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Abstract. A Lavrentiev prox-regularization method for optimal control problems with point-
wise state constraints is introduced where both the objective function and the constraints are regu-
larized. The convergence of the controls generated by the iterative Lavrentiev prox-regularization
algorithm is studied. For a sequence of regularization parameters that converges to zero, strong
convergence of the generated control sequence to the optimal control is proved. Due to the prox-
character of the proposed regularization, the feasibility of the iterates for a given parameter can

be improved compared with the non-prox Lavrentiev-Regularization.
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1 Introduction

In the applications modelled by optimal control problems, pointwise state con-
straints are important since often, practical considerations require certain re-
strictions on the state. Unfortunately, for problems of pde-constrained optimal
control with state constraints, in general the corresponding multipliers are not
contained in a function space but only given as measures (see [1]). In order
to obtain regular multipliers, the Lavrentiev regularization has been introduced,
that transforms the pure state constraint to a mixed state-control constraint. This
method is studied for example in [5, 7, 8, 9, 11] and in the references cited
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232 LAVRENTIEV PROX-REGULARIZATION FOR STATE CONSTRAINTS

there. We do not claim to give a complete list of references about this subject
here but want to mention in particular the paper [12], where problems of optimal
boundary control are studied and the references therein. Due to the regular-
ization, for the regularized auxiliary problems that are control problems with
mixed pointwise control-state constraints multipliers with L2-regularity exist,
see [13].

In the (non-prox) Lavrentiev regularization there is a single real-valued regu-
larization parameter A > 0. For each parameter A, an auxiliary problem with a
mixed state-control constraint is defined. To obtain convergence, this Lavrentiev
regularization parameter A must converge to 0+. However, as A decreases the
problems become more and more difficult to solve. For each fixed A > 0 in
general the generated controls are infeasible for the original problem.

In this paper we introduce a Lavrentiev prox-regularization method where for
a given parameter value A, the feasibility is improved. In our regularization apart
from the real-valued regularization parameter A a control function appears as a
second regularization parameter in the state constraints. If the zero control is
chosen, the non-prox Lavrentiev regularization is obtained. During the algo-
rithm, this control parameter is updated iteratively. Moreover, in our method
also a regularization parameter € > 0 appears in the objective function in the
same way as in the classical prox-regularization algorithm (see for example [10,
4]. We show that for a sequence of regularization parameters (1, €;) converg-
ing to zero, the new algorithm where the control regularization parameter is
updated iteratively generates a sequence of controls that converges with respect
to the L2-norm to the optimal control.

We start by considering the elliptic optimal control problem with pointwise
state constraints and pointwise control constraints (section 2) and the corre-
sponding Lavrentiev prox-regularization (section 3). Then we turn to the elliptic
optimal control problem with pointwise state constraints only (section 4) and the
Lavrentiev prox-regularization (section 5) for this problem.

At the end of the paper we present examples where we compare the conver-
gence of the Lavrentiev prox-regularization method with the non-prox Lavren-
tiev regularization. We give two numerical examples where the Lavrentiev prox
iteration converges faster than the non-prox Lavrentiev regularization.
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MARTIN GUGAT 233

2 The Elliptic Problem with pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-
straints and L °°—control constraints.

Let N € {2,3,4,...}and @ C R" be a bounded domain with C%! boundary
[". Let a desired state y; € L*°(2) be given. Let a real number « > 0 be given.

Define the objective function

1
J(y,u) = Efg(y—yd)zdx—l—gfgu(x)zdx.

In addition, let control bounds u,, u, € L°°(£2) be given such that u, < u,
on 2. Let state bounds y,, y, € L*>(f2) be given such that y, < y; almost
everywhere on Q2. Let 9, denote the normal derivative with respect to the out-
ward unit normal vector. As in [2], let 4 an elliptic differential operator of the

form
N

Ay = — Z 8)6‘/ [aijax;y] + aoy
i,j=1

where the coefficients a;; belong to C () and satisfy the inequality

N
mlEl* < > ay(0)&EE < M €|
ij=1
forall £ € RY and for all x € Q for some M > 0, m > 0 and ay € L" () is not
identically zero with » > Np/(N + p) for some fixed p > N, ap > 0 in Q.
Define the following elliptic optimal control problem with distributed control,

pointwise state constraints and pointwise control constraints:

minimize J(y, u) subject to

9,y =0 inT

Q) A4y =u inQ (1)
Ya =y =yp InQ

U, <u <uy in Q.

Note that for a solution u, of Q, we have u, € L>*().
As in [5], the notation G is used for the control to state map that gives the
state y as a function of the control u, G: L?(2) — H'(R2). The notation S is
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234 LAVRENTIEV PROX-REGULARIZATION FOR STATE CONSTRAINTS

used for the control to state map as an operator L>(Q) — L?(Q) which is the

composition of G and the suitable embedding operator.

3 Lavrentiev Prox Regularization

For u € L?*(R2) define K (u) = J(G(u), u). Let the Lavrentiev regularization
parameter A > 0 and the prox-regularization parameter ¢ > 0 and v € L*°(Q2)
be given. We consider the regularized problem

minimize K (u) 4+ § [,(u — v)*dx subject to
Qv Vo =Au—v)+Gu) <y, inQ (2)
U, <u <up in Q.

Let v, denote the optimal value of Q, and v(}, €, v) denote the optimal value
of Q; . ,. Let F, denote the admissible set of Q and F'(A, &, v) denote the
admissible set of Q;, ¢ .

If v € F, is a solution of Q, ., then

Ve < K() =v(A, e, v).
Moreover, if u, is the solution of Q we have
Ve = K(uy) > v(A, &, uy).

We consider the following

Lavrentiev Prox-Regularization Algorithm:

Start: CHOOSE u; € L*°(2) AND A; > 0 AND g¢; > 0.
Step k: GIVEN u; € L*(§2) AND Ay > 0 AND g > 0, SOLVE Qy, ¢4y -
DEFINE w41 AS THE SOLUTION OF Qy, ¢ u;-
CHOOSE Ag41 € (0, A, €41 € [0, €.
GO TO STEP k + 1.

For the convenience of the reader, we also describe the (non-prox) Lavrentiev
regularization algorithm that has been considered in the literature for example
in[5,7,8,9,11]:
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(non-prox) Lavrentiev Regularization Algorithm:

Start: CHOOSE A1 > 0.
Step k: GIVEN A; > 0, SOLVE Qy, 0.0-
CHOOSE Azyq € (0, Ag].
GO TO STEP k + 1.

3.1 Uniform boundedness of the feasible sets of Q;. ¢,

Due to the pointwise control constraints, the feasible points of Q; ., are uni-
formly bounded in L*>°(2):

Lemma 3.1. Letu € F(A, ¢, v) be a feasible point of Q; ¢ . Then
lull ooy < max{llugllLoe(g), llupllLe)}-

3.2 Well-definedness and convergence of the generated sequence

In this section we study the convergence of the solutions (uy); for &k — oo.

Theorem 3.2. Assume that there exists a Slater control n € L*°(2) and € > 0
such that

=
"I'\I
IA
Q =

(1) < y» — € almost everywhere on Q.

Define M = max{|lugllzo), llupllr~}. Let p € (0, 1). Assume that in each
step, Ay is chosen such that h, < 1 and },'™F < &/(2M). Then Q has a
solution, the Lavrentiev prox-regularization algorithm is well-defined, and if

limy_, o0 A = 0 and limy_, o &x = 0 we have
li — U, = 0. 3
kl)ngo lur — wsll 2 3)
Moreover, there exists a constant Cyy > 0 such that for all k
[V (hk, €k, ug) — Vil < Crohy + o(gp). 4)
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236 LAVRENTIEV PROX-REGULARIZATION FOR STATE CONSTRAINTS

For a real number z we use the notation z, = (z + |z|)/2. Hence we have

zy = max{z, 0}. For the constraint violation we have the upper bound

(G (upy1) — yb)+||L2(SZ) + e — G(uk+1))+||L2(Q)

< M llugrr — urllz2@) = 0(Ak).

Proof. First we show the existence of a solution of Q. Since 7 is feasible for
Q, we have v, < oo. Let (m;); denote of minimizing sequence for Q, that
is the points m; € L*(Q) are feasible for Q and lim;_, o, K (m;) = v,. Since
the sequence (my); is bounded in L*°(£2), we can choose a subsequence that
converges weakly™* in L*°(£2) to alimit pointu € L°°(2). Then this subsequence
converges also weakly in L?(2) to i. Since the subsequence converges weakly
in L?(2), we have v, = liminfy_ . K(m;) > K(i1). Moreover, the weak*
convergence in L*°(£2) implies that u is feasible for Q. Hence u« is a solution
of Q. Due to the strong convexity of the objective function, this solution is
uniquely determined.

Now we consider the sequence (u;) generated by the Lavrentiev prox-regu-
larization algorithm. Due to the control constraints, this sequence is bounded.
Choose p € (0, 1). Define 7, = A;” and the function vy = (1 — t)u, + 7Y
where u, denotes the solution of Q. Then u, < v, < u; and we have

G (vg) + Ak (vk — uy) (I = )G (uy) + 7 G (1)

+ (1 — ) (s — ug) + (M — ug))
< (I=wyp+0p —€)

+ (I —g)A2M + 1A 2M

< yp— Th€ + A 2M

< yp—MPe+ E)Lf = Vp.

On the other hand, we have G (vi) + A (vr—uy) > y,. Hence v, € F(Ag, &, uy).
This implies that the iteration is well defined.

Now we assume that the sequences (A;); and (&), converge to zero. Then we
have 7, — 0 and thus lim_, o [|vx — ||z~ = 0. Thus we have

limsup v(he, &k, ug) < limsup K (vp) + (ex/2) v — uil32q,

k—o00 k—o00

= K(uy) = v,.
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Let u € L°°(R2) denote a weak™ limit point of the sequence (u;);. Then u € F,
and we have

K(u) < liminfv(dg, g, up) < v,.
k— o0

Since u € F,, the uniqueness of the solution of Q implies &z = u,. Hence the

sequence (u;); converges weakly™* to u,. This implies the equation
kli)ngo(K/Z) lurl7og = kli)rgo K@) = (1/2)1S W) = yall 72
- (8k/2)||uk — Uf—1 ||iZ(Q)
= K@) — (1/D))S0) = yall7ag — 0
= (K/z)”u*”iZ(Q)
Note that the convergence of (||u |l 12(q))k tO [|te« | 12(q) is also an immediate con-
sequence of the compactness of the solution operator .S and the weak convergence
of u;, to u,, with respect to the L>(S2) topology.
The weak convergence of uy, to u, in L*(2) and the convergence of the norms
imply limy, oo [lug — t4ll2¢q) = 0.
There exists a Lipschitz constant C > 0 such that for all points vy, v, € L*°(L2)

with vl p~@ < M and |va|lL=@ < M, respectively we have K (v;) <

K (v2) + Cllvy — vi]l12(q)- Hence we have

Vs &6 ) = K(Quipn) + (60/2) Nty — urlyzq)

K (u) + (61/2) llog — g7

K () + Cllog = usll 2@y + (6/2) Iog — uil 2,
vy + C1y (I|u*”L2(Q) + ||ﬁ||L2(52))

+ (e6/2) (k= tall 2y + itk — tall o))

< v AV (Q) 2MC + o(ep)

where u(Q2) = fQ ldx. Forall k > 1, the point @15y = (1 — T)upy + T is

IA |

IA

in F,. Hence

Ve =< K(is1)
< K@) + Cllitgr — wpst 2@ + (€4/2) luger — il
< V(i &k up) + Cr(llugprllzz) + I0ll22@)
< VO, & w) + CMP V() 2M.

Comp. Appl. Math., Vol. 28, N. 2, 2009



238 LAVRENTIEV PROX-REGULARIZATION FOR STATE CONSTRAINTS

Define Cyg = 2M C+/1(2). Then (4) follows.

To obtain the bound for the constraint violation we have used the fact that the
lower and the upper state bound cannot be violated simultaneously, hence for all
controls u the sets M] = {x € Q : (G(u) — yp)(x) > 0} and M, = {x € Q :
(va — G(u))(x) > 0} are disjoint. On the set M; we have (G (uyr1) — yvp)y <

Aklugs1 — ug| and on the set M, we have (v, — G(ugs1))+ < Apluger — ugl.
Since M| U M, C < the assertion follows by integration. O

Remark 3.3. Note that we have the inequality

Ve — K(ugy1) < v — K1) + Cllitgyr — ugrall 2
< 0+ Cllatgr — wir1ll 2
< 0+ Cu(lursilip2e + 17ll2)
< MV (@) 2M.

where the prox-parameter ¢ does not appear explicitly. Hence for the optimal

value we have the upper bound
Vi < K(ups1) + CrP /10 (2) 2M.

4 The Elliptic Problem without pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-
straints. Here no L°°(£2)—control constraints are present.

Let N € {2,3} and Q C R" be a bounded domain with C%' boundary T.
Let a desired state y; € L°°(2) be given. Let a real number « > 0 be given.
Define the objective functions J(y, u) and K (1) as above. Let state bounds y,,
yp € L*(L2) be given.

Define the following elliptic optimal control problem with distributed control
and pointwise state constraints

minimize J(y, ) subject to
d,y=0inT

Ay =u inQ

Ya =y =yp nQ.

P (%)
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As in [5], the notation G is used for the control to state map that gives the state
as a function of the control, G : L?(R) — H'(22) N L>(). The notation S is
used for the control to state map as an operator L>(Q) — L?(Q) which is the
composition of G and the suitable embedding operator.

5 Lavrentiev Prox Regularization

Let the Lavrentiev prox-regularization parameters A > 0, € > 0and v € L*°(Q2)
be given.

We consider the regularized problem

minimize K (1) + § [,(u — v)*dx subject to

p
BV <A —v) + G) < yp in Q.

(6)

Let w, denote the optimal value of P, and w (A, €, v) denote the optimal value
of P, .,. Let F, denote the admissible set of P and F (X, €, v) denote the
admissible set of P; ..

Concerning the regularity of the multipliers corresponding to the inequality
constraints in P, ,, we can apply Theorem 2.1 in [5] that states that we find
multipliers in the function space L?(£2).

We consider the following

Lavrentiev Prox-Regularization Algorithm:

Start: CHOOSE u; € L*°(2) AND A1 > 0 AND ¢; > 0.
Step k: GIVEN u; € L*°(2), Ax > 0 AND € > 0, SOLVE Py, ¢, 4, -
DEFINE u4; AS THE SOLUTION OF Py, (, 4.
CHOOSE Agy1 € (0, Ax] AND €41 € [0, €.
GO TO STEP k + 1.

As far as the regularization of the objective function is concerned, this algorithm
is related to the prox-regularization as considered in [10, 4]. The difference is
that for our state-constrained problem regularization terms appear both in the
constraints and in the objective function.

In our discussion we use the choice #; = 0. First we show that the iteration is

well-defined. For u; = 0 problem P;, ., ., is of the form studied in the papers
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240 LAVRENTIEV PROX-REGULARIZATION FOR STATE CONSTRAINTS

about Lavrentiev regularization [9, 7, 6], hence the corresponding existence
results are applicable. As in Section 3, the non-prox Lavrentiev-Regularization
corresponds to the definition of the regularization parameters w1 = 0, €41 = 0
for all £ > 0, that is the non-prox Lavrentiev-Regularization is the algorithm:
In step k solve P;, ¢.0.

In step &, the function u; | satisfies the state constraint

Va < M(upgr —up) + G(uggr) < yp in Q.
Hence uy; € L*°(2) and the function
i = w1 + Qur I+ 8) " A (g — up)

is feasible for Py, .., .us,,- Therefore the iteration is well-defined.

5.1 Properties of Al + S.

The following Lemma states that (|[A(A] + S)7!||);~0 is uniformly bounded.
Moreover, the operators converge pointwise to the zero operator for A — 0.

We use this Lemma in Example 2.

Lemma 5.1. Let || S| denote the operator norm of S as a map from L*(Q) to
L*(Q). For all » > 0 we have the inequality

IGI + )7 < (7

> —

Letu € L*(), u # 0 and let Ay > 0 with limy_, oo Ay = 0. Then

Ml A + S)_lu”LZ(Q) < lullz2e), klgfolo Mcll A + S)_IUHLZ(Q) = 0.
Proof. See [5].

5.2 Boundedness of the generated sequence

The iteration of the Lavrentiev prox-regularization method generates a bounded
sequence if the regularization parameters are chosen sufficiently small. This can

be seen as follows:
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Lemma 5.2. Assume that there exists a Slater control n € L*°(2) and € > 0
such that
YVate€<GMm) <yp—€

on Q2. Assume that in each step, Ay is chosen such that
Ml — ugll L@y < €. 3)
Assume that in each step, € is chosen such that the sequence
(Gk”ﬁ - uk||L2(sz))k )

is bounded. Then the sequence (uy); generated by the Lavrentiev Prox-Regular-
ization Algorithm is bounded in L*(2).

Remark 5.3. Note that the conditions (8) and (9) can easily be satisfied during
the iteration by choosing A; and ¢, sufficiently small since the functions 7 and

uy are known.

Proof. For all £ we have the inequalities

G +ra(n—ur) < yp—€+€=ymw,
G +r(n—ur) > y+e—€e=y,

hence n € F (A, €, uy) which implies the inequality

K 2 < K €k 2
5 ||uk+1 I|L2(Q) = (uk+]) + E ||le — Ujy ||L2(Q)

IA

- €k -2
K(’?) + 5”1/{]{ - 77||L2(Q)

and the assertion follows due to the boundedness of the sequence in (9). O
5.3 Convergence of the generated sequence

We study now the convergence of the sequence (u;); generated by the Lavren-
tiev Prox-Regularization Algorithm.
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Theorem 5.4. Assume that the solution u, of P is in L°°(2) and that there
exists a Slater control n € L*°(R2) and € > 0 such that

Vot €=G) =y —¢€

on Q. Let p € (0, 1) be given. Assume that in each step, A € (0, 1) is chosen
such that

MU — il <& (10)
M TPy —wellpe @) <€ (11)
Assume that in addition the sequence (ekllﬁ — uklle(Q))k is bounded.
If limg_ oo Ay = 0 and limy_, , €, = 0 we have
li — Uy =0. 12
ki)ngo leey —u ||L2(Q) (12)

For the constraint violation we have the upper bound

(G Wis1) — o)+l + 1e — Gir1))+ 11220

< A lluggr —urll 2@ = o).

Remark 5.5. Condition (10) can easily be satisfied during the iteration by
choosing A sufficiently small since the functions 1 and u; are known. Con-
dition (11) can be satisfied if an a priori bound for ||u.| ;=) is known. For
the problem with additional pointwise control constraints, this problem does not
occur, see section 2.

Lemma 5.4 states that if the A; and the ¢, decrease sufficiently fast we obtain

convergence.

Proof. Since (10) holds and A; < 1, condition (8) also holds, hence since in
addition condition (9) holds Lemma 5.2 implies that the sequence (||u|l;2(0))k
is bounded.

Let ii denote a weak limit point in L2(2) of the sequence (u4);. Then i € F,.
Moreover, we have the inequality

w, < K@) <liminf o (Mg, €, uy).
k—o00
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Define 7, = A;? and the function v, = (1 — t;)u, + 1. Then we have

G + Mk —up) = (1 —1)Guy) +1uG1n)
+ A((d = ) (uye — ug) + T ( — uy))

< A=ty +1(p—€)
ny [(1 Ml rk,\f‘lé]
= yp—Me+nalle
= ,Vb-
On the other hand, we have
Gp) + (v —up) = (1 —1)Guy) +1uG1n)
+ A (I — ) (uy — ug) + (N — ug))
> (I=m)ys+w%Wa+€)

— M [ = ML TTE+ T E]

= Yo+ MPE— A MPTlE
= Ya-

Hence vy € F(Ak, €, ux). Moreover, limy_, o [|[vx — x|z = 0. Thus we

have
limsup w (Ag, €, ug) < limsup K (vg)
k—o00 k— o0
= K(u,) = w,.

Hence we have lim;_ oo @ (Ag, €, uy) = w,. This implies that K (&) = w,.
Since # € F,, the uniqueness of the solution of P implies # = u,. Hence the
sequence (uy); converges weakly to u,.

As in the proof of Theorem 3.2 we obtain (12).

For all £ we have the inequalities

Grr) —yp = Ae(ug — ugs1)

Va— Glurs1) = Mg — up).
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This implies the L2-bound for the constraint violation

(G Wit1) = yo)+llz2) + 1Ve — G Ur+1))+ 1l 22
< Mllugsr — uill 2 (13)

0

In Theorem 5.4 we have stated that by = A |lusi1 — x|l 2(q) 1s a bound for the
constraint violation. In the non-prox Lavrentiev-Regularization (In step & solve
P;, 0,0) we have the corresponding bound #, = A |lux111l,2(q) that satisfies the

inequality
(G i) — yo) 2@ + 1va — Gk )+l 12¢) < & (14)

Ifu, # 0and |Juy — u.ll 2 — 0 we have the inequality

. I . by
kll)ngo )»_k = lusll2@@ > 0= kli)ngo)h—k (15)

which indicates that at least asymptotically, the Lavrentiev prox-regularization

method yields smaller bounds for contraint violation.

6 Examples

In this section we study two examples that allow to compare the performance of
the Lavrentiev prox-regularization method and the non-prox Lavrentiev regular-
ization method.

Example 1. Consider a problem P, where for the optimal control we have
u, € L°°(2) and both inequality constraints are not active, that is we have
Va < G(u,) < yp in the sense that

ess ir§12f(ya — G(uy)) >0, ess iréf(G(u*) —yp) > 0.

In this case, u, is an unconstrained local minimal point of K and the convexity
of K implies that w, = K(u,) = min,c;2q) K(u). Letv € L?(2) be given.
Since F(X, €, v) C L?(R), for all A > 0 we have the inequality

wA, e, v) = min K@) > min K@) = K(u,).
ueF(x, e, v) uel?()
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Since u, € F(\, €, u*) we have w(X, €, u,) < K(uy,) = w,, hence in this

case w(A, €, uy) = w,. Thus with the choice u; = u,, the Lavrentiev prox-

regularization method generates the constant sequence u;, = u, for all £ and all

Ar > 0, € > 0, even if the sequences (A;), (€x)r do not converge to zero.
More generally, we have u, € F (g, €, uy) if

m{ essinfo(y, — G(uy))  essinfo(G(u,) — yb)}
lug — usllzo lue — usll L) .

M <
In this case
e < OOk, €k, ugp) < K + (6/2)lug — usll* = ox + (5/2) lug — .|

If ¢, = 0, this yields w, = w(Ag, €, ux), hence in this case uy solves Py, ¢, u,-
If €, > 0, the method reduces to a classical prox regularization for problem P,
where the constraints are not regularized. For the non-prox Lavrentiev regu-
larization method, u, is the solution with the parameter A, if u, € F (), 0, 0)
which is the case if

. { essinfo(y, — G(uy))  essinfo(G(u,) —yb)}
Ar < min .

”u*”LO"(Q) ’ ||M*||L°°(sz)
If |l — upllzoo@) < llusllzo(q) and €, = 0, the Lavrentiev prox-regularization
method can find u, with larger parameter values A; than the non-prox Lavren-

tiev regularization.

Example 2. Consider a problem P, where for the solution both inequality
constraints are active almost everywhere in €2, that is we have y, = G(u,) = yp
and the Slater condition is violated. Assume that y, € C?(R) satisfies the
boundary conditions 9, y, = 0 in I". In this case, we have S(u,) = y,.

The non-prox Lavrentiev regularization method computes the solution 2, P £ of
P;, 0.0 for which we have the following equation: (Ax/ + Gulrf k41 = Ya. Hence
Oed + )]y — us) = ya — Mty — Yo = — it

This yields

uply = ue = =2 O + 8)™ s,

hence if A, — 0 due to Lemma 5.1 we have

lim [|uY —u = lim |AcOed + )"l = 0.
P Il k1 *“LZ(SZ) e | Ak Ak ) *||L2(Q)
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The Lavrentiev prox-regularization method computes the solution u;,; of

P, <., for which we have the following equation: (Ax! 4+ G)ugs1 — Aglty = Vq.
Hence we have (A1 + S) (g1 —ty) = Vo + Mgty — Aty — Vo = (g — uy).
Thus if u;, # u, we have due to Lemma 5.1

-1
ki1 — u*”LZ(Q) = A d +8)7 (uy — u*)”LZ(Q) < lup — u*”LZ(Q)

(see the proof of Lemma 5.1) hence the algorithm generates a bounded sequence
with strictly decreasing distance to u, also if (A;); does not converge to zero.
We have (Al + S) (U1 — us) — Agup = — iy, hence if oy — 0 we have

klglgo Il {2tk —)»k()»k1+5)7luk]—u*”LZ(Q) = klin;o ||)\k()‘k1+S)71u*”L2(Q) =0.

Example3. Letk =0,4=—Ay+y,ys=land J(y,u) = (1/2) [o(y —
1)2dx. Choose y, = 0, y, = 1. Then the optimal control that solves P is u, = 1
and we have w, = 0.

For all A > 0 we have the inequality

Sy) +du, =141 > Vb,

hence u, is infeasible for the auxiliary problem P (A, 0, 0) used in the Lavren-
tiev regularization method. However, #; = 1/(1 + A) isin F (X, 0, 0) hence we
have the inequality

2
w,=0<w(,0,0) <K(u) = M(zg)(l—)lh-—)»)z'

Foreveryv e L*(Q2) with 1l <v < % on 2 we have the inequality
YVa=0=S8Su) +A(u,—v)=1+21—-v) <
hence u, is feasible for P(X, €, v) and we have the inequality

€
0, =0 <00 ev) < S|l = vlg)-

Soifl <u; < 1%’\ with the choice € = 0, the Lavrentiev prox regularization
algorithm finds the optimal control u, in one step. For ¢ > 0 with a fixed
parameter A, we can make the regularization error arbitrarily small by choosing

€ sufficiently small.
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Example 4. Let 2 = [0, 7] x [0, w]. Define the desired state

va(x1, x2) = 1 — cos(xy).
Consider the problem

min 3 [, (v — ya)? st
—Ay+y=u on Q
9, y=0 onT
~10<y<1-% o Q.

The state constraint y < 1 — ‘/7§ implies that for x, > /6 we have
3 3 3
Ya—y =1—cos(xz) — (1 - %) = % —cos(xp) = |7 — cos(x2)] .

This yields the optimal state

Ya(xi,x2) if x; <m/6,

Ya(x1, X2) = .
{ 1— 4 if x, > m/6.
Figure 1 shows the desired state y, and the optimal state y, that is generated by

the optimal control

1 —2cos(xp) if xp <m/6,

u*(xlvxz) = { 1 _ \/?:

5 if xy >m7/6.

shown in Figure 2.
The optimal control u, has a jump discontinuity at x, = 7 /6. The optimal
value w, of P is given by the equation

2
T [T J3

w, = — yva—1|1—— ds
2 Jas 2

2
- %1.2484150....
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We use a discretization based upon Fourier-expansions. In the general case,
this corresponds to a representation of the control as a series of eigenfunctions
of the operator 4. Here we write the control function u as a cosine series of
the form

u(xi, x2) = Y B cos(j x2).

j=0
Then

and we obtain the following series representation for the state:

o0
1
y(.X'l, x2) = Z T]zﬂj COS(j xz)-

Jj=0

Hence we have
y=ya=(Fo— D+ (7 +1)cos(x) + Z oy 2/3, c0s(j X2).

For the objective function, this yields

1 , 2 Bi loo B;
2/Q(y—yd) = ((,30— * + ( - ) +2;—(1+j2)2)

= F(B).
So we see that for v = Z;io y;j cos(j x2) the problem P, . , is equivalent to
the problem
g 7%
. 200 o2 T R
rﬁnellrle(ﬂ) +§<n (Bo —v0)" + — jz_l:(ﬂ] Y)) > s.t. (16)
00 1 «/3
—-10 < 2+A Bj — cos(jx3) <1 ——, x, €[0,m].
par 1+ 2

By replacing the infinite series by a finite sum we obtain a semi-infinite opti-

mization problem with a quadratic objective function and linear constraints.
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In our numerical implementation we used the finite sums 235:0 and a finite
number of inequality constraints corresponding to the 1001 grid points 0.0017
for j € {0, ..., 1000}. We solved the finite-dimensional optimization problems
with the program fmincon from the matlab optimization toolbox.

Let u; = 0 and let @ (1) denote the optimal value of P, ,, which is used in
the non-prox Lavrentiev regularization.

Table 1 contains the optimal values of the discretized problems for various
values of A. The state error e, has been computed as

1000

ey = (0.0017)% Y (yelxip) — (i)’ (17)

i,j=0

with the computed state y. and the grid points x;;.

A () ey €y
10 14758 | 01266 | 0
102 | 2214367 | 00883 |0
1 2213705 | 00404 | 0
10°12 | 2213068 | 00165 | 0
107 | 212711 | 00073 | 0
10732 | 2212561 | 00010 | 0
1072 | Z21.2509 | 3.6414e — 04 | 0
10752 | Z21.2493 | 2.3903¢ — 04 | 0
1073 | Z21.2487 | 2.0050e — 04 | 0
10772 | Z21.2486 | 2.2906¢ — 04 | 0
1074 | Z21.2485 | 1.5930¢ — 04 | 0

Table 1 — Results as a function of the Lavrentiev-regularization parameter A withu; = 0
(non-prox Lavrentiev regularization).
The constraint violation e, has been computed as

1000

ey = (0.001m)* > [(e(wy) — yip)+] - (18)

i,j=0
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Starting with u; = 0, we have computed the Lavrentiev-prox regularization

iterates whith 1; = 10 * 101=9/2_ Let w; denote the optimal value of Py, o,

which is used in the Lavrentiev prox iteration. Table 2 shows the results.

Ak Wy ey ey
A =10 2 1.4758 0.1266 0
Ja =102 | 2214188 |  0.0732 0
a3 =1 2213323 | 0.0233 0
a=10"12 | £ 12694 0.0137 0
As = 107" 12514 0.0052 0
e =10732 | Z21.2486 0.0005 4.3289¢ — 08
ap =102 | 2212484 | 1.8074e — 04 | 1.6361c — 07
hg=1052 | 212485 | 2.3783¢ — 04 0
ro =107 | 27 1.2485 | 1.5530¢ — 04 0
a0 = 1072 | 2212485 | 2.0268¢ — 04 0
dar=107% | Z21.2485 | 1.3137¢ — 04 | 1.0855¢ — 11

Table 2 — Results for the Lavrentiev-prox iteration.

In this case the Lavrentiev-prox regularization iterates shown in Table 2 con-
verge faster than the iterates generated with the non-prox Lavrentiev regulariza-
tion shown in Table 1.

Figure 3 shows the optimal state y;; that is computed in step 11 of the Lavren-
tiev-prox iteration with A;; = 1074,

Example 5. As in Example 4 let Q = [0, =] x [0, 7] and define the desired
state y;(x1, x2) = 1 — cos(x,).
Consider the problem

min 1 [0 (v —ya)? st

P —Ay+y=u on Q
d,y=0 onT
—10<y <1 on Q.

Comp. Appl. Math., Vol. 28, N. 2, 2009
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x w(X) e e
10 13264 | 49212 | 0
10172 | 2210772 | 33972 | 0
1 2207380 | 1.6010 | 0
10-1/2 | 2204516 | 04012 | 0
10°1 [ Z03175 | 00627 | 0
10732 | 2202714 | 0.0089 | 0
1072 | Z202568 |  0.0021 0
10752 | 2202522 | 0.0010 | 0
1073 | Z202508 | 7.3617e — 04 | 0
10-7/2 | Z202504 | 7.0191e — 04 | 0
1074 | Z20.2503 | 7.6869% — 04 | 0

Table 3 — Results as a function of the Lavrentiev-regularization parameter A withu; = 0

(non-prox Lavrentiev regularization).

As in Example 4, we use a discretization based upon Fourier-expansions. For

v = ZC;O:() y;j cos(j x2) the problem P, . , is equivalent to the problem

2 o
min F(8) + |G-+ B - st (9)
€ ]=1

0
—-10 < Z {(1 —ijz +k> Bj — ij} cos(jxp) <1, xp € [0, m].
j=0

By replacing the infinite series by a finite sum we obtain a semi-infinite op-
timization problem with a quadratic objective function and linear constraints.
Again in our numerical implementation we used the finite sums 235:0 and a
finite number of inequality constraints corresponding to the 1001 grid points
0.0017 j for j € {0,...,1000}. Again we used the program fmincon from
the matlab optimization toolbox to solve the finite-dimensional optimization
problems.

Letu; = 0 and let w()) denote the optimal value of P, ¢ ,, which is used in the
non-prox Lavrentiev regularization. Table 3 contains the results for the solution

of the discretized problems for various values of A. The state error e, has been

Comp. Appl. Math., Vol. 28, N. 2, 2009
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computed as in (17) and the constraint violation e, has been computed as in (18).
Starting with u; = 0, we have computed the Lavrentiev-prox regularization

iterates whith A, = 10 % 107972 Let «wy; denote the optimal value of Py, .00,

which is used in the Lavrentiev prox iteration. Table 4 shows the results.

N Wy ey ey
A =10 ”72 1.3264 4.9212 0
a =102 | 2209770 2.8416 0
a=1 22 0.5734 0.8724 0
ha=10"12 | 2203203 0.0897 0
As = 107! 2 0.2556 0.0075 0
re = 1073/2 ”72 0.2500 0.0016 6.5851e — 06
A7 =102 ”72 0.2501 0.0011 1.4153e — 06
Ay = 107372 ”72 0.2502 | 7.8332¢ — 04 | 1.3039e — 08
ho = 1073 ”72 0.2502 | 5.8200e — 04 0
ho=10"7/2 | 2202501 | 4.9343¢ — 04 0
A =104 ”72 0.2502 | 6.8925¢ — 04 | 1.2442¢ — 12

Table 4 — Results for the Lavrentiev-prox iteration.

Figure 6 shows the optimal state y;; that is computed in step 11 of the Lavren-
tiev-prox iteration with A;; = 1074,

In this example the Lavrentiev-prox regularization iterates shown in Table 4
converge faster than the iterates generated with the non-prox Lavrentiev regular-
ization shown in Table 3.

7 Conclusion

In this paper we have introduced the Lavrentiev prox-regularization method for
elliptic optimal control problems. The cost for the solution of the parametric
auxiliary problems in each step of the method is the same as for the non-prox
Lavrentiev regularization method since the auxiliary problems are of exactly
the same form. Hence also the same numerical methods can be used for the
solution, for example primal-dual active set methods, interior point methods or

semismooth Newton methods, see [5, 6, 8, 11]. Our numerical examples indicate

Comp. Appl. Math., Vol. 28, N. 2, 2009
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