary and measuring the outgoing
one. Since these operations are described mathematically alpdgooperator

Age : LYO, T; LY(Z7; d&)) — L0, T; LY(ZT; d))

(the spaces will be precised below), a general mathematical question concerning
this inverse problem is to know if the knowledge af; . uniquely determines
q, k, i.e., if the map(q, k) — Agq, is invertible.

Taking into account the applications, we have to precise this question. A first
one is to know if the knowledge ol [ f ] for all f determinegq, «) (infinitely
many measuremenisa second one is to know if the knowledge 4, [ f;],
forj =1,2,...,k, determinegq, «) (finite number of measuremehts

Thereis awide bibliography devoted to the first problem. We specially mention
the general results obtained by Choulli and Stefanov [4]: they show tadl«
are uniquely determined by tladbedooperator (see also [9]). We also mention
the stability results obtained by Cipolatti, Motta and Roberty (see [5] and the
references therein).

There is also a lot of papers concerning the stationary case (see for instance
those by V.G. Romanov [11], [12], P. Stefanov and G. Uhlmann [13], Tamasan
[14], J.N. Wang [15], and also the references therein).
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In this work we focus on the second question, concerning the recovery by a fi-
nite number of measurements. This may be interesting from the numerical point
of view (finite element methods, for instance). Assuming that o', ) =
c(xX)h(e', w), we prove that can be uniquely determined by at mkgheasure-
ments, provided that belongs to a finit&-dimensional vector space 6f(Q).

More precisely:

Theorem 1.1. Let 2 c RN be a bounded convex domain of cla&®s T >
diam(2) and X: = sparps, p2, ..., ok}, Where{p, p2, ..., px} is a lin-
early independent subset 6(Q). We assume that € X and« (X, o', w) =
c(X)h(’, w), whereh € C(S x S) satisfieh(w, w) # 0for everyw € S. Then,
there existfy, ..., fi € Co((0, T) x =) and@y, ..., @ € S that determiner
uniquely.

The proof of Theorem 1.1 is based on the construction of highly oscillatory
solutions & la Calderén [1]) introduced in [5] and some arguments already used
by the author in [6]. In fact, we consider solutions of the form

Uj(t, @, X) = xs(@], 0)p} (X — ta)e oI —Todrditx0) 4 B (¢ 4 ).

where xs converges (as — 1) to §;;, the spherical atomic measure concen-
trated onw; and R, s vanishes ag — oo. Therefore, by choosing; andg;
conveniently, we obtain the result.

We organize the paper as follows: in Section 2 we recall the standard functional
framework in which the Cauchy problem for (1.1) is well posed in the sense
of the semigroup theory and the albedo operator is defined; in Section 3, we
introduce the highly oscillatory functions that will be used, in Section 4, to prove
Theorem 1.1.

2 Notation and functional framework

Inthis section we introduce the notation and we recall some well known results on
the Transport Operator and the semigroup it generates Meh&onic Function
Spacegsee [5] and the references therein for the proofs).

LetQ c RN (N > 2) be a convex and bounded domain of cl@$sandS
the unit sphere oRN. We denote byQ: = S x Q and X its boundary, i.e.,
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334 THE COLLISION KERNEL IN THE LINEAR BOLTZMANN EQUATION...

¥: =S x Q. Forp € [1, +o0) we consider the spade”(Q) with the usual

norm
1/p
ullLe(g: =(/ lu(w,X)Idedw> :
Q

wheredw denotes the surface measureSoassociated to the Lebesgue measure
in RN-1,
For eachu € LP(Q) we defineAgu by

N
3
(AoU) (@, X): = w - Vyl(w, X) = Zwka—)i(w, X), o= (w1,...,oN)
k=1

where the derivatives are taken in the sense of distributiofs in

One checks easily that setting,: = {u € LP(Q); Aou € LP(Q)}, the
operator(Ao, Wp) is a closed densely defined operator amg with the graph
norm is a Banach space.

For everyo € 992, we denotey (o) the unit outward normal at € 02 and
we consider the sets (respectively, the incoming and outgoing boundaries)

2F: ={(w,0) €Sx9Q; +w-v(o)> 0}

In order to well define the albedo operator as a trace operator on the outgoing
boundary, we considecP(=*; d¢), wheredé: = |o - v(0)|dodw, and we
introduce the spaces

Wi ={ue Wpiu, e LP(E%:6)),

which are Banach spaces if equipped with the norms

1/p
lullys = <||u||$vp+/i|w-v<o>||u(w,o>|pdodw) .
z

The next two lemmas concern the continuity and surjectivity of the trace op-
erators (see [2], [3] and [9]):

Vi W;ﬁ — LP(ZF;dg), ye(u): =u .. (2.1)
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Lemma 2.2. Letl < p < +oo. Then there exist€ > 0 (depending only on
p) such that

/ o V@)U, 0)|Pdode < Clull., Yue Wi  (22)
¥ p
Moreover, ifp > 1andl/p+ 1/p’ = 1, we have the Gauss identity

/ divy (Uvw) dXdw = f w - v(o)u(w, o)v(w, o) dodw, (2.3)
Q )

for all u € W5 andv € W;E

As an immediate consequence of Lemma 2.1, we can introduce the space
Wp: = {feWy; / lw - v()] f(w,0)|P dodo < 400}
z
an we have thaW} = W, = W, with equivalent norms.

Lemma2.2. Thetrace operatorg, are surjective frongE ontoLP(XTF; d&).
More precisely, for eachf € LP(X¥; d¢&), there existsh e W;‘E such that
y+(h) = f and

||h||w”47§ < Cll fllLezF,de),

whereC > 0Qis independent of .

We consider the operatdk : D(A) — LP(Q), defined by(Au)(w, X): =
w - Vu(w, X), with D(A): ={ue W,; y_(u) =0}.

Theorem 2.3. The operatorA is m-accretive inLP(Q), for p € [1, +00).

Corollary 2.4. Letf € LP(Q), p € [1, +00) and assume that € D(A) is a
solutionofu + Au= f. If f > 0a.e.inQ, thenu > Oa.e. inQ. In particular,
it follows that

Iullizg) < Il fllLao)-

It follows from Theorem 2.3 and Corollary 2.4 that the operadiayenerates a
positive semigrougUo(t)}i>0 of contractions acting oh ?(Q).
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Letg € L*(Q) andx :  x S x S — R be a real measurable function
satisfying
/lK(X, o, w)|do < M;a.e.Q xS,
y (2.4)
/ |k (X, @', w)|dw < My a.e.Q x S.
S

Associated to these functions, we define the following continous operators:
1) B € L(LP(Q), LP(Q)) defined byB[u](w, X): = q(X)u(w, X),
2) K[ul(w,Xx): = fSK(X, o, o)U(w', X) do'.

It follows from (2.4) thatK, € L(LP(Q),LP(Q)) Vp € [1, +o00) and
(see [7])

1K [UlllLroy < M1"P MYPllullLpiq) < max{My, Ma}|[lUllLeq).  (2.5)

The operatoA+B—K, : D(A) — LP(Q) generatese&-semigroudU (t)}i>o0
on LP(Q) satisfying

UM <€, C: =9 lloo + Ma. (2.6)

We consider the initial-boundary value problem for the linear Boltzmann equa-

tion
au(t, o, X) + w - VU(t, w, X) + gxu(t, o, X) = qK,[ul(t, w, X)
uO,w,X) =0, (w,X)eSxQ (2.7)
ut,w,o0)=ft,w,o), (w,0)eX, te(O,T),

whereq € L®(Q2), K, [u] is defined by (1.2) witlx satisfying (2.4).

By the previous results, it follows that, fdr € LP(0, T; LP(Z™, d§)), p €
[1, +00), there exists a unique solutione C([0, T1; Wp)ﬂcl([o, TI; LP(Q))
of (2.7). This solutioru allows us to define thalbedooperator

Age : LP(0, T; LP(Z7,d§)) — LP(0, T; LP(E7, d§))
Al flt,w,0): =ut,w,0), (w,0)¢€ =T,
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As a consequence of Lemmas 2.1 and 214, is a linear and bounded operator.
We also consider the following backward-boundary value problem, called the
adjoint problemof (2.7):

HU*(t, w, X) + w - VU*(t, w, X) — qO)U*(t, w, X) = —qKZ[U*](t, w, X)
U(T,w,X) =0, (w,X) €SxQ (2.8)
ut,w,0) = f*t,w,0), (w,0)e =T, te(0,T),

wheref* e LP(0, T; LP(Z+,d§)), p' € [1, +00),
KX[u*l(t, o', X): = fK(X, o', w)U*(t, w, X) dw
S
with the corresponding albedo operatay, ,

A%, LP(0, T; LP(2F,d§)) - LP(0, T; LP (27, df))
ﬂZ’K[f*](t,a), 0): =Uu"(t,w,0), (w,0)e€X".

The operatorsiq , and Ag , satisfy the following property:
Lemma 2.5. Let
feLP(0,T; LP(27;dé)) and f*eLP(0,T; LP(ZF;ds)),
wherep, p’ € (1, +o0) are such thall/p+ 1/p’ = 1. Then, we have
T
/ (w-v(o) f(t, w,0) A [T7](t, ®, 0) dodwdt
0JX~

.
= —/ (w-v() f*(t, w,0) Aq, [ 1, w, o) dodwdt.
0Jxt

Proof. It is a direct consequence of Lemma 2.1. Lgt, w, X) the solution

of (2.7) with boundary conditiorf andu*(t, w, X) the solution of (2.8) with
boundaryf*. We obtain the result by using (2.3), once the equation in (2.7) is
multiplied byu* and integrated ove0, T) x Q. O

As a direct consequence of Lemma 2.5, we have:
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338 THE COLLISION KERNEL IN THE LINEAR BOLTZMANN EQUATION...

Lemma 2.6. LetT > 0, q, 02 € L*°(2) and«y, k» satisfying(2.4). Assume
thatu, is the solution of2.7) with coefficients), «; and satisfying the boundary
conditionf € LP(0, T; LP(Z™, d§)), p € (1, +00) and thatu} is the solution
of (2.8), with gz, x, and boundary conditionf* € LP (0, T; LP(Z*, d§)),
1/p+ 1/p = 1. Then we have

.
/on(qZ(X)_ql(X))ul(t’w’ X)U3(t, , X) dxdwdt
T
—fO/Q(Q2(X)KK2[U1](t,w, X) — q1(X) Ky, [U1](t, @, X)) U3 (t, @, X) dxdwdt

.
:// (@ V(N[ Agral ] — Agel f1]t 0, 0) f*(t, 0, 0) dodwdt.
0Jxt

3 Highly oscillatory solutions

In this section we prove some technical results related to special solutions of
(2.7) and (2.8) that will be useful in the proof of Theorem 1.1. We denoi@ by
the zero extension af in the exterior ofQ2.

Proposition 3.1. LetT > 0, g, g2 € L*®(R2), andxy, «, satisfying(2.4). We
considery, ¥, € C(S, C5°(RM)) such that
suppyi(w, ) N Q = (suppyz(w, ) +Tw) NQ =0, VYoeS. (3.1)

Then, there exist€, > 0 such that, for eachh > O, there existR;; €
C([0, T1; W) andR;, € C([0, T]; W) satisfying

IRLxlcqo 20y < Cor IR, lcqo11:2(0)) < Cos (3.2)
for which the functionsi;, u} defined by

,t - .
Ur(t, 0, X): = Y1(w, X — to)e Jo BEx—sdsdrt=ex) LR, .t 4, x) (3.3)

t o~ .
US(t, @, X): = Yo, X — tw)elo XS dserirt=wx) 4 i (¢t ¢, x)

are solutions of(2.7) with (q, ) = (qi, k1) and (2.8) with (g, ) = (O, k2)
respectively. Moreover, if; € L>(2; L(S x S)), then we have

lim ||IR . = lim ||R} =0. 3.4
A—>+oo” 1alleqo,m1:L2(Q) A—>+oo|| 55 lcqoTiL2Q)) (3.4)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



ROLCI CIPOLATTI 339

Proof. Letu be the function
UL, @, X): = Y1(w, X — tw)e™ o Bosadsgit—o L Rt o x).  (3.5)
By direct calculations, we easily verify that

oU + - VU + quu — 1K, [U] (3.6)
= %R+ o - VR+ 1 R— @K, [Rl — €"quZy;, '
where
Z1,(tw, X): = /Kl(X, o, Y1, X — tw')e JoBose)dsgira'xq,y (3 7)
s
From (2..6), there exist®; , € C*([0, T]; L(Q)) N C([0, T]; D(A)) a unique
solution of

*R+w- - VR+qR=qK,,[Rl+eqZs,,
R, w, x) =0, (w,X) € Sx Q, (3.8)
Rt,w,0) =0, (w,0)eX,

and it follows from (3.1) that the functiom defined by (3.5) satisfies (2.7) with
boundary condition

£t w,0): = Yn(w, 0 —tw)e hlo—sadsgit-0o) () 5y c 5

Multiplying both sides of the equation in (3.7) by the complex conjugate, of
integrating it overQ and taking its real part, we get, from Lemma 2.1,

%%/;?|R(t)|2dwdx+%/E+w-v(o)|R(t)|2dwda +qu1|R(t)|2dwdx
S /Q WK, [RIORM)dwdx = 9t [é“ /Q qlzu(t)mdwdx}.
It follows from the Cauchy-Schwarz inequality and (2.5) that
fQ K [ROTIRO] dxdo < C1 IR 2.
whereC;: = maxMq, M,}. Therefore, we obtain

d
GtIROIE2g = ColltallolROIT2q) + llloc 211 O 12 )
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whereC,: = 3+2C;. SinceR(0) = 0, we get, by integrating this last inequality
on[O, t],

t
IROIZsg, < Iclloc®I=TC / 10y (D) P, 7
HQ 0 QT vtero, T (3.9

A

10l €1 T2 Z1 51122 6 1)1 )
The first inequality in (3.2) follows easily because
1Z1,(t, @, 0] < [[Y1]l € ®1=T My

and, as the same arguments hold digrand R, , we also obtain the second
inequality.

We assume now € L>®(; L%(S x S)). For eachx € RN, the mapw’
expire’ - X) converges weakly to zero I?(S) wheni — 400 and the integral
operator with kernet (x, -, -) is compact inL%(S). So, we obtain from (3.6),

AIirD IZ1a(t, - X)]lL2s)y =0 a.e.in [0, T] x Q.

Moreover, || Z1,(t, -, X)|l .25y < C, whereC > 0 is a constant that does not

depend on.. The Lebesgue’s Dominated Convergence Theorem implies that
AETOO I Z1allL2qo,T1xq) = O.

From (3.9) and (3.8) we obtain (3.4), and our proof is complete. O

Corollary 3.2.  Under the hypothesis of Propositi@, if g;, g» € C(2) and
k1, k2 € L®(22; C(S x S)), we have, for every € S,

Iim ||RL.(, w, - 12 = lim |R},(, w, - 2 =0.
m | Ry, ( MNicqo,TiL2@) m 1R, ( Mo, 2@

Proof. By multiplying both sides of the equation in (3.7) by the complex con-
jugate ofR(t, w, X), integrating it over2, taking its real part and applying the
Holder inequality, we get

d
GIRC @) F2g, < 4l RE @)z,
(3.10)

16 loe (K IRIE )220, + 1Z24(t @) 122, ) -
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Since

K [RI(, @, X)) §/|K1(x, o, DR, &, %] do
S

1/2 1/2
< </ lk1(X, o', w)| da)’) (/ lk1(X, @, w)||R(t, o, x)|2dw/)
S S
1 12
= Ml/ [P S </S|R(t,w’, X)|2dw/) ,

we obtain
1K [RIE, )12z, < Mallkallooll ROIIZ 2 - (3.11)

From (3.8), (3.10) and (3.11) we have

d
Gt RE @)lif2g, < 4Gl R(E, 0)E2(q
+C (12041220 + 126 @Ezgq )

Now, integrating this last inequality on time, we get

t
2 T 2 2
” R(t» w) ” L2(Q) = Ce||CI1|| (t” Zl,)»” L2((0,T)x Q) + / ” Zl,)»(f, a))”LZ(Q) d7:>
0
T 2 2
= Ce”qlll (T || Zl’)‘”LZ((O,T)xQ) + ” Zl,)»('v w, ) ||L2((0,T)><Q)> .

From Proposition 3.1 we know th@&, ; || 2o, 1)xq) — 0 ask — +o00. On
the other hand, as the map — €% converges weakly to zero ib%(S), we
have from (3.6), for almost € ,

AIim Z1,,t,w,X) =0, VwesS Vte[0T]
—00

and the conclusion follows from the Lebesgue’s Theorem. O

Lemma 3.3. We assume that € L*°(Q2) and« satisfies(2.4). Let S’ be the
solution of _
%S+ w-VS—qS=—qK*[S]+qge"Z,
S(T,w,x) =0, (w,X) €S xQ, (3.12)
St,w,0) =0, (w,0)eX™,
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whereZ € H*(0, T; L(Q)) such thatZ(T) = 0. Then we have

1S lcqo.T1:L20) < Co and A'Lmoo 1S IH-20.1:L2(0) = O, (3.13)

whereCy is a constant independent bf

Proof. Multiplying both sides of the equation in (3.12) by the complex conju-
gate ofS!, integrating it overQ and taking its real part, we get

1
ZdtnS:()an(Q) 2/ (@ v(©@)IS(t, 0, 0) | dodo > — Al IS D112,

=19lleoIKEISIMO L2y I SO Nl L2(@) — NAllscIZMD I L2(q) IS, D)l L2
Since
IKISIMO L2y < max{M1, M2} IS (D)l L2(q) »
we have
||$<t>||L2(Q) ~CallIS 1120y — Nl I ZD) 172
whereC,: = (34 2maxXMi, M2})[qll«. Integrating this last inequality on
[t, T] and taking into account th&' (T) = 0, we obtain

)
IS Oz = 1alee™ [ 12l dr
t

(3.14)
< 191€2T 1 Z1I 20 7120
and the inequality in (3.13) follows easily.
We consider now
T
w, (1, w, X) : :/ S (r, w, x)dr,
t (3.15)

T
ht, w, X): =/ e_i“Z(t,a), X) dz.
t

Then, it is easy to check that, satisfies

w4+ - Vw —qw = —qK*[w] + qh,
w(T, 0,%) =0, (w,X) €S xQ, (3.16)

wt,w,0) =0, (w,0)eXT,
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Multiplying both sides of the equation in (3.16) by the complex conjugate of
w;, integrating it overQ, taking its real part and applying the Cauchy-Schwarz
inequality, we get as before,

2 CoT 2
”wk(t)”LZ(Q) = ||q”ooe 2 ”h”LZ(O,T;LZ(Q))

(3.17)
< |lalleT%eT|

|Z”fz(o,T:L2(Q>)'

AsSS' = —dw,, itfollows from (3.14) and (3.17) that the qed; } is bounded in
C*([0, T1; L3(Q)) and, in particular, is relatively compact@([0, T]; L3(Q)).

On the other hand, by integrating by parts the second integral in (3.15), it is
easy to check that there exi€is> 0 (depending only off') such that

C
IhllL20,T:L20Q) < WHZ”Hl(O,T;LZ(Q))- (3.18)

Hence, by (3.17), it follows thafw,|lcoT):L2(q) — 0 asi — oo. Since
the partial derivative irt, & : C([0, T]; L?(Q)) — H™(0, T; L%(Q)), is a
continuous operator, there exists a cons@nt- 0 such that

1S I1-20.1:L2(0) = Itwalln-100.T:2(0)) < Callwallco.T:L2(0))

and we have theonclusion. 0

4 Recovery by a finite number of boundary measurements

In this section we assume thigds, oo, ..., pk} IS a given linearly independent
set of functions ofC(2) and we denote&: = sparips, p2, ..., pk}. For each
@ € S we considerP;[p;] the X-ray transform of; in the directionw, i.e.,

Palpil(X): =/ oi (X + tw) dt

and, foreaclr > 0,Q,: = {x e RN\ Q; dist(x, Q) < ¢}.

The following Lemma, which the proof is given in [6], will be essential for the
proof of Theorem 1.1:
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Lemma 4.1. For all ¢ > O, there existo; € S and ¢; € C3°(2,), | =
1, ..., k, such that the matriA = (a;j), with entries defined by

aj: = /R Pa (1006700 dx, (4.1)

is invertible.

In order to prove Theorem 1.1, we define, fokd < 1, the functiony, : S x

S - Rasy (@, w): = P(ro, w), whereP is the Poisson kernel fd,(0), i.e.,
1—|x?
PX,y): = ——.
SN

From the well known properties ¢¥ (see [8]), we have

/Xr(?u,a))da)zl, Vr € (0,1, VoceS,
s (4.2)
im [ 0@ o) do = 4@,

where the above limit is taken in the topology Ibf(S), p € [1, +o0) and
uniformly onS if ¥ € C(S). We are now in position to prove our main result.

Proof of Theorem 1.1. Lete: = (T — diam(2))/2. We assume tha}; =
g2 = q and«i (X, o', w) = ¢(X)h(e', w), Wwherec;,c; € X. Forw € S,
we definey(w, X) = xs(@, @)@ (X) and Yo (w, X) = xr (@, w)¢(X), where
0 <r,s <1land¢ € C5°(R2,). Theny, andy, satisfy the condition (3.1) and
we may consider the solutiong andu; defined by (3.3), i.e.,

Uit @, X) : = xs(@, @) (X — tw)e oAt dit=xw) L R . (¢ o x),

t ~ .
U3t @, %) 1= )i (@, @) (X — tw)elo I0TMrg X L Ry (1w, X),
wherei > 0 will be chosen a posteriori. We shall write

Oyt @, X) 1 = (X — tw)e™ o Ax-TeNrght-x)

W, (L, @, X) : = ¢(X — ta)elo dx—re)dr girt-x0)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



ROLCI CIPOLATTI 345

in such a way that

ur(t, , X) = xs(@, 0)P;.(t, w, X) + Ry s(t, 0, X), 4.3)
Us(t, 0, X) = x (@, @) Wi(t, 0, %) + R, (L, @, X). '

Substitutingu; andu in the indentity given in Lemma 2.6, we have
J(r,r,8) = L(A,r1,9), 4.4)

where

.
J(x,r,s):=// q(x)(c1(x) — (X)) Knlu1l(t, @, X)U3(t, w, X) dxdwdt,
0JQ

T
L(A,r,8):= f (o v(0)) (A1l fis] — Azl f1s]) £}, dodwdt.
0JX
In the above formulas, we are denotinig = A,i =1, 2 and

fA,S(tv w, U) L= Xs(ajv CL))CD)L(t, w, 0)’ (Cl), 6) S Z_v (4 5)
(it wo) = 4@ 0¥t oo), o) ezt '
In particular, it follows from the definition of the Albedo Operator and (4.3),
JZl1[ fA,s] - ﬂz[ fk,s] = Rl,k,s - RZ,A,S» on (Oa T) X E+- (4-6)

By denotingn(x) = q(x) (Gl(x) — Ez(x)) and by considering the special form
of u; andu3, we may writeJ(, r,s) asJ = Jy + Jo + J3 + J4, Where

T _ -
Ji(r,r,9): = // n(X) /h(w’, ) xs(@, @) P, (1, &', X)do'
0JQ LJs

X (@, @)W, (t, w, X) dxdwdt,

T ~ _
(A, 1,S): :// n(x) fh(a)’,a))xs(@, D, (t, ', X)do'
o) LJs

R3¢ (1, , X) dxdwdt,

T
Ja(A,1,8): = / f n(x) |:/ h(o', @) Ry, s(t, o, X)da)’]
0J0Q S

¥ (@, 0)W, (t, w, X) dXdedt,
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T
Ja(A, 1, S): =// n(X) |:/ h(a)’,a))Rl,k,s(t,a)’,X)da)’:|
0Jo S

R3¢ (1, 0, X) dxdwdt.

Taking the limitas — 1~ in the above expressions, we get from the definition
of xr, (A, r,8) = J(A,s), where

- _
Ji(r,8): = / / n(X) / h(e', ®) xs(®, @)Dy (t, @, X)da)’:| W, (t, @, X) dxdt,
0JQ LJS
T _
b(r,8): = / / n(X) f h(w', w) xs(@®, w/)QA(t,w/,X)dw/] S, (t, w, X) dxdwdt,
0JQ LJS '

T _
Jg(x,s)::// 1(X) /h(w’,(T))Rl,k,s(t,a)’,x)dw’] W, (t, &, x) dxdt,
0JQ LJS

- _

Ja(r,8): = / / n(X) / h(o', )Ry, s(t, o, X)dw’j| S ;. (t, o, X) dxdwdt
0JQ LJs ’

andS;, is the unique solution of

#S+w-VS—qS=—qK [S|+e™qZ;,,

2

S(T,w,X) =0, (w,X)eS x Q, 4.7
S(T,w,0) =0, (w,0)eX™t,

Moreover, from (4.5) and (4.2), it follows that(, r, s) — L(A, s), where

T
L(x,s) = / / @ - v(o)* (Al fis] — A2l fisl)
0 JoaQ
(i, o, o)V, (t, w, o) dodt 4.8)
- / (5) : V(G))+(Rl,)»,$(t9 aj’ OV) - RZ,)»,S(t’ 5)7 0))
0 JaQ

v, (t, ®, o) dodt,

whereﬁi[fx,s] denotes the zero extension 4 [ f, s] on Q2. Therefore, by
taking the limitag — 1~ in (4.4), we have

Ji(A,8) + (A, S) + J3(A,S) + Ja(h,S) = L(A, S).
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Now, it is time to take the limit as — 1. For the first two terms of the right
hand side of the above identity, we get (foe 1, 2) J (A, s) — J(A), where

.
J(A) 1= /fn(x)h@,a)cm(t,&, X)W, (t, w, X) dxdt
0JQ
;
= h@, 5)//n(x)¢(x—ta)2dxdt, (4.9)
0JQ
.
BH(h) = /f nOOh(@, 0) ;. (t, @, X) S5, (t, 0, X) dxdodt.
0/Q

On the other hand, the dependenceson the other terms is given bR ; s
andRy; s, which are the solution ofj(= 1, 2)

#R+o - VR+qR=qK, [R]+€"qZj .
RO, w,X) =0, (w,X)€SxQ, (4.10)
Rt,w,0)=0, (w,0)ext,

where
Zjst, o, X): =/Kj(x,w/,w)xs(5), D, (1, o, X)dw'. (4.112)
S

It is an immediate consequence of (4.2) and the Lebesgue’s Theorem that, as
s—1,Zj;,s— Zj,inC([0, T]; L%(Q)), where

Zi(t 0. X): = Kk (X, &, )P, (t, B, X). (4.12)

Hence,
lim Rj;s=$, in C([0, T} L*Q),
s—1-

where§; ;. is the solution of
%S+ w-VS+qS=qK,[S]+€"qZz,,

SO0, w,X) =0, (w,X)eS x Q, (4.13)
St,w,0) =0, (w,0)€ X,

and
Zi(t, o, X): = Ccj(X)h(®@, 0) P, (t, w, X).
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ThereforeJ; (A, s) — J (1), (i = 3,4) andL(A,s) — L()), where

)
J3(A):=//n(x) |:/ h(w’,&)&,x(t,w’,x)dw’] W, (t, @, X) dxdt,
0JQ S
T
J4(A)::// (%) [/ h(o, cT))SL,\(t,w/,x)da/} S5, (Lo, x) dxdodt,  (4.14)
0Jo S

.
L(A): = // (@-v(0)) " (SLA(t, &, 0) — (L, &,0))Wi(t, @, 0) dodt
0JoQ
and we obtain
[J(M)] < [RM)] + 1) + [da(M)] + [LA)], (4.15)

where

A

.
1HL(V)] < ||n||oo||h||ooeMTf/ lp(X —t@) S, (t, », X)| dXdwdt,
0JQ

A

133D < nllsoll@lloc€™ T IKRISL I L200.T:L2(0)) s
(4.16)

A

[ 2] < InlloollKnlSLalllL20,7: L2000 1S5 1 1 L200,T:L2(Q)) »

;
11T / / (@-v(0)*
0 JoQ

1St @, 0) — S(t, @, 0)| dodt.

L)

IA

Sincep € C5°(R2,), itfollows from the choice of that the functiorit, w, X)
¢ (x — t@) belongs toH}(0, T; L?(Q)) (as a constant function an). Hence,
we have

MT
[R2(M)] < [lpll€ ”(p”H&(O,T;LZ(Q))”SZ)L”Hfl(O,T;LZ(Q))-

On the other hand, from the weak convergence to zetlo?{i0, T; L?(Q)) of
S1.;, it follows that

AETOO IKn[SLIllLz0,7:L2(0)) = 0. (4.17)
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Hence, we have from (4.15)—(4.17) and Lemma 3.3,
T
110)] = Ih(cB,EB)I‘//n(x)¢(x—tc~o)2dxdt‘
0JQ

.

C(k)llnlloo+Cz// (@ v()"
0 JaQ

|SL.(t, @, 0) — Su(t, @, 0)| dodt,

(4.18)

A

whereC (1) — 0 asr — +oo.

Since(suppg + sw) N Q =@ forall |s| > T, we have

T T
‘/fn(x)mx—tmzdxdt' _ / / n(y+Sc~0)¢(Y)2dsd>+
0JQ RN Jo

= /Rf n(Y+Sé'5)¢(y)2dsd>+ (4.19)

— /R N P@[n](ym(y)zdy‘
and we get
Ih(@, @)| ‘ /R ) P@[n](y)qﬁ(y)zdy‘ < CMInlleo

.
+ CZ// (67)-1)(0))+ |SLi(t, @, 0) — S, (t, @, 0)| dodt
0 JoaQ

We are now in position to conclude the proof. First of all, we consider in the
above inequality the directioris,, ..., wx and the functionss, ..., ¢« given
by Lemma 4.1, in such a way that we can write

Collct — C2llo = C(M)(ICL — Colloo+
k T .
+Co ) (@) v(©)" St &), 0) — St @), 0)] dodt,
=170 Joo

for some constar€y > 0. If we denote by

ul,](t’ , 0) = Xs(gjva))cb)»(t’ , X) + Ri,k,s(t, w, X)’ I = 13 27 J = 17 L) k
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it follows from (4.2) that, as — 17, uj j — uﬁj, where

uﬁjzaéjq))‘—i_ss)” i=1,29 j=1,...,k

anddg, is the spherical atomic measure concentrate@on

It is clear from (4.13) thau’ij(t,a),a) = ug’j(t,a),a), foroc € ¥, and
i=1...,k Moreovem’fj —u’;j =S, — .. Therefore, iiﬁij(t, @j,0) =
u’ij(t, @j, o) 0N Zgj, forj =1,...,k, it follows that

Colles — C2lls = CM)ICL — C2lloo

and the conclusion follows easily if we choase- 0 large enough. O
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