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Abstract. A Lavrentiev prox-regularization method for optimal control problems with point-

wise state constraints is introduced where both the objective function and the constraints are regu-

larized. The convergence of the controls generated by the iterative Lavrentiev prox-regularization

algorithm is studied. For a sequence of regularization parameters that converges to zero, strong

convergence of the generated control sequence to the optimal control is proved. Due to the prox-

character of the proposed regularization, the feasibility of the iterates for a given parameter can

be improved compared with the non-prox Lavrentiev-Regularization.
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1 Introduction

In the applications modelled by optimal control problems, pointwise state con-

straints are important since often, practical considerations require certain re-

strictions on the state. Unfortunately, for problems of pde-constrained optimal

control with state constraints, in general the corresponding multipliers are not

contained in a function space but only given as measures (see [1]). In order

to obtain regular multipliers, the Lavrentiev regularization has been introduced,

that transforms the pure state constraint to a mixed state-control constraint. This

method is studied for example in [5, 7, 8, 9, 11] and in the references cited
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there. We do not claim to give a complete list of references about this subject

here but want to mention in particular the paper [12], where problems of optimal

boundary control are studied and the references therein. Due to the regular-

ization, for the regularized auxiliary problems that are control problems with

mixed pointwise control-state constraints multipliers with L2-regularity exist,

see [13].

In the (non-prox) Lavrentiev regularization there is a single real-valued regu-

larization parameter λ > 0. For each parameter λ, an auxiliary problem with a

mixed state-control constraint is defined. To obtain convergence, this Lavrentiev

regularization parameter λ must converge to 0+. However, as λ decreases the

problems become more and more difficult to solve. For each fixed λ > 0 in

general the generated controls are infeasible for the original problem.

In this paper we introduce a Lavrentiev prox-regularization method where for

a given parameter value λ, the feasibility is improved. In our regularization apart

from the real-valued regularization parameter λ a control function appears as a

second regularization parameter in the state constraints. If the zero control is

chosen, the non-prox Lavrentiev regularization is obtained. During the algo-

rithm, this control parameter is updated iteratively. Moreover, in our method

also a regularization parameter ε ≥ 0 appears in the objective function in the

same way as in the classical prox-regularization algorithm (see for example [10,

4]. We show that for a sequence of regularization parameters (λk, εk) converg-

ing to zero, the new algorithm where the control regularization parameter is

updated iteratively generates a sequence of controls that converges with respect

to the L2-norm to the optimal control.

We start by considering the elliptic optimal control problem with pointwise

state constraints and pointwise control constraints (section 2) and the corre-

sponding Lavrentiev prox-regularization (section 3). Then we turn to the elliptic

optimal control problem with pointwise state constraints only (section 4) and the

Lavrentiev prox-regularization (section 5) for this problem.

At the end of the paper we present examples where we compare the conver-

gence of the Lavrentiev prox-regularization method with the non-prox Lavren-

tiev regularization. We give two numerical examples where the Lavrentiev prox

iteration converges faster than the non-prox Lavrentiev regularization.
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2 The Elliptic Problem with pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-

straints and L∞–control constraints.

Let N ∈ {2, 3, 4, . . .} and � ⊂ RN be a bounded domain with C0,1 boundary

0. Let a desired state yd ∈ L∞(�) be given. Let a real number κ > 0 be given.

Define the objective function

J (y, u) =
1

2

∫

�

(y − yd)
2 dx +

κ

2

∫

�

u(x)2 dx .

In addition, let control bounds ua , ub ∈ L∞(�) be given such that ua ≤ ub

on �. Let state bounds ya , yb ∈ L∞(�) be given such that ya < yb almost

everywhere on �. Let ∂n denote the normal derivative with respect to the out-

ward unit normal vector. As in [2], let A an elliptic differential operator of the

form

Ay = −
N∑

i, j=1

∂x j [ai j∂xi y] + a0 y

where the coefficients ai j belong to C(�) and satisfy the inequality

m ‖ξ‖2 ≤
N∑

i, j=1

ai j (x)ξiξ j ≤ M ‖ξ‖2

for all ξ ∈ RN and for all x ∈ � for some M > 0, m > 0 and a0 ∈ Lr (�) is not

identically zero with r ≥ N p/(N + p) for some fixed p > N , a0 ≥ 0 in �.

Define the following elliptic optimal control problem with distributed control,

pointwise state constraints and pointwise control constraints:

Q






minimize J (y, u) subject to

∂n y = 0 in 0

Ay = u in �

ya ≤ y ≤ yb in �

ua ≤ u ≤ ub in �.

(1)

Note that for a solution u∗ of Q, we have u∗ ∈ L∞(�).

As in [5], the notation G is used for the control to state map that gives the

state y as a function of the control u, G : L2(�) → H 1(�). The notation S is
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used for the control to state map as an operator L2(�) → L2(�) which is the

composition of G and the suitable embedding operator.

3 Lavrentiev Prox Regularization

For u ∈ L2(�) define K (u) = J (G(u), u). Let the Lavrentiev regularization

parameter λ > 0 and the prox-regularization parameter ε ≥ 0 and v ∈ L∞(�)

be given. We consider the regularized problem

Qλ,ε,v






minimize K (u) + ε
2

∫
�
(u − v)2 dx subject to

ya ≤ λ(u − v) + G(u) ≤ yb in �

ua ≤ u ≤ ub in �.

(2)

Let ν∗ denote the optimal value of Q, and ν(λ, ε, v) denote the optimal value

of Qλ,ε, v . Let F∗ denote the admissible set of Q and F(λ, ε, v) denote the

admissible set of Qλ,ε v .

If v ∈ F∗ is a solution of Qλ,ε v then

ν∗ ≤ K (v) = ν(λ, ε, v).

Moreover, if u∗ is the solution of Q we have

ν∗ = K (u∗) ≥ ν(λ, ε, u∗).

We consider the following

Lavrentiev Prox-Regularization Algorithm:

Start: CHOOSE u1 ∈ L∞(�) AND λ1 > 0 AND ε1 ≥ 0.

Step k: GIVEN uk ∈ L∞(�) AND λk > 0 AND εk ≥ 0, SOLVE Qλk ,εk ,uk .

DEFINE uk+1 AS THE SOLUTION OF Qλk ,εk , uk .

CHOOSE λk+1 ∈ (0, λk], εk+1 ∈ [0, εk].

GO TO STEP k + 1.

For the convenience of the reader, we also describe the (non-prox) Lavrentiev

regularization algorithm that has been considered in the literature for example

in [5, 7, 8, 9, 11]:

Comp. Appl. Math., Vol. 28, N. 2, 2009
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(non-prox) Lavrentiev Regularization Algorithm:

Start: CHOOSE λ1 > 0.

Step k: GIVEN λk > 0, SOLVE Qλk ,0,0.

CHOOSE λk+1 ∈ (0, λk].

GO TO STEP k + 1.

3.1 Uniform boundedness of the feasible sets of Qλ,ε,u

Due to the pointwise control constraints, the feasible points of Qλ,ε,u are uni-

formly bounded in L∞(�):

Lemma 3.1. Let u ∈ F(λ, ε, v) be a feasible point of Qλ,ε, v . Then

‖u‖L∞(�) ≤ max{‖ua‖L∞(�), ‖ub‖L∞(�)}.

3.2 Well-definedness and convergence of the generated sequence

In this section we study the convergence of the solutions (uk)k for k → ∞.

Theorem 3.2. Assume that there exists a Slater control η̄ ∈ L∞(�) and ε̄ > 0

such that

ua ≤ η̄ ≤ ub,

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄ almost everywhere on �̄.

Define M = max{‖ua‖L∞(�), ‖ub‖L∞(�)}. Let p ∈ (0, 1). Assume that in each

step, λk is chosen such that λk ≤ 1 and λk
1−p ≤ ε̄/(2M). Then Q has a

solution, the Lavrentiev prox-regularization algorithm is well-defined, and if

limk→∞ λk = 0 and limk→∞ εk = 0 we have

lim
k→∞

‖uk − u∗‖L2(�) = 0. (3)

Moreover, there exists a constant C10 > 0 such that for all k

|ν(λk, εk, uk) − ν∗| ≤ C10λ
p
k + o(εk). (4)

Comp. Appl. Math., Vol. 28, N. 2, 2009
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For a real number z we use the notation z+ = (z + |z|)/2. Hence we have

z+ = max{z, 0}. For the constraint violation we have the upper bound

‖(G(uk+1) − yb)+‖L2(�) + ‖(ya − G(uk+1))+‖L2(�)

≤ λk ‖uk+1 − uk‖L2(�) = o(λk).

Proof. First we show the existence of a solution of Q. Since η̄ is feasible for

Q, we have ν∗ < ∞. Let (mk)k denote of minimizing sequence for Q, that

is the points mk ∈ L2(�) are feasible for Q and limk→∞ K (mk) = ν∗. Since

the sequence (mk)k is bounded in L∞(�), we can choose a subsequence that

converges weakly∗ in L∞(�) to a limit point ū ∈ L∞(�). Then this subsequence

converges also weakly in L2(�) to ū. Since the subsequence converges weakly

in L2(�), we have ν∗ = lim infk→∞ K (mk) ≥ K (ū). Moreover, the weak∗

convergence in L∞(�) implies that ū is feasible for Q. Hence ū is a solution

of Q. Due to the strong convexity of the objective function, this solution is

uniquely determined.

Now we consider the sequence (uk) generated by the Lavrentiev prox-regu-

larization algorithm. Due to the control constraints, this sequence is bounded.

Choose p ∈ (0, 1). Define τk = λk
p and the function vk = (1 − τk)u∗ + τk η̄

where u∗ denotes the solution of Q. Then ua ≤ vk ≤ ub and we have

G(vk) + λk(vk − uk) = (1 − τk)G(u∗) + τk G(η̄)

+ λk((1 − τk)(u∗ − uk) + τk(η̄ − uk))

≤ (1 − τk)yb + τk(yb − ε̄)

+ (1 − τk)λk2M + τkλk2M

≤ yb − τk ε̄ + λk2M

≤ yb − λk
p ε̄ + ε̄λ

p
k = yb.

On the other hand, we have G(vk)+λk(vk−uk) ≥ ya . Hence vk ∈ F(λk, εk, uk).

This implies that the iteration is well defined.

Now we assume that the sequences (λk)k and (εk)k converge to zero. Then we

have τk → 0 and thus limk→∞ ‖vk − u∗‖L∞(�) = 0. Thus we have

lim sup
k→∞

ν(λk, εk, uk) ≤ lim sup
k→∞

K (vk) + (εk/2)‖vk − uk‖
2
L2(�)

= K (u∗) = ν∗.
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Let ũ ∈ L∞(�) denote a weak∗ limit point of the sequence (uk)k . Then ũ ∈ F∗

and we have

K (ũ) ≤ lim inf
k→∞

ν(λk, εk, uk) ≤ ν∗.

Since ũ ∈ F∗, the uniqueness of the solution of Q implies ũ = u∗. Hence the

sequence (uk)k converges weakly∗ to u∗. This implies the equation

lim
k→∞

(κ/2)‖uk‖
2
L2(�)

= lim
k→∞

K (uk) − (1/2)‖S(uk) − yd‖
2
L2(�)

− (εk/2)‖uk − uk−1‖
2
L2(�)

= K (u∗) − (1/2)‖S(u∗) − yd‖
2
L2(�)

− 0

= (κ/2)‖u∗‖
2
L2(�)

.

Note that the convergence of (‖uk‖L2(�))k to ‖u∗‖L2(�) is also an immediate con-

sequence of the compactness of the solution operator S and the weak convergence

of uk to u∗ with respect to the L2(�) topology.

The weak convergence of uk to u∗ in L2(�) and the convergence of the norms

imply limk→∞ ‖uk − u∗‖L2(�) = 0.

There exists a Lipschitz constant C > 0 such that for all points v1, v2 ∈ L∞(�)

with ‖v1‖L∞(�) ≤ M and ‖v2‖L∞(�) ≤ M , respectively we have K (v1) ≤

K (v2) + C‖v2 − v1‖L2(�). Hence we have

ν(λk, εk, uk) = K (uk+1) + (εk/2) ‖uk+1 − uk‖
2
L2(�)

≤ K (vk) + (εk/2) ‖vk − uk‖
2
L2(�)

≤ K (u∗) + C‖vk − u∗‖L2(�) + (εk/2) ‖vk − uk‖
2
L2(�)

≤ ν∗ + Cτk
(
‖u∗‖L2(�) + ‖η̄‖L2(�)

)

+ (εk/2)
(
‖vk − u∗‖L2(�) + ‖uk − u∗‖L2(�)

)2

≤ ν∗ + λ
p
k

√
μ(�) 2MC + o(εk)

where μ(�) =
∫
�

1 dx . For all k > 1, the point ũk+1 = (1 − τk)uk+1 + τk η̄ is

in F∗. Hence

ν∗ ≤ K (ũk+1)

≤ K (uk+1) + C‖ũk+1 − uk+1‖L2(�) + (εk/2) ‖uk+1 − uk‖
2
L2(�)

≤ ν(λk, εk, uk) + Cτk(‖uk+1‖L2(�) + ‖η̄‖L2(�))

≤ ν(λk, εk, uk) + Cλk
p
√

μ(�) 2M.

Comp. Appl. Math., Vol. 28, N. 2, 2009
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Define C10 = 2MC
√

μ(�). Then (4) follows.

To obtain the bound for the constraint violation we have used the fact that the

lower and the upper state bound cannot be violated simultaneously, hence for all

controls u the sets M1 = {x ∈ � : (G(u) − yb)(x) ≥ 0} and M2 = {x ∈ � :

(ya − G(u))(x) ≥ 0} are disjoint. On the set M1 we have (G(uk+1) − yb)+ ≤

λk |uk+1 − uk | and on the set M2 we have (ya − G(uk+1))+ ≤ λk |uk+1 − uk |.

Since M1 ∪ M2 ⊂ � the assertion follows by integration. �

Remark 3.3. Note that we have the inequality

ν∗ − K (uk+1) ≤ ν∗ − K (ũk+1) + C‖ũk+1 − uk+1‖L2(�)

≤ 0 + C‖ũk+1 − uk+1‖L2(�)

≤ 0 + Cτk(‖uk+1‖L2(�) + ‖η̄‖L2(�))

≤ Cλk
p
√

μ(�) 2M.

where the prox-parameter ε does not appear explicitly. Hence for the optimal

value we have the upper bound

ν∗ ≤ K (uk+1) + Cλk
p
√

μ(�) 2M.

4 The Elliptic Problem without pointwise control constraints

In this section we introduce an elliptic optimal control problem with state con-

straints. Here no L∞(�)–control constraints are present.

Let N ∈ {2, 3} and � ⊂ RN be a bounded domain with C0,1 boundary 0.

Let a desired state yd ∈ L∞(�) be given. Let a real number κ > 0 be given.

Define the objective functions J (y, u) and K (u) as above. Let state bounds ya ,

yb ∈ L∞(�) be given.

Define the following elliptic optimal control problem with distributed control

and pointwise state constraints

P






minimize J (y, u) subject to

∂n y = 0 in 0

Ay = u in �

ya ≤ y ≤ yb in �.

(5)
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As in [5], the notation G is used for the control to state map that gives the state

as a function of the control, G : L2(�) → H 1(�) ∩ L∞(�). The notation S is

used for the control to state map as an operator L2(�) → L2(�) which is the

composition of G and the suitable embedding operator.

5 Lavrentiev Prox Regularization

Let the Lavrentiev prox-regularization parameters λ > 0, ε ≥ 0 and v ∈ L∞(�)

be given.

We consider the regularized problem

Pλ,ε,v

{
minimize K (u) + ε

2

∫
�
(u − v)2 dx subject to

ya ≤ λ(u − v) + G(u) ≤ yb in �.
(6)

Let ω∗ denote the optimal value of P, and ω(λ, ε, v) denote the optimal value

of Pλ,ε, v . Let F∗ denote the admissible set of P and F(λ, ε, v) denote the

admissible set of Pλ,ε v .

Concerning the regularity of the multipliers corresponding to the inequality

constraints in Pλ,ε,v , we can apply Theorem 2.1 in [5] that states that we find

multipliers in the function space L2(�).

We consider the following

Lavrentiev Prox-Regularization Algorithm:

Start: CHOOSE u1 ∈ L∞(�) AND λ1 > 0 AND ε1 ≥ 0.

Step k: GIVEN uk ∈ L∞(�), λk > 0 AND εk ≥ 0, SOLVE Pλk ,εk ,uk .

DEFINE uk+1 AS THE SOLUTION OF Pλk ,εk ,uk .

CHOOSE λk+1 ∈ (0, λk] AND εk+1 ∈ [0, εk].

GO TO STEP k + 1.

As far as the regularization of the objective function is concerned, this algorithm

is related to the prox-regularization as considered in [10, 4]. The difference is

that for our state-constrained problem regularization terms appear both in the

constraints and in the objective function.

In our discussion we use the choice u1 = 0. First we show that the iteration is

well-defined. For u1 = 0 problem Pλ1,ε1,u1 is of the form studied in the papers

Comp. Appl. Math., Vol. 28, N. 2, 2009
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about Lavrentiev regularization [9, 7, 6], hence the corresponding existence

results are applicable. As in Section 3, the non-prox Lavrentiev-Regularization

corresponds to the definition of the regularization parameters uk+1 = 0, εk+1 = 0

for all k ≥ 0, that is the non-prox Lavrentiev-Regularization is the algorithm:

In step k solve Pλk ,0,0.

In step k, the function uk+1 satisfies the state constraint

ya ≤ λk(uk+1 − uk) + G(uk+1) ≤ yb in �.

Hence uk+1 ∈ L∞(�) and the function

ũk+1 = uk+1 + (λk+1 I + S)−1λk(uk+1 − uk)

is feasible for Pλk+1,εk+1,uk+1 . Therefore the iteration is well–defined.

5.1 Properties of λI + S.

The following Lemma states that (‖λ(λI + S)−1‖)λ>0 is uniformly bounded.

Moreover, the operators converge pointwise to the zero operator for λ → 0+.

We use this Lemma in Example 2.

Lemma 5.1. Let ‖S‖ denote the operator norm of S as a map from L2(�) to

L2(�). For all λ > 0 we have the inequality

‖(λI + S)−1‖ ≤
1

λ
. (7)

Let u ∈ L2(�), u 6= 0 and let λk > 0 with limk→∞ λk = 0. Then

λk‖(λk I + S)−1u‖L2(�) < ‖u‖L2(�), lim
k→∞

λk‖(λk I + S)−1u‖L2(�) = 0.

Proof. See [5].

5.2 Boundedness of the generated sequence

The iteration of the Lavrentiev prox-regularization method generates a bounded

sequence if the regularization parameters are chosen sufficiently small. This can

be seen as follows:

Comp. Appl. Math., Vol. 28, N. 2, 2009
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Lemma 5.2. Assume that there exists a Slater control η̄ ∈ L∞(�) and ε̄ > 0

such that

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄

on �. Assume that in each step, λk is chosen such that

λk‖η̄ − uk‖L∞(�) ≤ ε̄. (8)

Assume that in each step, εk is chosen such that the sequence

(
εk‖η̄ − uk‖L2(�)

)
k (9)

is bounded. Then the sequence (uk)k generated by the Lavrentiev Prox-Regular-

ization Algorithm is bounded in L2(�).

Remark 5.3. Note that the conditions (8) and (9) can easily be satisfied during

the iteration by choosing λk and εk sufficiently small since the functions η̄ and

uk are known.

Proof. For all k we have the inequalities

G(η̄) + λk(η̄ − uk) ≤ yb − ε̄ + ε̄ = yb,

G(η̄) + λk(η̄ − uk) ≥ ya + ε̄ − ε̄ = ya

hence η̄ ∈ F(λk, εk, uk) which implies the inequality

κ

2
‖uk+1‖

2
L2(�)

≤ K (uk+1) +
εk

2
‖uk − uk+1‖

2
L2(�)

≤ K (η̄) +
εk

2
‖uk − η̄‖2

L2(�)

and the assertion follows due to the boundedness of the sequence in (9). �

5.3 Convergence of the generated sequence

We study now the convergence of the sequence (uk)k generated by the Lavren-

tiev Prox-Regularization Algorithm.

Comp. Appl. Math., Vol. 28, N. 2, 2009
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Theorem 5.4. Assume that the solution u∗ of P is in L∞(�) and that there

exists a Slater control η̄ ∈ L∞(�) and ε̄ > 0 such that

ya + ε̄ ≤ G(η̄) ≤ yb − ε̄

on �. Let p ∈ (0, 1) be given. Assume that in each step, λk ∈ (0, 1) is chosen

such that

λk
1−p ‖η̄ − uk‖L∞(�) ≤ ε̄, (10)

λk
1−p‖u∗ − uk‖L∞(�) ≤ ε̄. (11)

Assume that in addition the sequence
(
εk‖η̄ − uk‖L2(�)

)
k is bounded.

If limk→∞ λk = 0 and limk→∞ εk = 0 we have

lim
k→∞

‖uk − u∗‖L2(�) = 0. (12)

For the constraint violation we have the upper bound

‖(G(uk+1) − yb)+‖L2(�) + ‖(ya − G(uk+1))+‖L2(�)

≤ λk ‖uk+1 − uk‖L2(�) = o(λk).

Remark 5.5. Condition (10) can easily be satisfied during the iteration by

choosing λk sufficiently small since the functions η̄ and uk are known. Con-

dition (11) can be satisfied if an a priori bound for ‖u∗‖L∞(�) is known. For

the problem with additional pointwise control constraints, this problem does not

occur, see section 2.

Lemma 5.4 states that if the λk and the εk decrease sufficiently fast we obtain

convergence.

Proof. Since (10) holds and λk < 1, condition (8) also holds, hence since in

addition condition (9) holds Lemma 5.2 implies that the sequence (‖uk‖L2(�))k

is bounded.

Let ũ denote a weak limit point in L2(�) of the sequence (uk)k . Then ũ ∈ F∗.

Moreover, we have the inequality

ω∗ ≤ K (ũ) ≤ lim inf
k→∞

ω(λk, εk, uk).

Comp. Appl. Math., Vol. 28, N. 2, 2009
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Define τk = λk
p and the function vk = (1 − τk)u∗ + τk η̄. Then we have

G(vk) + λk(vk − uk) = (1 − τk)G(u∗) + τk G(η̄)

+ λk((1 − τk)(u∗ − uk) + τk(η̄ − uk))

≤ (1 − τk)yb + τk(yb − ε̄)

+ λk

[
(1 − τk)λk

p−1ε̄ + τkλ
p−1
k ε̄

]

= yb − λ
p
k ε̄ + λkλ

p−1
k ε̄

= yb.

On the other hand, we have

G(vk) + λk(vk − uk) = (1 − τk)G(u∗) + τk G(η̄)

+ λk((1 − τk)(u∗ − uk) + τk(η̄ − uk))

≥ (1 − τk)ya + τk(ya + ε̄)

− λk
[
(1 − τk)λk

p−1ε̄ + τk λk
p−1ε̄

]

= ya + λk
p ε̄ − λk λk

p−1ε̄

= ya.

Hence vk ∈ F(λk, εk, uk). Moreover, limk→∞ ‖vk − u∗‖L∞(�) = 0. Thus we

have

lim sup
k→∞

ω(λk, εk, uk) ≤ lim sup
k→∞

K (vk)

= K (u∗) = ω∗.

Hence we have limk→∞ ω(λk, εk, uk) = ω∗. This implies that K (ũ) = ω∗.

Since ũ ∈ F∗, the uniqueness of the solution of P implies ũ = u∗. Hence the

sequence (uk)k converges weakly to u∗.

As in the proof of Theorem 3.2 we obtain (12).

For all k we have the inequalities

G(uk+1) − yb ≤ λk(uk − uk+1)

ya − G(uk+1) ≤ λk(uk+1 − uk).
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This implies the L2-bound for the constraint violation

‖(G(uk+1) − yb)+‖L2(�) + ‖(ya − G(uk+1))+‖L2(�)

≤ λk‖uk+1 − uk‖L2(�). (13)

�

In Theorem 5.4 we have stated that bk = λk‖uk+1 −uk‖L2(�) is a bound for the

constraint violation. In the non-prox Lavrentiev-Regularization (In step k solve

Pλk ,0,0) we have the corresponding bound tk = λk‖uk+1‖L2(�) that satisfies the

inequality

‖(G(uk+1) − yb)+‖L2(�) + ‖(ya − G(uk+1))+‖L2(�) ≤ tk . (14)

If u∗ 6= 0 and ‖uk − u∗‖L2(�) → 0 we have the inequality

lim
k→∞

tk
λk

= ‖u∗‖L2(�) > 0 = lim
k→∞

bk

λk
(15)

which indicates that at least asymptotically, the Lavrentiev prox-regularization

method yields smaller bounds for contraint violation.

6 Examples

In this section we study two examples that allow to compare the performance of

the Lavrentiev prox-regularization method and the non-prox Lavrentiev regular-

ization method.

Example 1. Consider a problem P, where for the optimal control we have

u∗ ∈ L∞(�) and both inequality constraints are not active, that is we have

ya < G(u∗) < yb in the sense that

ess inf
�

(ya − G(u∗)) > 0, ess inf
�

(G(u∗) − yb) > 0.

In this case, u∗ is an unconstrained local minimal point of K and the convexity

of K implies that ω∗ = K (u∗) = minu∈L2(�) K (u). Let v ∈ L2(�) be given.

Since F(λ, ε, v) ⊂ L2(�), for all λ > 0 we have the inequality

ω(λ, ε, v) = min
u∈F(λ, ε, v)

K (u) ≥ min
u∈L2(�)

K (u) = K (u∗).
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Since u∗ ∈ F(λ, ε, u∗) we have ω(λ, ε, u∗) ≤ K (u∗) = ω∗, hence in this

case ω(λ, ε, u∗) = ω∗. Thus with the choice u1 = u∗, the Lavrentiev prox-

regularization method generates the constant sequence uk = u∗ for all k and all

λk > 0, εk > 0, even if the sequences (λk)k , (εk)k do not converge to zero.

More generally, we have u∗ ∈ F(λk, εk, uk) if

λk ≤ min
{

ess inf�(ya − G(u∗))

‖uk − u∗‖L∞(�)

,
ess inf�(G(u∗) − yb)

‖uk − u∗‖L∞(�)

}
.

In this case

ω∗ ≤ ω(λk, εk, uk) ≤ K (u∗) + (εk/2)‖uk − u∗‖
2 = ω∗ + (εk/2)‖uk − u∗‖

2.

If εk = 0, this yields ω∗ = ω(λk, εk, uk), hence in this case uk solves Pλk ,εk ,uk .

If εk > 0, the method reduces to a classical prox regularization for problem P,

where the constraints are not regularized. For the non-prox Lavrentiev regu-

larization method, u∗ is the solution with the parameter λk if u∗ ∈ F(λk, 0, 0)

which is the case if

λk ≤ min
{

ess inf�(ya − G(u∗))

‖u∗‖L∞(�)

,
ess inf�(G(u∗) − yb)

‖u∗‖L∞(�)

}
.

If ‖u∗ − uk‖L∞(�) < ‖u∗‖L∞(�) and εk = 0, the Lavrentiev prox-regularization

method can find u∗ with larger parameter values λk than the non-prox Lavren-

tiev regularization.

Example 2. Consider a problem P, where for the solution both inequality

constraints are active almost everywhere in �, that is we have ya = G(u∗) = yb

and the Slater condition is violated. Assume that ya ∈ C2(�) satisfies the

boundary conditions ∂n ya = 0 in 0. In this case, we have S(u∗) = ya .

The non-prox Lavrentiev regularization method computes the solution uN P
k+1 of

Pλk ,0,0 for which we have the following equation: (λk I + G)uN P
k+1 = ya . Hence

(λk I + S)(uN P
k+1 − u∗) = ya − λku∗ − ya = −λku∗.

This yields

uN P
k+1 − u∗ = −λk(λk I + S)−1u∗,

hence if λk → 0 due to Lemma 5.1 we have

lim
k→∞

‖uN P
k+1 − u∗‖L2(�) = lim

k→∞
‖λk(λk I + S)−1u∗‖L2(�) = 0.
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The Lavrentiev prox-regularization method computes the solution uk+1 of

Pλk ,εk ,uk for which we have the following equation: (λk I + G)uk+1 −λkuk = ya .

Hence we have (λk I + S)(uk+1 −u∗) = ya +λkuk −λku∗ − ya = λk(uk −u∗).

Thus if uk 6= u∗ we have due to Lemma 5.1

‖uk+1 − u∗‖L2(�) = ‖λk(λk I + S)−1(uk − u∗)‖L2(�) < ‖uk − u∗‖L2(�)

(see the proof of Lemma 5.1) hence the algorithm generates a bounded sequence

with strictly decreasing distance to u∗ also if (λk)k does not converge to zero.

We have (λk I + S)(uk+1 − u∗) − λkuk = −λku∗, hence if λk → 0 we have

lim
k→∞

‖[uk+1−λk(λk I +S)−1uk]−u∗‖L2(�) = lim
k→∞

‖λk(λk I +S)−1u∗‖L2(�) = 0.

Example 3. Let κ = 0, A = −1y + y, yd ≡ 1 and J (y, u) = (1/2)
∫
�
(y −

1)2 dx . Choose ya = 0, yb = 1. Then the optimal control that solves P is u∗ ≡ 1

and we have ω∗ = 0.

For all λ > 0 we have the inequality

S(u∗) + λu∗ = 1 + λ > yb,

hence u∗ is infeasible for the auxiliary problem P(λ, 0, 0) used in the Lavren-

tiev regularization method. However, ũλ = 1/(1 + λ) is in F(λ, 0, 0) hence we

have the inequality

ω∗ = 0 ≤ ω(λ, 0, 0) ≤ K (ũλ) =
μ(�)

2

λ2

(1 + λ)2
.

For every v ∈ L∞(�) with 1 ≤ v ≤ 1+λ
λ

on � we have the inequality

ya = 0 ≤ S(u∗) + λ(u∗ − v) = 1 + λ(1 − v) ≤ yb

hence u∗ is feasible for P(λ, ε, v) and we have the inequality

ω∗ = 0 ≤ ω(λ, ε, v) ≤
ε

2
‖1 − v‖2

L2(�)
.

So if 1 ≤ u1 ≤ 1+λ
λ

with the choice ε = 0, the Lavrentiev prox regularization

algorithm finds the optimal control u∗ in one step. For ε > 0 with a fixed

parameter λ, we can make the regularization error arbitrarily small by choosing

ε sufficiently small.
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Example 4. Let � = [0, π ] × [0, π ]. Define the desired state

yd(x1, x2) = 1 − cos(x2).

Consider the problem

P






min 1
2

∫
�
(y − yd)

2 s.t.

−1y + y = u on �

∂n y = 0 on 0

−10 ≤ y ≤ 1 −
√

3
2 on �.

The state constraint y ≤ 1 −
√

3
2 implies that for x2 ≥ π/6 we have

yd − y ≥ 1 − cos(x2) −
(

1 −

√
3

2

)
=

√
3

2
− cos(x2) = |

√
3

2
− cos(x2)| .

This yields the optimal state

y∗(x1, x2) =

{
yd(x1, x2) if x2 ≤ π/6,

1 −
√

3
2 if x2 > π/6.

Figure 1 shows the desired state yd and the optimal state y∗ that is generated by

the optimal control

u∗(x1, x2) =

{
1 − 2 cos(x2) if x2 ≤ π/6,

1 −
√

3
2 if x2 > π/6.

shown in Figure 2.

The optimal control u∗ has a jump discontinuity at x2 = π/6. The optimal

value ω∗ of P is given by the equation

ω∗ =
π

2

∫ π

π/6

(

yd −

(

1 −

√
3

2

))2

ds

=
π2

2

(
25

24
+

3

8

√
3

π

)

=
π2

2
1.2484150 . . . .
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Figure 1 – The desired state yd and the optimal state y∗.
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Figure 2 – The optimal control u∗.
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We use a discretization based upon Fourier-expansions. In the general case,

this corresponds to a representation of the control as a series of eigenfunctions

of the operator A. Here we write the control function u as a cosine series of

the form

u(x1, x2) =
∞∑

j=0

β j cos( j x2).

Then ∫

�

u2 = π2β2
0 +

π2

2

∞∑

j=1

β2
j

and we obtain the following series representation for the state:

y(x1, x2) =
∞∑

j=0

1

1 + j2
β j cos( j x2).

Hence we have

y − yd = (β0 − 1) +
(

β1

2
+ 1

)
cos(x2) +

∞∑

j=2

1

1 + j2
β j cos( j x2).

For the objective function, this yields

1

2

∫

�

(y − yd)
2 =

π2

2

(
(β0 − 1)2 +

1

2

(
β1

2
+ 1

)2

+
1

2

∞∑

j=2

β2
j

(1 + j2)2

)

=: F(β) .

So we see that for v =
∑∞

j=0 γ j cos( j x2) the problem Pλ,ε,v is equivalent to

the problem

min
β∈l2

F(β) +
ε

2

(
π2(β0 − γ0)

2 +
π2

2

∞∑

j=1

(β j − γ j )
2

)
s.t. (16)

−10 ≤
∞∑

j=0

{(
1

1 + j2
+ λ

)
β j − λγ j

}
cos( j x2) ≤ 1 −

√
3

2
, x2 ∈ [0, π ].

By replacing the infinite series by a finite sum we obtain a semi-infinite opti-

mization problem with a quadratic objective function and linear constraints.
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In our numerical implementation we used the finite sums
∑75

j=0 and a finite

number of inequality constraints corresponding to the 1001 grid points 0.001π j

for j ∈ {0, . . . , 1000}. We solved the finite-dimensional optimization problems

with the program fmincon from the matlab optimization toolbox.

Let u1 = 0 and let ω(λ) denote the optimal value of Pλ,0,u1 which is used in

the non-prox Lavrentiev regularization.

Table 1 contains the optimal values of the discretized problems for various

values of λ. The state error ey has been computed as

ey = (0.001π)2
1000∑

i, j=0

(
yc(xi j ) − y∗(xi j )

)2
(17)

with the computed state yc and the grid points xi j .

λ ω(λ) ey ev

10 π2

2 1.4758 0.1266 0

101/2 π2

2 1.4367 0.0883 0

1 π2

2 1.3705 0.0404 0

10−1/2 π2

2 1.3068 0.0165 0

10−1 π2

2 1.2711 0.0073 0

10−3/2 π2

2 1.2561 0.0010 0

10−2 π2

2 1.2509 3.6414e − 04 0

10−5/2 π2

2 1.2493 2.3903e − 04 0

10−3 π2

2 1.2487 2.0050e − 04 0

10−7/2 π2

2 1.2486 2.2906e − 04 0

10−4 π2

2 1.2485 1.5930e − 04 0

Table 1 – Results as a function of the Lavrentiev-regularization parameter λ with u1 = 0

(non-prox Lavrentiev regularization).

The constraint violation ev has been computed as

ev = (0.001π)2
1000∑

i, j=0

[
(yc(xi j ) − y∗(xi j ))+

]2
. (18)
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Starting with u1 = 0, we have computed the Lavrentiev-prox regularization

iterates whith λk = 10 ∗ 10(1−k)/2. Let ωk denote the optimal value of Pλk ,0,uk

which is used in the Lavrentiev prox iteration. Table 2 shows the results.

λk ωk ey ev

λ1 = 10 π2

2 1.4758 0.1266 0

λ2 = 101/2 π2

2 1.4188 0.0732 0

λ3 = 1 π2

2 1.3323 0.0233 0

λ4 = 10−1/2 π2

2 1.2694 0.0137 0

λ5 = 10−1 π2

2 1.2514 0.0052 0

λ6 = 10−3/2 π2

2 1.2486 0.0005 4.3289e − 08

λ7 = 10−2 π2

2 1.2484 1.8074e − 04 1.6361e − 07

λ8 = 10−5/2 π2

2 1.2485 2.3783e − 04 0

λ9 = 10−3 π2

2 1.2485 1.5530e − 04 0

λ10 = 10−7/2 π2

2 1.2485 2.0268e − 04 0

λ11 = 10−4 π2

2 1.2485 1.3137e − 04 1.0855e − 11

Table 2 – Results for the Lavrentiev-prox iteration.

In this case the Lavrentiev-prox regularization iterates shown in Table 2 con-

verge faster than the iterates generated with the non-prox Lavrentiev regulariza-

tion shown in Table 1.

Figure 3 shows the optimal state y11 that is computed in step 11 of the Lavren-

tiev-prox iteration with λ11 = 10−4.

Example 5. As in Example 4 let � = [0, π ] × [0, π ] and define the desired

state yd(x1, x2) = 1 − cos(x2).

Consider the problem

P






min 1
2

∫
�
(y − yd)

2 s.t.

−1y + y = u on �

∂n y = 0 on 0

−10 ≤ y ≤ 1 on �.
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Figure 3 – The computed state y11.
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Figure 4 – The desired state yd and the optimal state y∗.
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The state constraint y ≤ 1 implies that for x2 ≥ π/2 we have

yd − y ≥ 1 − cos(x2) − 1 = − cos(x2) = | cos(x2)| .

This yields the optimal state

y∗(x1, x2) =

{
yd(x1, x2) if x2 ≤ π/2,

1 if x2 > π/2.

Figure 4 shows the desired state yd and the optimal state y∗ that is generated

by the optimal control

u∗(x1, x2) =

{
1 − 2 cos(x2) if x2 ≤ π/2,

1 if x2 > π/2.

shown in Figure 5. The optimal control u∗ is continuous. The optimal value ω∗

of P is given by the equation

ω∗ =
π

2

∫ π

π/2
(yd − 1)2 ds =

π2

2

∫ π

π/2
cos2(s) ds =

π2

2
0.25.
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Figure 5 – The optimal control u∗.
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λ ω(λ) ey ev

10 π2

2 1.3264 4.9212 0

101/2 π2

2 1.0772 3.3972 0

1 π2

2 0.7380 1.6010 0

10−1/2 π2

2 0.4516 0.4012 0

10−1 π2

2 0.3175 0.0627 0

10−3/2 π2

2 0.2714 0.0089 0

10−2 π2

2 0.2568 0.0021 0

10−5/2 π2

2 0.2522 0.0010 0

10−3 π2

2 0.2508 7.3617e − 04 0

10−7/2 π2

2 0.2504 7.0191e − 04 0

10−4 π2

2 0.2503 7.6869e − 04 0

Table 3 – Results as a function of the Lavrentiev-regularization parameter λ with u1 = 0

(non-prox Lavrentiev regularization).

As in Example 4, we use a discretization based upon Fourier-expansions. For

v =
∑∞

j=0 γ j cos( j x2) the problem Pλ,ε,v is equivalent to the problem

min
β∈l2

F(β) +
ε

2



π2(β0 − γ0)
2 +

π2

2

∞∑

j=1

(β j − γ j )
2



 s.t. (19)

−10 ≤
∞∑

j=0

{(
1

1 + j2
+ λ

)
β j − λγ j

}
cos( j x2) ≤ 1, x2 ∈ [0, π ].

By replacing the infinite series by a finite sum we obtain a semi-infinite op-

timization problem with a quadratic objective function and linear constraints.

Again in our numerical implementation we used the finite sums
∑75

j=0 and a

finite number of inequality constraints corresponding to the 1001 grid points

0.001π j for j ∈ {0, . . . , 1000}. Again we used the program fmincon from

the matlab optimization toolbox to solve the finite-dimensional optimization

problems.

Let u1 = 0 and let ω(λ) denote the optimal value of Pλ,0,u1 which is used in the

non-prox Lavrentiev regularization. Table 3 contains the results for the solution

of the discretized problems for various values of λ. The state error ey has been
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computed as in (17) and the constraint violation ev has been computed as in (18).

Starting with u1 = 0, we have computed the Lavrentiev-prox regularization

iterates whith λk = 10 ∗ 10(1−k)/2. Let ωk denote the optimal value of Pλk ,0,uk

which is used in the Lavrentiev prox iteration. Table 4 shows the results.

λk ωk ey ev

λ1 = 10 π2

2 1.3264 4.9212 0

λ2 = 101/2 π2

2 0.9770 2.8416 0

λ3 = 1 π2

2 0.5734 0.8724 0

λ4 = 10−1/2 π2

2 0.3203 0.0897 0

λ5 = 10−1 π2

2 0.2556 0.0075 0

λ6 = 10−3/2 π2

2 0.2500 0.0016 6.5851e − 06

λ7 = 10−2 π2

2 0.2501 0.0011 1.4153e − 06

λ8 = 10−5/2 π2

2 0.2502 7.8332e − 04 1.3039e − 08

λ9 = 10−3 π2

2 0.2502 5.8200e − 04 0

λ10 = 10−7/2 π2

2 0.2501 4.9343e − 04 0

λ11 = 10−4 π2

2 0.2502 6.8925e − 04 1.2442e − 12

Table 4 – Results for the Lavrentiev-prox iteration.

Figure 6 shows the optimal state y11 that is computed in step 11 of the Lavren-

tiev-prox iteration with λ11 = 10−4.

In this example the Lavrentiev-prox regularization iterates shown in Table 4

converge faster than the iterates generated with the non-prox Lavrentiev regular-

ization shown in Table 3.

7 Conclusion

In this paper we have introduced the Lavrentiev prox-regularization method for

elliptic optimal control problems. The cost for the solution of the parametric

auxiliary problems in each step of the method is the same as for the non-prox

Lavrentiev regularization method since the auxiliary problems are of exactly

the same form. Hence also the same numerical methods can be used for the

solution, for example primal-dual active set methods, interior point methods or

semismooth Newton methods, see [5, 6, 8, 11]. Our numerical examples indicate
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Figure 6 – The computed state y11.

that the Lavrentiev prox-iteration gives approximations of the same quality as

the non-prox Lavrentiev regularization method in fewer steps and with larger

regularization parameters. We have also applied the method successfully for the

solution of optimal control problems with hyperbolic systems see [3].
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