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Abstract. We introduce a simplified theoretical model to describe a virtual virus propagation

process in a set of interacting computers. The propagation mechanisms considered here are those

related to the reception of messages through internet as well as the ones concerning the simple

exchange of files using recording devices as compact disks or the commonly used floppy disks.

In spite of its inherent simplicity, this model provides a good idea of the infection process and

trends. From the mathematical point of view, the nonlinear delay integral equation that we obtain

here presents certain interesting features which are explored and enlightened in this paper.
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1 Introduction

The infection of computers by virtual viruses is a present day problem. A lot of

efforts have been (and will be) devoted to the development of virtual vaccines each

time a new virus appears. Nevertheless, slow progress (if any) in understanding

the propagation process, quantitatively, has been obtained up to now. In a certain

sense, the propagation of virtual viruses in a system of interacting computers

could be compared with a disease transmitted by vectors when dealing with

public health. Concerning diseases transmitted by vectors, one has to take into

account that the parasite spends part of its lifetime inhabiting the vector, so that

the infection switches back and forth between host and vector. Almost the same
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occurs here and also a certain time interval elapses between successive contacts

which, in this case, involves an electronic message (or a recording device) and

two different computers. However, we have to point out that, in our simplified

model, which ignores finer details, we suppose in the case of recording devices

that they are simple carriers not permanently infected, which could transmit the

virus only once (if it is so); i.e., after the first transmission of a certain program,

the contents in the recording device are removed before it is used again. Under

such hypothesis (among others considered below) we obtain a compact model

restricted to one single integral equation.

The paper is organized as follows: in Section 2, we construct the theoretical

model. Section 3 is devoted to performing a mathematical analysis of the in-

tegral equation obtained: existence, uniqueness and asymptotic behavior of the

solutions, as well as stability of stationary solutions. Finally, Section 4 contains

numerical experiments and our conclusions.

2 Modeling the dynamics of transmission

Before introducing the new model to describe the way by which some virtual virus

infection transmitted by electronic messages (or by recording devices) could

spread through a population of computers as a function of time, we shall start

deducing a certain contact-propagation equation for a general infectious process

having a natural (or induced) recovering time. We consider such an equation as

a convenient point of reference for subsequent analysis. In the present approach

we shall assume to deal with a new kind of virus infection for which there exists

no vaccine available. Being so, the unique way to restore the functions of an

infected computer is by deleting the hard disk (with which it becomes susceptible

again). It should be pointed out that neither spatial dependence nor latent periods

or immunity factors will be considered here.

Therefore, the total population is divided into two classes:

(I) the infective class. This includes all infected individuals because, in the

absence of a latent period, any infected individual immediately becomes

an infective one, displaying a potential capacity of transmitting the disease

to other susceptible individuals;
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(S) the susceptible class; i.e., those individuals capable of contracting the

disease, becoming themselves infected.

The closed host population of total size N will be used as a normalization

factor, so we set I + S = 1.

Let us denote by g(τ) the rate of the infection process at time τ , i.e., the number

of new infected computers (population density of them) per unit time, at instant

τ . We also introduce a function of two variables P(t, τ ), P : � → [0, 1], where

� = {
(t, τ ) ∈ R

2 ; t ≥ τ
}
, (2.1)

which represents the probability of a computer infected at τ to remain infectious

at t . Such a function, of course, is related to the time elapsed between the

detection of the infection and its eradication by erasing the hard disk. Considering

a maximum recovering time T , the function P(t, τ ) is supposed to have the

following general properties:

i) P(t, τ ) = 1 if τ = t;
ii) P(t, τ ) = 0 if τ ≤ t − T ;

iii) P(t, τ ) is a monotone decreasing function of t for each fixed τ.

(2.2)

If we want to describe the density of infective individuals as a function of time,

starting at t = 0, the only infected ones to be considered should be those in the

interval [−T , t] (just because of the maximum recovering time T ).

Dividing this interval into n equal parts, so that�τ = (t + T )/n and defining

τ1 = −T , τ2 = −T +�τ, . . . , τn+1 = −T +n�τ , i.e., τj = −T + (j−1)�τ ,

j = 1, . . . , n + 1, we should state, for �τ small enough, that the number of

infected individuals in the interval [τj , τj+1] = [τj , τj +�τ ] is given, approxi-

mately, as

g(τj )(τj+1 − τj ) = g(τj )�τ, j = 1, 2, . . . , n. (2.3)

Then, the number of infected individuals in this interval which remain infective

at t is approximately,

g(τj )P (t, τj )�τ, j = 1, 2, . . . , n, (2.4)
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and therefore, the total number of infective individuals at t may be written,

approximately, as

n∑
j=1

g(τj )P (t, τj )�τ, (2.5)

which, in the limit �τ → 0, gives

I (t) =
∫ t

−T
g(τ )P (t, τ ) dτ, t ≥ 0. (2.6)

Taking into account that P(t, τ ) = 0 if τ ≤ t − T , we should write Eq. (2.6) as

I (t) =
∫ t

t−T
g(τ )P (t, τ ) dτ, t ≥ 0. (2.7)

The former equation contains the basic features for the evolution of an infection

process in the framework of a SIS model. Depending on the specific transmission

process, one should conceive, in each case, a suitable infection rate-functiong(τ).

As it can be verified in references [4, 6], Eq. 2.7 and variations of it have already

been used by other authors in describing the propagation of diseases.

Concerning the propagation of virtual viruses transmitted by electronic mes-

sages (a) or by recording devices (b), we shall establish the following hypothesis

to construct g(τ):

a) some finite time elapses between the act of sending and the reception of

messages (t0 on average);

b1) each recording device is used only twice in intervals of time t0, on average;

b2) each device transmits the infection when, used by the first time in an

infected computer, it is used by the second time in a susceptible one.

Once this process occurs, previous contents are deleted.

Possible events concerning consecutive records and its corresponding proba-

bilities are described below.

Comp. Appl. Math., Vol. 22, N. 2, 2003



J. LÓPEZ GONDAR and R. CIPOLATTI 213

Event Probability

I �→ I I (t)I (t + t0)

S �→ S S(t)S(t + t0) = (
1 − I (t)

)(
1 − I (t + t0)

)
I �→ S I (t)S(t + t0) = I (t)

(
1 − I (t + t0)

)
S �→ I S(t)I (t0) = (

1 − I (t)
)
I (t + t0)

Among them we are only interested in the third one.

By a direct calculation, one can easily verify that the sum of the above proba-

bilities gives just 1.

Of course, there exists some characteristic average frequency for the submis-

sion of electronic messages in the system of interacting computers considered

here, as well as recording devices are subjected to a certain recording frequency.

We shall denote such a characteristic frequency by Nr(t). Then, for a time in-

terval �t small enough, we may write the number of new infected computers

which are increased to those already existing at t + t0, approximately, by

�NI |t+t0 = Nr(t)�tI (t)
(
1 − I (t + t0)

)
. (2.8)

Dividing by N�t and taking the limit as �t → 0, we have

g(t + t0) = Nr(t)

N
I (t)

(
1 − I (t + t0)

)
. (2.9)

If we make the substitution t �→ t + t0, Eq. (2.9) may be written as

g(t) = Nr(t − t0)

N
I (t − t0)

(
1 − I (t)

)
, (2.10)

or

g(t) = α(t)I (t − t0)
(
1 − I (t)

)
, (2.11)

where

α(t) = Nr(t − t0)

N
. (2.12)
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Therefore, in the framework of our model and following Eq. (2.7), the density

of infective computers at time t due to the virtual virus propagation process obeys

the following law

I (t) =
∫ t

t−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
P(t, τ ) dτ, t > 0, (2.13)

where α(τ) is given by (2.12).

Eq. (2.13) is a delay integral equation and the existence of solutions for t ≥ 0

depends on data defined in the past −T − t0 ≤ t ≤ 0.

Although we are only considering t0 > 0, it is interesting to point out that, if

t0 = 0 and P(t, τ ) = φ(t − τ), where φ(ξ) is a real function, Eq. (2.13) reduces

to the special case considered by Cooke and Yorke in [6].

3 Existence, uniqueness and asymptotic behavior

In this section we consider the problem of existence, uniqueness and asymptotic

behavior of solutions for equation (2.13). We will say that a function I (t) is a

solution generated by I0 if I (t) = I0(t) a.e. in [−T − t0, 0] and if I (t) also

satisfies (2.13) for t > 0.

• Uniqueness:

We consider the set � defined by (2.1), a function P : � → [0, 1] such that

(2.2) holds and I0 ∈ L∞(−T − t0,+∞)
.

In order to avoid technicalities (see Remark 3.2), we assume that

α ∈ C([−T − t0,+∞ [). (3.1)

Lemma 3.1. Assume that α satisfies (3.1). If I1 and I2 are solutions of (2.13)

generated by I0(t), then I1(t) = I2(t) for all t > 0.

Proof. First of all it should be noticed that, if Ii is a solution of (2.13), then Ii
is continuous in ] 0,+∞ [.

For 0 < t ≤ t0 we have

I1(t)− I2(t) =
∫ t

t−T
α(τ)I0(τ − t0)

(
I2(τ )− I1(τ )

)
P(t, τ ) dτ.
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Let ϕ be the function defined by ϕ(t) = |I1(t)− I2(t)|. Since 0 ≤ P(t, τ ) ≤ 1,

it follows that

ϕ(t) ≤ ‖I0‖
∫ t

0
|α(τ)|ϕ(τ) dτ, 0 < t ≤ t0, (3.2)

where ‖I0‖ = ess sup
{|I0(τ )| ; −T − t0 ≤ τ ≤ 0

}
.

Defining

ψ(t) =
∫ t

0
|α(τ)|ϕ(τ) dτ,

it follows that ψ is differentiable in ]0,+∞[ and we have ψ ′(t) = |α(t)|ϕ(t).
After multiplying both sides of (3.2) by |α(t)|, we get

ψ ′(t)− ‖I0‖|α(t)|ψ(t) ≤ 0, 0 < t < t0,

from which we obtain

d

dt

[
ψ(t) exp

(
−‖I0‖

∫ t

0
|α(τ)| dτ

)]
≤ 0, 0 < t < t0.

Sinceψ(0) = 0, we conclude thatψ(t) = 0 as well asϕ(t) = 0 for all 0 < t ≤ t0.

The same arguments can be repeated for (k − 1)t0 < t ≤ kt0, for all k ∈ N,

and the proof is achieved. �

Remark 3.2. We can obtain the same result of Lemma 3.1 with essentially the

same proof under the weaker condition

α ∈ L1
loc

(−T − t0,+∞)
.

• Existence and asymptotic behavior:

In order to prove the existence of solutions for Eq. (2.13), we assume that

α ∈ L1
loc

(−T − t0,+∞)
, α(t) ≥ 0. (3.3)

In view of the model we have in mind, we restrict our analysis to the so-

lutions that satisfy 0 ≤ I (t) ≤ 1, which allows us to consider the space

E = L∞(] − T − t0,+∞ [). This is a Banach space for the norm

‖f ‖ = ess sup {|f (τ)| ; τ ≥ −T − t0}.
Comp. Appl. Math., Vol. 22, N. 2, 2003
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In the sequel, we distinguish two cases, referred here as ‘‘Slow Infective Rate

Case’’ and ‘‘General Infective Rate Case’’, respectively.

Let r(t) be the function defined by

r(t) =
∫ t

t−T
α(τ)P (t, τ ) dτ. (3.4)

Case 1: ‘‘Slow Infective Rate’’ : r(t) ≤ 1, ∀t ≥ 0.

For a given I0 ∈ E such that 0 ≤ I0(t) ≤ 1, we consider the set

E(I0) = {
I ∈ E ; 0 ≤ I (t) ≤ 1, I (t) = I0(t), a.e. in [−T − t0, 0]}, (3.5)

which is a closed subset ofE. We also consider the operator	 : E(I0) → E(I0)

defined as follows: 	[I ](t) = I0(t) almost everywhere in [−T − t0, 0] and, for

t > 0,

	[I ](t) =
∫ t

t−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
P(t, τ ) dτ. (3.6)

The next theorem establishes the existence of a solution of Eq. (2.13) in E

(which is unique from Lemma 3.1), as well as its asymptotic behavior in the case

r(t) < 1 for t large enough.

Theorem 3.3. Assume α satisfies (3.3) and r(t) ≤ 1, ∀t ≥ 0. If I0 ∈ E is such

that 0 ≤ I0(t) ≤ 1, then the operator	 defined by (3.6) has a unique fixed point

I ∈ E(I0). In addition, if

lim sup
t→+∞

r(t) < 1

then there exist C,M,L > 0 such that

I (t) ≤ Ce−Lt , ∀t ≥ M. (3.7)

Proof. We divide the proof into two steps. Let a, b be two real numbers such

that −T − t0 < a < b and consider the set

Ea,b(I0) = {
I ∈ E ; 0 ≤ I (t) ≤ 1, I (τ ) = I0(τ ),

for τ < a, and I (τ ) = 0, for τ > b
}
.
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It is evident that Ea,b(I0) is a nonempty closed subset of E and, for a ≥ 0,

Ea,b(I0) ⊂ E(I0).

We introduce the operator	 : Ea,b(I0) → Ea,b(I0) defined by	[I ](t) = I0(t)

for t ≤ a, 	[I ] = 0 for t > b and

	[I ](t) =
∫ t

t−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
P(t, τ ) dτ. ∀t ∈ ]a, b]. (3.8)

Step 1: Let I, Ĩ ∈ E0,b(I0) and consider the operator 	 defined in (3.8), with

a = 0 and

b = min
{
t0, T

}
. (3.9)

Then, it is easily seen that 	[I ](t)−	[Ĩ ](t) = 0 a.e. in [−T − t0, 0] and

	[I ](t)−	[Ĩ ](t) =
∫ t

0
α(τ)I0(τ − t0)

(
Ĩ (τ )− I (τ )

)
P(t, τ ) dτ,

∀t ∈ ]0, b].
(3.10)

Since 0 ≤ P(t, τ ) ≤ 1 for all (t, τ ) ∈ �, it follows that

∣∣	[I ](t)−	[Ĩ ](t)∣∣ ≤ ‖I0‖‖Ĩ − I‖
∫ t

0
α(τ) dτ (3.11)

for every t ∈ ]0, b]. A recurrent argument using (3.10) and (3.11) gives, for

t ∈ ]0, b],
∣∣	k[I ](t)−	k[Ĩ ](t)∣∣ ≤ 1

k!‖I0‖k
(∫ t

0
α(τ) dτ

)k
‖Ĩ − I‖, (3.12)

from which we obtain easily

‖	k[I ] −	k[Ĩ ]‖ ≤ 1

k!‖I0‖k
(∫ b

0
α(τ) dτ

)k
‖Ĩ − I‖. (3.13)

Choosing k large enough, it follows from (3.13) that 	k is a contraction in

E0,b(I0) and the Banach fixed point theorem assures the existence of a unique

fixed point I1 for 	k in E0,b(I0). More precisely, there exists a unique I1 ∈
E0,b(I0) such that	k[I1] = I1. Since	k+1[I1] = 	k

[
	[I1]

] = 	[I1], it follows
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from the uniqueness that 	[I1] = I1 in E0,b(I0). Moreover, if Ĩ ∈ E0,b(I0) is

such that Ĩ (t) = 0 for all t > 0, then

0 ≤ 	k[Ĩ ](t) ≤
∫ t

t−T
α(τ)I0(τ − t0)P (t, τ ) dτ ≤ r(t)‖I0‖, ∀t ∈ ]0, b],

which implies that, for k ∈ N and t ∈ ]0, b],
I1(t) = 	k[I1](t)

≤ ‖	k[I1] −	k[Ĩ ]‖ + r(t)‖I0‖
≤ 1

k!‖I0‖k
(∫ b

0
α(τ) dτ

)k
‖I1‖ + r(t)‖I0‖.

Taking the limit as k → +∞, we obtain

I1(t) ≤ r(t)‖I0‖, ∀t ∈ ]0, b].

Step 2: We consider now 	 : Eb,2b(I1) → Eb,2b(I1), where b is defined in

(3.9). Then, the same arguments of Step 1 hold and we obtain a fixed point

I2 ∈ Eb,2b(I1) such that
 I2(t) = I1(t), ∀t ∈ [−T − t0, b],
I2(t) ≤ r(t)‖I1‖, ∀t ∈ ]b, 2b].

Arguing by induction, we obtain a sequence of functions {In}n∈N inE(I0)which

satisfies the following properties: for each k ∈ N,
 In(t) = In−1(t) = · · · = Ik(t), ∀n ≥ k, ∀t ∈ ] − T − t0, kb],
Ik(t) ≤ r(t)‖Ik−1‖ ≤ r(t)‖I0‖, ∀t ∈ ](k − 1)b, kb].

(3.14)

If we define

I (t) = lim
n→+∞ In(t),

then it is easily seen that In → I uniformly on the compacts sets of R. Hence,

since

In(t) =
∫ t

t−T
α(τ)In(τ − t0)

(
1 − In(τ )

)
P(t, τ ) dτ,

∀t ∈ [−T − t0, nb],
(3.15)
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we have, after passing to the limit in both sides of (3.15), that I is the unique

solution of (2.13).

In addition, if lim supt→+∞ r(t) < 1, then there exist 0 ≤ ρ < 1 and M > 0

such that r(t) ≤ ρ, ∀t ≥ M . In particular, it follows from (3.14) that Ik0(t) ≤
ρ‖Ik0−1‖ ≤ ρ‖I0‖, for k0 > 1 +M/b and t ∈ ](k0 − 1)b, k0b].

Hence, we have for m ∈ N,

I (t) ≤ ρm+1‖I0‖, ∀t ∈ ](k0 +m− 1)b, (k0 +m)b]

and the conclusion follows with

L = − ln ρ

b
and C = ρ1−k0 �

Remark 3.4. As an immediate consequence of the absolute continuity of the

Lebesgue integral, it follows that I is continuous in the interval ]0,+∞[. In

order to assure its continuity in ] − T − t0,+∞[, it suffices to assume that I0 is

continuous on [−T − t0, 0] and satisfies the following compatibility condition:

I0(0) =
∫ 0

−T
α(τ)I0(τ − t0)

(
1 − I0(τ )

)
P(0, τ ) dτ. (3.16)

Case 2: ‘‘The General Infective Rate’’

In this section we consider the existence and asymptotic behavior of solutions

for Eq. (2.13) without the assumption r(t) ≤ 1. Except for the arguments used

to prove the asymptotic behavior, the existence of solutions in this case can be

obtained with essentially the same proof as in the previous theorem. Indeed,

with the notation introduced before, we have:

Theorem 3.5: Assume α satisfies (3.3). If I0 ∈ E, then Eq. (2.13) has a unique

solution I ∈ L∞
loc

(−T − t0,+∞)
generated by I0.

Proof. We argue as in the proof of Theorem 3.3.

Let a, b be two real numbers such that −T − t0 < a < b and consider the set

Fa,b(I0) = {
I ∈ E ; I (τ ) = I0(τ ), for τ < a, and I (τ ) = 0, for τ > b

}
.
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It is obvious that Fa,b(I0) is a nonempty closed subset of E.

We introduce the operator	 : Fa,b(I0) → Fa,b(I0) defined by	[I ](t) = I0(t)

for t ≤ a, 	[I ] = 0 for t > b and

	[I ](t) =
∫ t

t−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
P(t, τ ) dτ. ∀t ∈ ]a, b].

Repeating the same arguments of steps 1 and 2 in the proof of Theorem 3.3 we

show that 	 has a unique fixed point In ∈ Fnb,(n+1)b, where b is given by (3.9),

satisfying the following properties: for each k ∈ N,

In(t) = In−1(t) = · · · = Ik(t), ∀n ≥ k, ∀t ∈ ] − T − t0, kb].
If we define

I (t) = lim
n→+∞ In(t),

then it is easily seen that In → I uniformly on the compacts sets of R. Since

In(t) =
∫ t

t−T
α(τ)In(τ − t0)

(
1 − In(τ )

)
P(t, τ ) dτ, ∀t ∈ [−T − t0, nb],

(3.17)

we have, after passing to the limit in both sides of (3.17), that I is the unique

solution of (2.13) generated by I0. �

Remark 3.6. It is clear that the setE(I0) is not an invariant set for the operator

	 if r(t) does not satisfy r(t) ≤ 1. For instance, let I (t) = c for all t ≥ −T − t0,

where 0 ≤ c ≤ 1, P(t, τ ) = φ(t − τ), being φ the characteristic function of the

interval [0, T ] and α(τ) = 1. Then

	[I ](t) = c(1 − c)T

and we have 	[I ](t) > 1 if T > 1
c(1−c) . In spite of this, we can show that the

solution I may belong to E(I0). This is proved in the next theorem.

We assume that φ : [0,+∞[ → [0, 1] is such that

i) φ(0) = 1;
ii) φ(ξ) = 0 if ξ ≥ T ;

iii) φ(ξ) is a monotone decreasing function of ξ.

(3.18)
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Theorem 3.7. Assume that α ∈ E, α(t) ≥ 0 and let P(t, τ ) = φ(t − τ), with

φ satisfying (3.18). If I0 ∈ E with 0 ≤ I0(t) ≤ 1, then the solution I of (2.13)

generated by I0 satisfies 0 ≤ I (t) ≤ 1, ∀t > −T − t0.

Proof. We proceed in three steps.

Step 1: In addition to the hypothesis, we assume that

i) α ∈ C([−T − t0,+∞[ )
, α(t) > 0, ∀t ∈ [−T − t0,+∞[,

ii) φ ∈ C1
([0,+∞[ )

, φ′(ξ) < 0, ξ ∈ ]0, T [, φ(0) = 1,

φ(ξ) = 0, ∀ξ ≥ T ,

(3.19)

We prove firstly that, under (3.19), if I0 ∈ C
([−T − t0, 0]) is such that 0 <

I0(t) < 1 in [−T − t0, 0] and I ∈ L∞
loc is the solution of Eq. (2.13) generated by

I0, then 0 < I(t) < 1 for all t > −T − t0.

Indeed, consider

� = {
t ∈ R ; I (t) ≥ 1 or I (t) ≤ 0

}
,

which is a closed subset of [0,+∞ [. If� �= ∅, let t1 = inf �. Since I (t) = I0(t)

for t ≤ 0, then t1 > 0 and 0 < I(t) < 1 for all t < t1.

Suppose that I (t1) = 1. Since we are assuming (3.19), it follows that I (t) is

differentiable for t > 0, t �= t0. In particular, if t1 �= t0, then

dI

dt
(t1) =

∫ t1

t1−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
φ′(t1 − τ) dτ < 0 (3.20)

and we can pick up δ > 0 such that I (t1 − δ) > 1, which is a contradiction.

Besides,

lim
t→t−0

dI

dt
(t) = α(t0)I0(0)

(
1 − I (t0)

)
+

∫ t0

t0−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
φ′(t0 − τ) dτ,

lim
t→t+0

dI

dt
(t) = α(t0)I (0)

(
1 − I (t0)

)
+

∫ t0

t0−T
α(τ)I (τ − t0)

(
1 − I (τ )

)
φ′(t0 − τ) dτ
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and we have the same contradiction if t1 = t0.

Suppose that I (t1) = 0. It follows from the intermediate value theorem for

integrals that there exists τ ∈ ] t1 − T , t1 [ such that

0 = I (t1) = T α(τ)I (τ − t0)
(
1 − I (τ )

)
φ(t1 − τ)

and we have also a contradiction.

Therefore, � = ∅ and we have the conclusion.

Now let I0 ∈ E such that 0 ≤ I0(t) ≤ 1 a.e. in ] − T − t0, 0 [ and I ∈ L∞
loc the

solution generated by I0.

Since C
([−T − t0, 0]) is dense in L1(−T − t0, 0), it follows that, for a given

ε > 0, there exists I ε0 continuous such that 0 < Iε0 (t) < 1 for t ∈ [−T − t0, 0]
and ∫ 0

−T−t0
|I ε0 (t)− I0(t)| dt < ε.

If we denote by I ε the solution of Eq. (2.13) generated by I ε0 , then 0 < Iε(t) < 1

for t > 0. Moreover, if 0 < t ≤ b, we have

|I ε(t)− I (t)| ≤ 3‖α‖ε + ‖α‖
∫ t

0
|I ε(s)− I (s)| ds.

From the Gronwall inequality we get

|I ε(t)− I (t)| ≤ 3‖α‖ε exp
(‖α‖b).

Then, I ε converges to I as ε → 0, uniformly in [0, b], and we have, in particular,

0 ≤ I (t) ≤ 1 ∀t ∈ [0, b].
Arguing by induction on the intervals [kb, (k + 1)b], k ≥ 0, we conclude that

0 ≤ I (t) ≤ 1 for t > 0.

Step 2: In addition to the hypothesis, we assume that

α ∈ C([−T − t0,+∞[ )
, α(t) > 0, ∀t ∈ [−T − t0,+∞[. (3.21)

Let I ∈ L∞
loc be the solution of Eq. (2.13) generated by I0. For ε > 0 given, we

can construct (for instance, by smoothing step functions) a function φε satisfying
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(3.19)-(ii) and such that ∫ T

0
|φε(s)− φ(s)| ds < ε.

Let I ε ∈ L∞
loc be the solution of Eq. (2.13) (with Pε(t, τ ) = φε(t − τ)) generated

by I0. It follows from step 1 that 0 ≤ I ε(t) ≤ 1, for all t > 0.

Besides, if 0 < t ≤ b, we have

|I ε(t)− I (t)| ≤ 2‖α‖ε + ‖α‖
∫ t

0
|I ε(s)− I (s)| ds.

Hence, the Gronwall inequality implies I ε → I as ε → 0, uniformly on ] 0, b],
and we have the same conclusion as in step 1.

Step 3: Let I be the solution of Eq. (2.13) generated by I0. Since we are

assuming α ∈ E, for each ε > 0, we can construct a function αε satisfying

(3.21) and such that∫ nb

(n−1)b
|αε(s)− α(s)| ds < ε, ∀n ∈ N.

Then, the same arguments of step 2 allows to show that 0 ≤ I ≤ 1 for all t > 0

and this completes the proof. �

Remark 3.8. Concerning the asymptotic behavior of the solutions of Eq. (2.13),

it should be noticed that, if r(t) is defined by (3.4) and satisfies

lim
t→+∞ r(t) = ρT , (3.22)

we expect to have the following global asymptotics for the solution I generated

by 0 ≤ I0 ≤ 1:

lim
t→+∞ I (t) =


0 if ρT < 1,

1 − 1/ρT if ρT ≥ 1.
(3.23)

Actually, ρT < 1 is a particular case of Slow Infective Rate and the asymptotic

behavior is obtained in Theorem 3.3.
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Although it seems to be difficult to prove the global behavior (3.23) in general,

some simple evidences can be obtained in the special case where P(t, τ ) =
φ(t − τ), with φ satisfying (3.18) and α(t) ≡ α is constant. Indeed, it is easily

seen that, in this case we have ρT = α
∫ T

0 φ(τ) dτ and

I (t) ≡ 0 and I (t) ≡ 1 − 1/ρT (3.24)

are the only stationary solutions of Eq. (2.13).

Assuming that I∞ is one of the stationary solutions of Eq. (2.13) and consid-

ering I (t) = I∞ +X(t), the solution generated by I0(t) = I∞ +X0(t), we have

for t > 0

X(t) = α(1 − I∞)
∫ t

t−T
X(τ − t0)φ(t − τ) dτ

− αI∞
∫ t

t−T
X(τ)φ(t − τ) dτ (3.25)

− α

∫ t

t−T
X(τ − t0)X(τ)φ(t − τ) dτ.

Discarding all but linear terms in Eq. (3.25), we obtain the linear integral equation

X(t) = L[X](t), (3.26)

where

L[X](t) = α(1 − I∞)
∫ t

t−T
X(τ − t0)φ(t − τ) dτ

− αI∞
∫ t

t−T
X(τ)φ(t − τ) dτ.

The behavior of solutions of (3.26) can be studied in terms of its associated

characteristic rootsλ ∈ C. More precisely, assumingX(t) = eλt and substituting

in (3.26) we obtain the characteristic equation

α(1 − I∞)e−λt0
∫ T

0
e−λτφ(τ ) dτ − αI∞

∫ T

0
e−λτφ(τ ) dτ = 1. (3.27)

Lemma 3.9. We assume that r(t) satisfies (3.22) with ρT > 1. Then the

characteristic equation (3.27) has a unique real solution λ satisfying:

a) λ > 0 if I∞ = 0;

b) λ < 0 if I∞ = 1 − 1/ρT .
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Proof. Let f : R → R be the function defined by

f (λ) = α
[
(1 − I∞)e−λt0 − I∞

] ∫ T

0
e−λτφ(τ ) dτ. (3.28)

If I∞ = 0, then (3.28) is given by

f (λ) = αe−λt0
∫ T

0
e−λτφ(τ ) dτ.

and it is easily seen that f (λ) is positive, monotone decreasing and satisfies:

lim
λ→−∞ f (λ) = +∞, lim

λ→+∞ f (λ) = 0. (3.29)

Since f (λ) is a continuous function, there exists a unique λ satisfying equation

(3.27). Since f (0) = ρT > 1, we conclude that λ > 0 and a) is proved.

If I∞ = 1 − 1/ρT , then (3.28) is given by

f (λ) = α

[
1

ρT
(e−λt0 + 1)− 1

] ∫ T

0
e−λτφ(τ ) dτ

and the limits in (3.29) hold. Moreover, f (λ) is positive and monotone decreasing

in the interval

−∞ < λ ≤ ln

(
1

ρT − 1

)1/t0

and negative elsewhere. Since it is continuous, there exists a unique

λ < ln

(
1

ρT − 1

)1/t0

(3.30)

such that f (λ) = 1. In order to prove that λ < 0, we distinguish two cases.

If ρT ≥ 2, then ln(1/(ρT −1))1/t0 ≤ 0 and the conclusion follows from (3.30).

If 1 < ρT < 2, then 0 < f (0) = 2 − ρT < 1 = f (λ) and the conclusion

follows from the monotonicity of f . �
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Remark 3.10. The condition a) in Lemma 3.9 is sufficient to assure the in-

stability of the stationary solution I∞ = 0 in the case ρT > 1. On the other

hand, although the condition b) is necessary to have the local asymptotic stabil-

ity of I∞ = 1 − 1/ρT , we do not have a precise characterization of the possible

complex roots of Eq. (3.27) (see [3, 8, 7]).

The next theorem concerns the continuity of solutions of Eq. (2.13) with respect

to the parameter t0.

Theorem 3.11. Assume α and P satisfying (3.3) and (2.2) respectively. Let

{tn}n∈N be a sequence of positive real numbers such that tn → t0 (t0 > 0) as

n → +∞. Let I0 ∈ L∞(−T − δ, 0) be a function satisfying 0 ≤ I0(t) ≤ 1,

where δ = sup{tn ; n ∈ N}. If I n ∈ E(I0) is the solution of

In(t) =
∫ t

t−T
α(τ)In(τ − tn)

(
1 − In(τ )

)
P(t, τ ) dτ (3.31)

generated by I0, then I n → I uniformly on the compacts of [0,+∞[, where I

is the solution of (2.13) generated by I0.

Proof. We have from the previous results that, for each n ∈ N, there exists a

unique solution I n of Eq. (3.31) generated by I0, such that 0 ≤ I n(t) ≤ 1 a.e. in

the interval ] − T − δ,+∞ [. In particular, it follows that {I n}n∈N is a bounded

subset of the Banach space C
([0, R]; R

)
, for each R > 0.

Moreover, for t > 0 and h > 0 we have

∣∣I n(t + h)− I n(t)
∣∣ ≤

∫ t+h

t

(
α(τ)+ α(τ + T )

)
dτ

and the absolute continuity of the Lebesgue integral implies that {I n}n∈N is an

equicontinuous subset of C
([0, R]; R

)
.

Fixing R > 0, we have from the Arzelà-Ascoli theorem that there exist a

subsequence {nk}k∈N and a function IR ∈ C([0, R]; R
)

such that

lim
k→∞ I nk = IR uniformly on [0, R].
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Defining IR(τ ) = I0(τ ) for τ < 0, we can write for t > 0

Ink (t) =
∫ t

t−T
α(τ)

[
Ink (τ − tnk )− IR(τ − tnk )

](
1 − Ink (τ )

)
P(t, τ ) dτ

+
∫ t

t−T
α(τ)IR(τ − tnk )

(
1 − Ink (τ )

)
P(t, τ ) dτ.

(3.32)

Passing to the limit as k → ∞ in both sides of (3.32) we have

IR(t) =
∫ t

t−T
α(τ)IR(τ − t0)

(
1 − IR(τ )

)
P(t, τ ) dτ

and we conclude from the uniqueness of solutions (see Lemma 3.1) that the full

sequence {I n} converges uniformly to IR. Since R > 0 is fixed arbitrarily, the

proof is finished. �

Remark 3.12. Although we are tacitly assuming that t0 > 0 in Theorem 3.11,

it is interesting to point out that the conclusion is also true in the case tn → 0+.

Indeed, the Eq. (2.13) with t0 = 0 has a unique global solution generated by

0 ≤ I0 ≤ 1 and the same arguments in the proof Theorem 3.11 hold.

4 Numerical results and conclusions

In order to perform numerical calculations in the absence of previous statistical

data, we have to propose a certain infection-rate function g(t) for the interval

−T − t0 ≤ t ≤ 0. It has not to be a realistic function, since our purpose in this

section is to illustrate the salient features of the time evolution process and not to

reproduce or to predict actual situations in a realistic fashion. For this purpose,

we consider the simplest case of a constant infection-rate function g(t) = I0/T

for t ∈ [−T − t0, 0], where I0 represents the density of infective computers

at t = 0. Furthermore, the contact-rate factor α(τ) was also considered as a

constant and the probability of a computer infected at τ to remain infectious at

t was chosen as P(t, τ ) = φ(t − τ), where φ is the characteristic function of

the interval [0, T [, or equivalently, P(t, τ ) = H(t − τ)−H(t − τ − T ), where

H(ξ) is the Heaviside step function.

Figure 1 shows a typical ‘‘slow infective rate case’’ for which, under our

oversimplified considerations, αT < 1. The graph presents singularities in the
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interval [0, t0 + T ] due to the arbitrary choice of initial data but, as it can be

seen, the infection process is self controlled, tending to disappear for increasing

t values. On the other hand, Fig. 2, 3 and 4 show the more complex situation of

typical ‘‘fast infective rate cases’’ αT > 1. In each case, strong (but damped)

oscillations would appear for αT large enough. Nevertheless, an equilibrium

point I∞ = (αT − 1)/αT is attained for t → +∞, characterizing an endemic

situation.
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P(s)=H(s)−H(s−T):  T=2, to=1, alfa=0.45

Figure 1 – Density of infected computers as a function of time in a slow infective rate

case. We consider g(t) = I0/T = 0.3 for t ∈ [−T − t0, 0], α = 0.45, t0 = 1, T = 2

and P(t, τ ) = φ(t − τ), where φ(ξ) is the characteristic function of [0, T [. Notice

that in this case, the infection process affecting the system tends to disappear for t large

enough, in agreement with the previous results.

As it was shown in the previous section, the stationary solution I∞ = 0 is an

asymptotically stable solution for ρT = αT < 1. This means that when such a

condition holds, the introduction of a few infected computers into an infective-

free population won’t give rise to an epidemic outbreak and also no endemic

situations will be developed, i.e., the infection will vanish along the time.

We consider that, in spite of its inherent limitations because of the strong
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hypothesis included, the present work constitutes a first attempt to explain the

virtual virus propagation process in a system of interacting computers and re-

veals some features. These result, we hope, could stimulate future researches in

such a current problem. At present, we are engaged in the developing of more

sophisticated models in order to take into account immunity factors (the exis-

tence of vaccines) as well as to include the spatial dependence of the infectious

process. Results in this direction will be published elsewhere.
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Figure 2 – Density of infected computers as a function of time in a fast infective rate

case. Here g(t) = I0/T = 0.3 for t ∈ [−T − t0, 0], α = 4.0, P(t, τ ), t0 and T are the

same as in Figure 1. An equilibrium endemic situation (I∞ = (αT − 1)/αT ) is attained

when t → ∞, as can be seen from the figure. This last behavior seems to be a general

one for αT > 1, because using different parameters in numerical calculations we have

always obtained such a result.
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Figure 3 – The same as in Figure 2, with α = 9.0 and α = 15.0 respectively.
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