
“main” — 2005/10/10 — 16:12 — page 209 — #1

Volume 24, N. 2, pp. 209–229, 2005
Copyright © 2005 SBMAC
ISSN 0101-8205
www.scielo.br/cam

Adaptive basis selection for functional data
analysis via stochastic penalization

CEZAR A.F. ANSELMO, RONALDO DIAS and NANCY L. GARCIA

Departamento de Estatística, IMECC, UNICAMP

Caixa Postal 6065 – 13081-970 Campinas, SP, Brazil

E-mails: cafa@ime.unicamp.br / dias@ime.unicamp.br / nancy@ime.unicamp.br

Abstract. We propose an adaptive method of analyzing a collection of curves which can be,

individually, modeled as a linear combination of spline basis functions. Through the introduction

of latent Bernoulli variables, the number of basis functions, the variance of the error measurements

and the coefficients of the expansion are determined. We provide a modification of the stochastic

EM algorithm for which numerical results show that the estimates are very close to the true curve

in the sense ofL2 norm.
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1 Introduction

It is very common to have data that comes as samples of functions, that is, the

data are curves. Such curves can be obtained either from anon-linemeasuring

process, where we have the data collected continuously in time or from a smo-

othing process applied to discrete data. Functional Data Analysis (FDA) is a set

of techniques that can be used to study the variability of functions from a sample

as well as its derivatives. The major goal is to explain the variability within and

among the functions. For an extensive discussion of such techniques see Ramsay

and Silverman (2002).
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In this paper, we assume that each curve can be modeled as a linear combination

of B-splines functions. The coefficients of the expansion can be obtained by

the least square method. However, in doing so, we get a solution for which

the number of basis functions equals the number of observations, achieving

interpolation of the data. Interpolation is not desirable since we have noisy

data. To avoid this problem we propose a new method to regularize the solution

using stochastic penalization. This is possible through the introduction of latent

Bernoulli random variables which indicate the subset of basis to be selected and

consequently the dimension of the space.

Before applying the model we have to understand the different sources of

variability for curves. Variability for functions can be of two types: range and

phase. The range variability gives the common pattern to each individual or

function. Phase variability, on the other hand, can mask the common pattern of

the functions. The usual situation, where both sources of variability are present,

require complex estimation techniques. As an example, we can think about

height, it is well known that the growth velocity is very high for young children

and slows down as the age increases. Different children have different growth

velocities in scale (range variation) as well as in time (phase variation). The

mean function – also called (cross-)sectional mean – is a descriptive statistic

which is widely used to give a rough idea of the process generating the curves.

Figures 1.1–1.3 show some examples of variability. Notice in Figure 1.3 that the

cross-sectional mean can be very misleading in the presence of phase variability.

For all simulated results in this section we used a low variance noise to better

illustrate each individual curve.

Our approach, like most approaches in Functional Data Analysis can only be

used for curves in the presence of range variability. If phase variability is present

it is necessary to align the curves using a method introduced by Ramsay and Li

(1998) calledregistration. After registration is done, we can find the mean of

the registered curves – the structural mean. Figure 1.4 presents the same curves

as Figure 1.3 after registration. It is clear that in this case the structural mean is

much closer to the real curve than the arithmetic sectional mean of the original

curves.

This paper is organized as follows. Section 2 presents the proposed model
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Figure 1.1 – Simulated curves under range variability.
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Figure 1.2 – Simulated curves under phase variability.

under range variability. An algorithm to estimate the curves based on a modi-

fication of the Stochastic EM algorithm is given in Section 3. The numerical

results presented in Section 4 are based in small simulations and study two types

of curves. The plots and the mean square errors (MSE) obtained show that the
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Figure 1.3 – Simulated curves under range and phase variability.
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Figure 1.4 – Simulated curves under range variability.

techniques are highly successful and very adaptive. Moreover, increasing the

number of curves, lead us to believe that the method is consistent. In Section 5

we provided a modification of the continuous registration algorithm (Ramsay

and Li 1998) which has better performance than the original one in some cases.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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2 Proposed model

Suppose we havem individuals withni observations at pointsxi j ∈ A ⊆ R,

i = 1, . . . , m and j = 1, . . . , ni . Let Yi j = Y(xi j ) be the response obtained

from the i -th individual at the pointxi j . Assuming that the observations are

subjected only to range variability we have the following model

Yi j = g(xi j )+ εi j , (2.1)

whereεi j are normally distributed with zero mean and constant varianceσ 2.

Rice (2000) suggested that random coefficients should be included in the model

to account for individual curve variation. In fact, in many applications, the

observed curves differ not only due to experimental error but also due to random

individual differences among subjects. In this paper we propose one possible

way of accomplishing this random effect. Assume thatg can be written as a

random linear combination of spline functions as

g(xi j ) =
K∑

k=1

Zkiβki Bk(xi j ) (2.2)

where Bk(∙) are the well known spline basis functions (cubic B-splines)

and Zki are independent Bernoulli random variables withZki ∈ {0, 1} and

Pθ (Zki = 1) = θki , for k = 1, . . . , K and i = 1 . . . , m. That is, for

zi = (z1i , . . . , zKi )

f (zi ) = Pθ (Z1i = z1i , . . . , ZKi = zKi ) =
K∏

k=1

θ
zki
k (1− θki )

1−zki . (2.3)

To simplify the notation letY i = (Yi 1, . . . , Y1ni ), Z i = (Z1i , . . . , ZKi ),

β
(K )
i = βi = (β1i , . . . , βKi ), X(K )

i = (B1(xi ), . . . , BK (xi )), with xi =

(xi 1, . . . , xini ).

The conditional density of (Y i |Z i = zi ) is given by:

f (yi |zi ) = φ

(
yi −

∑K
k=1 zkiβki Bk(xi )

σ

)

, (2.4)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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whereφ(∙) denotes the standard multivariate normal density. Their joint density

is

f (yi , zi ) ∝ (σ )−ni exp
{
−

1

2σ 2
‖yi −

K∑

k=1

zkiβki Bk(xi )‖
2

+
K∑

k=1

zki logθki + (1− zki ) log(1− θki )
}
.

Thus the joint log-density of(Y, Z) with respect to a dominant measure can be

written as:

log f (y, z|σ 2, β, θ) =
m∑

i=1

log f (yi , zi )

∝
m∑

i=1

{
−ni logσ −

1

2σ 2
‖yi −

K∑

k=1

zkiβki Bk(xi )‖
2

+
K∑

k=1

log(1− θki )+ zki log

(
θki

1− θki

)
.
}

(2.5)

Note that maximizing the complete log-likelihoodf (y, z|σ 2, β, θ) is equi-

valent to solve a stochastic penalized least square problem associated to (2.5).

Since log(θ/1− θ) < 0, increasing the number of variables
∑

k zki decreases

both the sum of squares and the last term in (2.5). Therefore, we can interpret

the latent variableszki as regularization parameters or stochastic penalization.

In addition, the sum ofzki random variables provides the number of basis

functions needed to fit a model (the dimension of the space) and the values of

zki indicate which variables should be included in the modeli = 1, . . . , m.

However, this kind of representation leads to a limit solution withzki = 1 and

θki → 1 asK →∞, which causes a non-identifiable model. One possible way

to avoid this problem is by using the following transformation:

θki = 1− exp
{
− λi

|βki |∑
r |βr i |

}
(2.6)

with 0 < λi < M , for all i . Observe thatθki goes to 1− e−λi for large values

of βki . That is, large values ofβki indicate that the associated basis to this

Comp. Appl. Math., Vol. 24, N. 2, 2005
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coefficient should be included in the model with high probabilityθki . In order

to avoid extreme values ofθki we suggest to useM = 1 limiting the inclusion

probability to be 1−e−1. Thus, the complete log-likelihood can be rewritten as:

log f (y, z|σ 2, β, θ) =
m∑

i=1

log f (yi , zi )

∝ −ni logσ 2−
1

2σ 2
‖yi −

K∑

k=1

zkiβki Bk(xi )‖
2

+
K∑

k=1

zki log
(
exp

{
λ
|βki |∑
r |βr i |

}
− 1

)
−

K∑

k=1

λ
|βki |∑
r |βr i |

.

(2.7)

Without loss of generality suppose from now on thatni ≡ n for all i =

1, . . . , m.

3 A variation of the stochastic EM algorithm

The EM algorithm was introduced by Dempster, Laird and Rubin (1977) to

deal with estimation in the presence of missing data. In our model, theZki are

non-observable random variables and the EM algorithm could be applied. More

specifically, the algorithm finds iteratively the value ofθ that maximizes the

complete likelihood where at each step the variablesZki are replaced by their

expectations over the conditional density of(Z|Y) which is given by

f (z|y) =
f (y|z) f (z)

f (y)
,

where

f (y) =
∑

z

m∏

i=1

f (yi , zi |σ
2, β, θ),

f (y|z) =
m∏

i=1

f (yi |zi ) and f (z) =
∏

f (zi ).

The appealing feature of the EM algorithm is that it increases the incom-

plete likelihood function at each iteration. However, it is well known that EM

algorithm can reach a saddle point or a plateau. Moreover, there is a high com-

putational cost to findf (z|y). The stochastic EM algorithm proposed by Celeux

Comp. Appl. Math., Vol. 24, N. 2, 2005
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and Diebolt (1992) is an alternative to overcome EM algorithm limitations. At

each iteration, the missing data are replaced by simulated valuesZki generated

according tof (z|y). To simulate these values we notice that

f (z|y) =
f (y|z) f (z)

f (y)
∝ f (y|z) f (z) (3.1)

and Metropolis-Hastings algorithm could be used. The theoretical convergence

properties of SEM algorithms are difficult to assess since it involves the study

of the ergodicity of the Markov chain generated by SEM algorithm and the

existence of the corresponding stationary distribution. For particular cases and

under regularity conditions, (Diebolt and Celeux 1993) proved convergence in

probability to a local maximum. However, computational studies showed that

SEM algorithm is even better than EM algorithm for several cases, for example

censored data (Chauveau 1995), mixture case (Celeux, Chauveau and Diebolt

1996). A drawback of this procedure is that it requires thousands of simulations

and the computational cost would be, again, very high.

In this work we propose a modification of the simulation step in the SEM

algorithm. At each step, instead of generatingZki by the conditional density,

we are going to generate them from their marginal Bernoulli distribution using

estimates ofθ obtained from the data. Notice that if Metropolis-Hastings were

to be used to generate from the conditional distribution using the marginal as the

proposal distribution, the acceptance probability would be

α(z j , z j+1) = min

{
1,

f (y, z j+1|θ)

f (y, z j |θ)

}
.

Therefore, small changes at each step make the acceptance probability very high

and the performances of the approximation and the SEM algorithm do not differ

substantially.

Specifically, the algorithm can be described as follows.

Algorithm 3.1

1. Fix K the maximum number of basis to be used to represent each curve;

2. For each curvei , takeθ
(0)
ki = 1/2, k = 1, . . . , K ;

Comp. Appl. Math., Vol. 24, N. 2, 2005
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3. At iterationl :

(a) SimulateZ(l )
ki as a Bernoulli random variable with success probability

θ
(l )
ki until

∑K
k=1 Z(l )

ki ≥ 3;

(b) Estimateβ̂(l )
i andσ̂ 2 using least squares;

(c) Estimatêλ by maximizing the complete likelihood subject toλ < 1;

(d) Estimateβ̂(l )
i andσ̂ 2 using maximum likelihood;

(e) Updateθ̂ (l+1)
ki = 1− exp{−λ̂

(l )
i |β̂

(l )
ki |/

∑
r |β̂

(l )
r i |};

(f) Saveβ̂
(l )
i ;

(g) If the stopping criteria is satisfied, stop. If not, return to 3a.

4. Summarize all the obtained curves.

In order to apply Algorithm 3.1 we need to specify:

• The maximum number ofbasisK ;

• The summarization procedure of the curves;

• The stopping criterion.

The maximum number of basis K . There is no consensus about a criteria

to fix the maximum number of basis functions on any adaptive process. Dias

and Gamerman (2002) suggest the use of at least 3b+ 2 as a starting point in

the Bayesian non-parametric regression whereb is the number ofbumpsof the

curve. Particularly for our approach, numerical experiments give evidencesthat

K = 4b+ 3 is large enough.

Summary measures. For each iterationl in Algorithm 3.1, vectorsβ̂(l )
i are

obtained for each curvei . These vectors contain the estimates of the coefficients

for the basis selected (through theZ(l )
i ) for the i th curve (the non-selected basis

positions are filled with zeros) and the estimate of thei th curve is given by

Ŷ(l )
i = X i β̂

(l )
i . (3.2)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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The final estimate for thei th curve could be

Ŷi =
1

L

L∑

l=1

Ŷ(l )
i . (3.3)

Although (3.3) provides a natural estimate for each curve, other summary

measures can be proposed through weighted averages of the coefficients of the

selected basis. For example, form = 1 and takingL = 3 iterations with

K = 5 basis, assume that for each iteration we selected the following sets of

basis{1, 3, 4}, {2, 3, 5} and{3, 4, 5} respectively. We could use

β̃1 =
β̂

(1)

1

3
, β̃2 =

β̂
(2)

2

3
, β̃3 =

β̂
(1)

3 + β̂
(2)

3 + β̂
(3)

3

3
,

β̃4 =
β̂

(1)

4 + β̂
(2)

4

3
, β̃5 =

β̂
(2)

5 + β̂
(3)

5

3

(3.4)

or

β̃1 =
β̂

(1)

1

1
, β̃2 =

β̂
(2)

2

2
, β̃3 =

β̂
(1)

3 + β̂
(2)

3 + β̂
(3)

3

3
,

β̃4 =
β̂

(1)

4 + β̂
(2)

4

2
, β̃5 =

β̂
(2)

5 + β̂
(3)

5

2
.

(3.5)

There are several other ways to weight the coefficients. Notice that we can

summarize the estimateŝY(l )
i along each iteration for computing the estimateŶi

for the i th curve in a completely analogous way that we can summarize each

estimateŶi to obtain the final estimatêY. Therefore, we drop thel superscript

and present here only summaries ofŶi to obtain the estimatêY.

Observe that (3.4) and (3.5) are the unweighted and weighted versions of

β̃k =
1

n(Zk)

m∑

i=1

[
Zki β̂ki

]
, (3.6)

with

n(Zk) =

{
m, unweighted case (3.6a)

max
{
1,

∑,
i=1 Zki

}
, weighted case. (3.6b)

In this case, the weights take into account the number of times each basis was

considered in the model.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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We can do a similar summary measure by taking:

β̃ ′k =
1

n′(Zk)

m∑

i=1

[

Zki β̂ki

K∑

r=1

Zri

]

, (3.7)

with

n′(Zk) =

{ ∑m
i=1

∑K
r=1 Zri , unweighted case (3.7a)

max
{
1,

∑m
i=1

[
Zki

∑K
r=1 Zri

]}
, weighted case. (3.7b)

The weights proposed by 3.7 take into account two factors: the number of

basis necessary to approximate each curve and the number of times each basis

was selected. Another proposal is:

β̃ ′′k =
1

n′′(Zk)

m∑

i=1

[
Zki β̂ki

∑K
r=1 Zri

]

, (3.8)

with

n′′(Zki ) =






∑m
i=1

1∑K
r=1 Zri

, unweighted case (3.8a)

max
{
1,

∑m
i=1

[
Zki∑K

r=1 Zri

]}
, weighted case. (3.8b)

This equation is analogous to (3.7), but considers as weight the inverse of the

number of basis necessary to approximate each curve. That is, the bigger the

number of basis necessary to approximate the curve, the smaller its weight.

After computing the summary coefficient’s̃β we can summarize the curve as

Ŷ = Bβ̃, (3.9)

whereβ̃ is obtained through (3.6), (3.7) or (3.8) andB is the design matrix given

by theX variables.

In Section 4 we show that all these proposals provide very good estimates in

terms of MSE.

The stopping criterion. We propose a flexible stopping criterion. Letδ > 0

be such that we wish to stop the estimation process when the MSE between two

successive estimates is smaller thanδ. For each estimated curve, if the maximum

number of iterations is attained (1000) and MSE> δ makeδ ← cδ, c > 1 and

begin again the estimation process. In the simulation study we usedc = 1.3 and

got good results.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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4 Simulation

For all the simulations we used data with no outliers. Without loss of generality

we took equally spaced observations for each curve and used the same sample

grid for all individuals. Moreover, the curves are already registered and aligned

by some registration method. How to register the curves is discussed in Section 5.

Simulations were run in bi-processed Athlon machine with 2.0 GHz processor

and 1.5 Gb RAM memory.

The software used was Ox (http://www.nuff.ox.ac/uk/users/

Doornik ) and R (http://www.cran.r-project.org ), operating in

Linux platform.

The test curves used were

g1(Xt) = cos(Xt)+ sin(2Xt) (4.1)

and

g2(Xt) = 0.1 Xt + 0.9e−(1/2)(Xt−X̄)2
. (4.2)

The observationsYt are generated from the curves above plus a noiseεt . The

variables{εt , t = 1, . . . , n} are iid normal random variables with zero mean and

standard deviationσ . For comparison we run the simulations in three cases:

small (σ = 1/10), moderate (σ = 1/4) and large (σ = 1/2) standard deviation.

Instead of using the raw data to estimate theβ ’s we use a smoothed version

of them calledthe structural mean. There are two ways of smoothing the data.

The first one takes the average of data (discrete observations) and then smooths

it. The second one first smooths each curve and then takes the average of the

smoothed curve. Simulation studies showed that there are no difference between

these methods in terms of mean square error (MSE). Therefore, from now on,

we are going to use as input data the smoothed version of the curves by first

averaging the raw data and then smoothing the obtained curve.

First, we analyze the MSE when we estimate the final curve using Equation

(3.9) and weights given by (3.6), (3.7) and (3.8). We simulated 3 curves and

added a noise with small variance (σ = 1/10). Figure 4.5 presents the estimated

curves. Notice that all three estimates are practically the same and coincide

with the true curve. Convergence was attained after 21, 141 and 159 iterations

respectively. Figure 4.6 presents the same 3 curves but with a higher variance

Comp. Appl. Math., Vol. 24, N. 2, 2005
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noise (σ = 1/2). In this case, for one of the curves convergence was not attained

even after 1000 iterations. Using the flexible stopping criteria described before

we just needed 8 extra iterations to achieve convergence.
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Figure 4.5 – Estimated curves for a sample with small variance.

0 1 2 3 4 5 6

−
1

0
1

2

x

y

True curve
 (3.6a)
 (3.6b)
 (3.7a)
 (3.7b)
 (3.8a)
 (3.8b)

Figure 4.6 – Estimated curves for a sample with large variance.
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To see the performance of Algorithm 3.1, we run several simulations with

different values ofm, different variances for the functions given by (4.1) and

(4.2). As expected, the larger the variance, the lower the quality of the estimation.

On the other hand, we have provided consistent estimators (the bigger the sample

size the better the estimate). Table 4.1 summarizes these results. All summary

measures give approximately the same resulting curve. Measure (3.7a) gives

better results for high variance or bigger sample size, while (3.8a) is better for all

other cases, except one where (3.6a) is better. The occurrence of several identical

results is caused by the simplicity of the curves and small sample size reducing

the number of different solutions.

g1(Xt ) g2(Xt )

noise m m summary
sd (σ ) 3 5 10 3 5 10 measure

4.37e-4 3.96e-4 3.88e-4 4.10e-4 2.62e-4 1.09e-4 (3.6a)
1/10 4.29e-4 3.82e-4 3.87e-4 4.10e-4 2.62e-4 1.02e-4 (3.7a)

4.49e-4 4.12e-4 3.91e-4 4.10e-4 2.62e-4 1.17e-4 (3.8a)

2.47e-3 1.53e-3 4.74e-4 1.12e-3 6.67e-4 3.73e-3 (3.6a)
1/4 2.43e-3 1.56e-3 4.75e-4 1.24e-3 7.01e-4 3.58e-4 (3.7a)

2.51e-3 1.53e-3 4.87e-4 1.02e-3 6.51e-4 3.94e-4 (3.8a)

1.02e-2 5.24e-3 2.89e-3 4.30e-3 1.48e-3 1.31e-3 (3.6a)
1/2 1.03e-2 5.18e-3 2.78e-3 4.30e-3 1.64e-3 1.35e-3 (3.7a)

1.03e-2 5.35e-3 3.03e-3 4.30e-3 1.39e-3 1.28e-3 (3.8a)

Table 4.1 – MSE between the estimate and the true curve.

5 Registration

Registration techniques can be found in Ramsay and Li (1998) and Ramsay

(2003). The implementation of these techniques are available in R and Matlab.

The packagefda in R language has two available techniqueslandmarkand

continuous registration.

The landmark technique is appropriate when the curves to be registered

have prominent features like valleys and peaks. Suppose we have curves

g0, g1, . . . , gm to be registered and they presentQ of such properties at points

tiq , q = 1, . . . , Q andi = 1, . . . , m. In fact, the beginning atti 0 and the ending
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at ti,Q+1 of the i th curve are also considered andQ + 2 properties are to be

used in computing thewarping functionh(t). This functionh is such that the

registration of the curvegi (t) is given by

gi (h(tiq)) = g0(t0q), for q = 0, . . . , Q+ 1. (5.1)

The goal is to make a time transformation such that theQ + 2 properties are

aligned in time. In the R package, the user provides the placement of theQ

properties for each curve which makes the process highly subject to error. For

example, certain curves do not present one or more of the critical points or there

is ambiguity where to place them. When there are too many curves and/or too

many properties the marking is too tedious. However, Ramsay (2003) showed

that automatic methods for mark identification can lead to serious mistakes.

The continuous registration method tries to solve these problems. It maximizes

a measure of similarity among the curves,

F(h) =
∫ b

a
[gi (h(t))− g0(t)]

2 dt, (5.2)

where[a, b] is the observation interval. This measure takes into account the

whole curve and not only the critical points and it works well ifh has good

properties such as smoothness. However, it fails ifgi and g0 differs also in

range. This routine needs that the functionsgi and g0 be given in functional

form which can be obtained using Fourier series or B splines, for example.

In Figure 5.7 we present an example where we simulatedm= 3 curves adding

a low variance noise and shifting it through an uniform random variable in the

interval [0,2]. In this case, since the functions are periodic we used Fourier

expansion with 6 terms. Figure 5.8 presents the registered curves. Observe that

there is a noticeable difference between the structural mean and the true curve

caused by the failure of the registration of two of the curves.

Consider another example where the curves have a range and phase variation.

To obtain this effect we fixed the horizontal axis as a reference and defined

as “bumps” the pieces of the true curve between two zeroes. Following, for

each bump generateq2iq , i = 1, . . . , m, q = 1, . . . , Q (Q = number of bumps)

iid random samples from an uniform random variable in the interval(0.5, 1.5).

Figure 5.9 presents this transformation for 3 curves adding a low variance noise
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Figure 5.7 – A simple shifting case: a. Simulated curves; b. Curves obtained using

create.fourier.basis() .

0 1 2 3 4 5 6

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

registered data
structural mean
true curve

Figure 5.8 – A simple shifting case – Registered curves usingregisterfd() .

for the raw data and the functional data using Fourier transformation. Figure

5.10 presents the result of registration done by R routineregisterfd() . As

the registration process is not right, the structural mean differs very much from

the true curve.
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Figure 5.9 – A complex shifting case: a. Simulated curves; b. Curves obtained using

create.fourier.basis() .
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Figure 5.10 – A complex shifting case – Registered curves usingregisterfd() .

To overcome this problem we propose a modification in the continuous regis-

tration procedure. Based on (5.2) we try to minimize the cumulative difference

betweengi and the reference curveg0, however as each curve may have a diffe-
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rent range we normalize them using

g∗i =
gi −min gi

maxgi −min gi
. (5.3)

From this point on, we can use an idea similar to Ramsay (2003) which suggests

to substitute each curve by itsν-derivative, and our goal is to minimize

1̃i = arg min
1i

∫ b

a

{
Dν

[
g∗i (t +1i )− g∗0(t)

]}2
dt (5.4)

for each curvei , i = 1, . . . , m. In this work we decide to useν = 0. The

procedure is described by Algorithm 5.1. We used the sample points as a grid to

find 1̃i .

Algorithm 5.1

1. Use Algorithm 3.1 to obtain the functional representation of each curve.

2. Normalize each curve using Equation (5.3).

3. Obtain1̃i for each of the normalized curves.

4. Shift the non-normalized curves takinggi (t + 1̃i ).

Figure 5.11 presents a sample ofm = 7 curves having phase and range vari-

ation plus a low variance noise. Figure 5.12 shows the registered curves after

the application of Algorithm 5.1. All estimates using (3.6a), (3.7a) and (3.8a)

were very similar and presented small MSE. Afterward we amplified the noise

by taking a variance 25 times bigger, see Figure 5.13. Figure 5.12 shows the

registered curves after the application of Algorithm 5.1. It seems that a good

registration of the curves was achieved.
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Figure 5.11 – A complex shifting case: a. Simulated curves; b. Curves obtained using

Algorithm 5.1.
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Figure 5.12 – A complex shifting case – Curves obtained using Algorithm 3.1.
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Figure 5.13 – A complex shifting case: a. Simulated curves plus a large variance noise;

b. Curves registered using Algorithm 5.1.
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