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Abstract. We discuss the convergence of line search methods for minimization. We explain
how Newton's method and the BFGS method can fail even if the restrictions of the objective
function to the search lines are strictly convex functions, the level sets of the objective functions
are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation
illustrates a new way to combine general mathematical concepts and symbolic computation to
analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic

analysis of the iterates of nonlinear programming agorithms.
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1 Introduction

Line search methods are fundamental algorithms in nonlinear programming.
Their theory started with Cauchy [4] and they were implemented in the first
electronic computers in the late 1940's and early 1950's. They have been in-
tensively studied since then and today they are widely used by scientists and
engineers. Their convergencetheory iswell developed and isdescribed at length
in many good surveys, as[11], and even in text books, like [2] and [12].

Line search methods, as discussed in this work, are used to solve the uncon-
strained minimization problem for a smooth function f:

minimize f(x) for x € R". D
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130 ON THE DIVERGENCE OF LINE SEARCH METHODS

We see them as discrete dynamical systems of the form

Xp = Xp-1t+oxdi1,  di = D(f, xi, o, di, ex), @

exy1 = E(f, xp, o, di, ex),
where{x;} C R" isthesequenceweexpect to convergetothesolution of problem
(1) and ¢;, containsauxiliary information specific to each method. Atthekth step
we choose asearch direction d; and analyze f along theline {x; + wd;, w € R}.
We search for astep size o, € R such that the sequence x; satisfies constraints

C(fs xk, o, di) = 0 ©)

that are ssimple and try to force the x; to converge to alocal minimizer of f.
For example, Newton's method for minimizing a function can be written in
the framework (2) by taking

D(f, xx, ax, dy, er) = —V2f (x) 1Vf (xp)

and E = 0. The BFGS method could be considered by taking ¢, € R"*" and
setting

D(fvxkvakvdkvek) = _ek_lgk7 (4)
(677
E(f, xk, o, di, ex) = ex + —

t l t
g8 — —(grk+1— g (g1 — &)’ (5)
Si 8k S8k

for gv = VF(x1), gre1 = Vf(xx + ardy) and s, = aydy. A typical example of
constraints C on the stepsize «;, in (3) are the Wolfe conditions:

ooV (x)'di + f(xx) — fxx +ondi) > 0, (6)
d (Vf (e + axdi) — BVf (i) = 0, @)

where0 < o < B < 1. Usualy, condition (6) enforces a sufficient decay in the
value of f from step k to k + 1 and condition (7) leads to steps sy = xx11 — X
which are not too short.

A typical theorem about the convergence of line search methods look like this
one adapted from page 212 in Nocedal and Wright's book [12]:
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WALTER F. MASCARENHAS 131

Theorem 1. Suppose f : R" — R has continuous second order derivatives,
Q = {x € R such that f(x) < f(x0)} (8
is bounded and there exist C > O such that
Y'VEf(x)y = Cllyl? for all x,y €R. 9)

If the n X n matrix eq is symmetric positive definite and the iterates x; gener-
ated by the BFGS method, as described in (2)—(5), satisfy the Wolfe conditions
(6)—(7) then the sequence {x;} converges to a minimizer of f (which is unique
since f is strictly convex by (9)). O

Starting in the 1960's, similar theorems have been proved for severa line
search methods. Since that time people have tried to find more general results
regarding the convergence of line search methods. Most researchers were happy
with constraintslike the Wolfe conditions and acknowledged their need, because
itiseasy to enforcethemin practiceand it isalso easy to build examplesinwhich
results like theorem 1 are false if similar constraints are not imposed. However,
convexity constraintslike (9) wereregarded astoo strong and undesirable. Much
effort was devoted to eliminating them but progress was slow and frustrating due
to the nonlinear nature of expressions like (5). As a consequence, M. Powell,
one of the leading researchersin this area, wrotein [16] that:

Moreover, theoretical studies have suggested several improvements
to algorithms, and they provide a broad view of the subject that
is very helpful to research. However, because of the difficulty of
analyzing nonlinear calculations, the vast mgjority of theoretical
questions that are important to the performance of optimization al-
gorithmsin practice are unanswered. . .

A final answer regarding the need of the convexity hypothesis (9) in theorem 1
wasfirst published in 2002 by Y. Dai [6] and it was somewhat surprising: if f is
not convex then the iterates generated by the BFGS method may never approach
any point z such that Vf(z) = 0.

We were unaware of Dai’s work and in the year his result was published we
found a similar answer regarding the convergence of the BFGS method [13].
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132 ON THE DIVERGENCE OF LINE SEARCH METHODS

Our approach, however, was quite different from his. Our work was based on
the observation that equations (4)—(7) have symmetries which can be exploited
to build a counterexample for theorem 1 without the hypothesis (9). After the
publication of [13] we generalized the argument used in that paper and our
purpose in thiswork isto present this generalization.

Our approach is motivated by the work started by S. Lie in the late 1800’s,
in which symmetries have lead to remarkable solutions of nonlinear differential
equations[3]. We developed a technique to produce examples with search lines
asin Figure 1.

vertical axis

Figure 1 — An examplein which the iterates (black dots) approach acyclewith period 3.
The inclined lines represent the search lines and the horizontal lines are the limiting
search directions. The vertical lines indicate that the projection of the iterates in the
horizontal plane are the vertices of the limit cycle.

The line search methods we discuss are invariant with respect to orthogonal
changesof variablesand scaling, inthesensethat if they assignastep s, = x;41—
x; tothe point x; and abjective function F, Q isan orthogonal matrix and A € R
then the step 5, corresponding to the objective function F(x) = F(A~1Q'x)
a the point X, = AQx; iss; = AQs,. We argue that in relevant cases these
symmetries lead to iterates asin Figure 1.

Actually, the possibility of cyclic behavior for line search methodswas already
mentioned by Curry in 1944 [5]. It wasaso discussed in [6, 9, 13, 15]. Herewe
go one step further and present a systematic way to build examples that display
thisbehavior. The qualitative behavior of theiteratesin our examplesis captured
by the concepts of flower and dandelion described in section 3. Inintuitiveterms
the iterates can be seen as defining the petals of aflower and their accumulation
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WALTER F. MASCARENHAS 133

pointsliein acyclethat define the flower’s core. When the iterates approach the
core along well defined directions we say that the flower is a dandelion.

Figure2—A flower and adandelionwith six petals. Thedotsoutsidethe circlesrepresent
the iterates. They accumulate at the points at the circles, which are not critical points

of f.

In sections 2 and 7 we present concrete examples of dandelions, for Newton's
method and the BFGS method, respectively. In these examplesthe line searches
are exact, thefirst Wolfe condition is satisfied and the restrictions of the objective
functionsto the search lines are strictly convex, the level setsof f are compact,
but yet the iterates have the cyclic asymptotic behavior illustrated in Figure 1.
The BFGS and Newton’'s methods are among the most important line search
methods and our examples refute the following conjecture:

If when applying the BFGS or Newton's methods we choose the
first local minimizer along the search line then the iterates converge
to alocal minimizer of the objective function.

Besides symmetries, this work is based on a theorem proved by H. Whitney
in 1934 [17]. Whitney’s theorem regards the extension of C™ functions from
subsets of R” to R”. It saysthat if afunction F and its partial derivatives up
to order m are defined in asubset E of R" and F’s Taylor series up to order m
behave properly in E then F can be extended toa C™ functionin R". Whitney’s
theorem is a handy tool to highlight the weak points of nonlinear programming
algorithms.

In section 2 weillustrate how symmetries and Whitney’s theorem can be com-
bined to analyze nonlinear line search methods in particular situations asif they
werelinear. Thisanalysisisnot adversely affected by the number of dimensions.
To the contrary, as we go to higher dimensions the number of free parameters
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134 ON THE DIVERGENCE OF LINE SEARCH METHODS

at our disposal increases. We are then able to observe phenomena contrary to
our 2 or 3 dimensional intuition. However, as the experience with Lax Pairs has
shown [3], “exploiting symmetry” is easier said than done. The algebraic ma-
nipulations necessary to implement our ideas can be overwhelming. Although
the example for Newton's method presented in section 2 is adirect consequence
of symmetry, we would not be able to build the example for the BFGS method
in section 7 without the software Mathematica. Fortunately, today we have the
luxury of tools like Mathematica and can focus on the fundamental geometrical
aspects of the line search methods.

Our arguments can be adapted to objective functions with mth order Lips
chitz continuous derivatives or to the more general class C;,. (R") of functions
discussed by C. Fefferman in [7], but we do not aim for utmost generality and
restrict ourselves to objective functions with Lipschitz continuous second order
derivatives, so that we can speak intermsof gradients and Hessians and avoid the
use of higher order multilinear forms. Onthe other hand, [1] indicatesthat things
aredifferent for analytic objective functions, mainly because these functions are
“rigid” and it is not possible to change them only locally, or more technicaly,
due to the lack of analytic partitions of the unity.

This work has six more sections and an appendix. Section 2 motivates our
approach by using it to analyze the convergence of Newton's method. The
technical concepts that formalize our arguments are presented in sections 3 and
4. Section 5 discusses the Wolfe conditions and section 6 explains how to build
examples in which the objective function is convex along the search lines. In
section 7 we combine the results from the previous sections to build an example
of divergence for the BFGS method. 1n the appendix we prove our claims.

Finally, we would like to emphasize that it isimportant to look at the resultsin
thiswork from abroad perspective. The examples presented here should not be
taken as evidence against the use of Newton’s method or the BFGS method. To
the contrary, these methods perform quite well in practice. Inreal life numerical
algorithms are implemented in floating point arithmetic and rounding errors
would break our examplesapart (and introduce other subtleproblems). Thiswork
highlights the limitations of the asymptotic analysis of these algorithms. Our
examples show that, even if taken to extremes, complex nonlinear calculations
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may not be able to explain the practical behavior of nonlinear programming
algorithms. The main advice one can extract from thiswork isthefollowing rule
of thumb:

If you find that it is difficult to prove that a line search method
converges under certain conditions, and other people have tried the
same for a couple of decades and did not succeed, then consider the
possibility that in theory the method may actually fail under these
conditions, even if all your numerical experiments indicate that it
always converge.

2 Newton’s method

We now describe a family examples of divergence for Newton's method for
minimization. The examples are parameterized by the step size w: givena > 0
we build an example in which al step-sizes o, are equa to «. This section
motivates the theory presented later on. Although the geometry underlying the
examples is accurately described by Figure 1, the algebraic details make they
look more complex than they really are. Thus, we suggest that you pay little
attention to the formulae and focus on the structure of our argument, which can
be summarized as follows:

() we guess general expressions for the iterates x;, function values f;, gra
dients g, and Hessians i, which we believe to be compatible with the
symmetries in Newton's method and the theory presented below.

(b) we plug these expressions into the formula that define Newton’s method
and obtain equations relating our guessesin item (a).

(c) wesolvetheseequationsand the next sectionsguaranteethe existenceof an
objective function F such that F(xy) = fi, VF (x¢) = gk, VIF (x3) = hy
and s} VZF (x; + wsi)s, > 0for w € R and k big enough.

Following this recipe, we decomposed R® as adirect sum of athree dimensional
“horizontal” subspace and a three dimensional “vertical” subspace and tried
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136 ON THE DIVERGENCE OF LINE SEARCH METHODS

iterates x;, function values f;, gradients g; and Hessians ;. of the form *:

xp = 0"DOMX, fi = A7, (10)
g = AY0*D(L Mg, hy = AO*DATHADOTHO*,  (11)

forr e (0,1), x=G",x")andg = (g", g°) withx”, x°, 2" and g* < R® and

[ 9 O (1 O - (A C
Q‘(o Qv)’ D(M_(o u)’ h_<C’ 0)’ (12)

where I isthe 3 x 3 identity matrix, Q;, and Q, are 3 x 3 orthogonal matrices,
A isasymmetric 3 x 3matrix and C isa3 x 3 matrix. We then concluded that

a=l X=X = é
> ,
1
(13)
1 V3 -1 0 0 -1 0
thé 1 \/é 0 , Qv= 1 0 O
0O 0 -2 0 0 1

are convenient: they are simple and after picking them we still have the freedom
to choose g, A and C in order to satisfy the hypothesis of the theory presented
in the next sections and obtain iterates x; which are consistent with the formula

V2F (x;)s; + aVF(x;) =0 (14)

that defines Newton’s method with step-size «. If we replace VF(x;) and
V2F (x,) in (14) by g; and A in (11) then A, Q, and Q, cancel out and we
obtain the equations

A" + C5¥ +ag" =0, and C's" +ag’ =0, (15)

IThe matrices h; are not positive definite and in practice one would take another search
direction if, for example, this fact was detected during a Cholesky factorization of 4. However,
to keep the algebra as simples as possible, in this work we do not enforce the condition that the
Hessians V2f (x;) are s.p.d. In [14] we show that Newton's method may fail even V2f (xy) is
s.p.d. for al k and the Wolfe conditions are satisfied.
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where
5= (0, — DX" and V=00, — Dx". (16)
Noticethat, dueto theinvariance of Newton’s method with respect to orthogonal
changes of variables and scaling, thereisno “k” in (15)—(16). Equations (15)

yields
g =—-C'5"/a (17)
Equations (10) and (11) show that s g, = 27%5'g, sigis1 = 2-**D5' D(2) 07,

and fii1— fi = —2-*tDF. Therefore, if

5g <0, ¥D(2)Qg =0 and f=>0 (18)

then s, = xx11—x isadescent direction, theline searchesare exact (s; gx+1 = 0)
and the first Wolfe condition

fir1 = fe S 0538k
holds for
0<o <min{l, —f/(='9}.
We now apply theresultsfrom the next sections. items4c and 4d in the definition
of seed in section 4 require that

g'=cx and f=@"= (19)
and section 6 saysthat to guarantee the convexity of the objective function along
the search lines we should ask for

5'g<—f<0, §hs>0 and FQDQKD2Q5>0. (20)

To complete the specification of the termsin (10)—(11) we chose the 9 entries
of C and the 6 independent entries of A in order to satisfy (15)—(20). These
equations and inequalities are linear in A and C and the following matrices
satisfy them:

2+ v/3)(17 — 220 + 160:?) 20 2(a — 1)
A=2+3 ( 2 2+v32x -1 0
2 — 1) 0 0
(21)
30 — 502 — 4 1—a+3a? a(1+ 5x)
C=2++V3) 0 2-.3 0
2—4/3 0 0
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Equations (10)—(13), (16)—(19) and (21) define iterates and function values,
gradients and Hessians of the objective function at them. The next sections
guarante the existence of an objective function F with Lipschitz continuous
second order derivativessuchthat F (x;) = fi, VF (x¢) = g and V2F (x;) = hy.
Moreover, neither the vectors D’(0)x and D’(0)s nor the vectors D(0)s and
D(0)D(2)s are aligned 2 and the lines ¢, = {D(0)xx + wD(Q)si, w € R} are
suchthat &, N =@ fordl r +1 < k < r + 5 and theorem 3 and lemmas 1
and 3 in the following sections show that we have much freedom to chose the
value of F(x) aong the search segments {x; + ws;, w € [0, 1]}: if the function
¥ : [0, 1] — R has Lipschitz continuous second order derivatives and

v(0) = f, YD) = f/2, ¥'(0) =¢'5, ¥ (1) =0,
V" (0) =5'hs, and v (1) =5'QD()hD(2)Q's5/2

then F can be chosen so that F (x; + wsi) = (1/2)%y(w) for w € [0, 1] and
k large. In fact, condition (20) and theorem 4 in section 6 show that F can be
chosen so that s; F'(x; + wsy)s, > 0for w € R and k large and the level sets

Q(f,z) = {x e R" such that f(x) <z}

are bounded.

3 Flowers and Dandelions

We now present a framework to apply Whitney’s theorem to study the conver-
gence of line search methods. We describe examples in which the iterates x;
and the function values f;, the gradients g, and the Hessians /1, of the objective
function are grouped into p converging subsequences, which we call petals (see
Figure2). Thelimitsof thesesubsequences{x;}, { fi}, {g«} and {h,} arethemem-
bers of periodic sequences { xi}, {¢i}, {vi} and {6}, sothat lim, o X g+ = X»
forall r and x,+p = Xy liMysoe frgr = @ foralrand ¢, , = ¢, Viip = ¥
and 6, ., = 6,. Informal terms:

2D’()L) hereisthe derivative of D (1) with respect to A.
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Definition 1. A flower F(n, p, X, Xk, fi, &, ht) is a collection formed by
1. X € (0, 1) and positive integers n and p.
2. Sequences {x;} and {x;} in R" and a constant M > O such that
@ xi=x;&i=j.

() x;=xx < j=k modp.
(€ A* < Mllxi — xell < M22%,

3. Sequences { fi}, {ox} C R, {gr}, {vi} C R" and {h}, {6k} € H" such that

Pi+p = P> Yitp = Vi 9k+p = b, (22)
e — Ocll < MAX, (23)
gk — v — Ok — x| < MAZ, (24)

1
I fi — o — ¥ G — xu0) — >0 — x) i — x| < MA* - (25)

where H" is the set of n X n symmetric matrices. ]

Notice that the mod in item 2.b and equation (22) in the definition above
imply that the sequences {x}, {y«} and {6, } have period p and item 2.c implies
that as k — oo the sequence x; accumulates at the limit cycle defined by the
Xxx- The next definitions and theorems relates the f;, g, and k. in aflower to an
objective function F with Lipschitz continuous second derivatives:

Definition 2. Suppose U C R" and V C RP. We define Lip" (U, V) as the
space of functions F : U — V with Lipschitz continuous mth derivatives. If
V = R then we call this space simply by Lip" (U). O

Definition 3. We define LC?*(R") as the set of functions f in Lip>(R") for
which there exists constants Cy and Ry € R, which depend on f, such that if
x|l > Ry then V2f (x) is positive definite and | V?f (x)~Y|| < Cy. O
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The class LC?(R") is interesting because if f € LC?(R") then there exists a
constant D ; such that

1 1
f(x) > =—Ilx|I? - Dy and IVF@) = —=|x|| — Dy.
2Cf Cf

As a consequence, the level sets
Q(f.2) = {x e R” such that f(x) <z}

are compact, as required by many theorems regarding the convergence of line
search methods, and all points x with Vf(x) = O aresuch that ||x|| < D/Cy.
Thus, the elements of LC?(R") have a compact set of critical points and if an
algorithm fails to find one of them then the algorithm is to be blamed, not the
objective function. The next theorem shows that flowers can be interpolated by
functionsin LC(R"):

Theorem 2. Givenaflower F(n, p, A, Xk, fx, &, hi) there exists F € LCZ(R)
such that F(x;) = fi, VF (xz) = g and VF (x;) = hy for all k. O

If the flower is a dandelion then we can improve this result and specify the
objective function and its derivatives a ong the segments {x; + ws;, w € [0, 1]}:

Theorem 3. [f the functions {F.}, {Gy} and {H,} and the intervals {[ay, by ]}
are compatible with the dandelion D(m, n, p, A, X, fx, &, hi) then there exists
ko € Nand F € LC?(R") such that F (xg +wsi) = Fi(w, AX), VF (xp + wsy) =
Gir(w, A% and V?F (x; + wsy) = Hy (w, ) for k > ko and w € [ay, bi]. ]

This theorem will make sense after you read the following definitions:
Definition 4. A flower F(n, p, ©, xi, fr, &, hi) is a dandelion if there exist
Sfunctions X, € Li pz([O, 1], R™) such that, for all k and Sy (z) = Xi1+1(2) — Xk (2),

(a) Xk+p = Xy and x; = Xk()»k).

(b) The vectors S;(0), X} (0) and X ,(0) are linearly independent.

(©) The vectors Si(0), Sy11(0) and X, ,(0) are linearly independent. ]
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Definition 5. The intervals [ay, bi], defined for k € N, are compatible with a
dandelion if

(@ ax = aryp <0and by, = by > 1fork e N.

(b) The segments {X;(0) +w Sk (0), w € [ax, bi]} and {X,(0) +wS, (0), w €
la, b/1} are disjointifr +1 <k <r+p—1 0

Definition 6. For all k € N, consider functions Fy € Lip?(R?), Gy € Lip*(R?,
R") and H; € Lipo(Rz, H"). We say that {F}}, {G\} and {H} are compatible
with a dandelion D if Fiy, = Fy, Giyp = Gy and Hy, = Hy and there exists
ko such that if k > ko, i € {0,1}, w e Rand z = K then

Fk(i7 Z) = fk-‘ria Gk(i7 Z) = 8k+i>» Hk(i’ Z) =hk+ia (26)
0F, 0 F,

Lw, 2) = Gr(w, 2)' st “Lw, 0 = Gr(w, 0) Vi (w), (27)
ow 0z

9°F, G

S (w, 0) = — X (w, 0)' Vi(w) + G (w, 0) Up(w), (28)
07 0z

G G

a—yf(w, 2) = Hi(w, 2)st. a_zk(“” 0) = Hy(w, 0) Vi (w) (29)

for Vi(w) = (1 - w)X;(0) + wX; ,(0) and Up(w) = (1 — w)X;(0)+
wX;,1(0). O
If wedo not careabout thederivativesof F indirectionsnormal to the segments

{xx + wsg, w € [0, 1]} then the search for compatible functions Fy, G, and H,
issimplified by the following lemma

Lemma 1. Let D(m,n, p, A, X, fi, &, hi) be a dandelion and, for k € N,
functions Fy, € Lipz(Rz) for which Fy ., = Fy. If there exist kg € N such that
2
k

. oF . 0°F; .
F(i, 2 = fiu, %(l, W) = gl sk, W;(l’ A = sphiise (30)

fori € {0,1} and k > ko then there exist functions G € Lipl(]RZ, R") and
H; € LipO(RZ, H") such that D and {F;}, {G} and { H,} are compatible. ]
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Therefore, we can focus on Fy.(w, z) and neglect Hy(w, z) and G (w, z) for
w ¢ {0, 1}. In the next section we describe a class of dandelions for which we
can restrict ourselves to functions F; of the form Fi(w, z) = z% ¥ (w).

4 Symmetric dandelions and their seeds

In this section we present afamily of dandelions that includes the examples for
the BFGS and Newton’s methods mentioned in the introduction. These dande-
lions combine symmetriesimposed by an orthogonal matrix Q with contractions
dictated by adiagona matrix D. They are defined by their seeds:

Definition 7. A seed S(n, p,d, Q, Xi, 71(’ 7 hy) is a collection formed by
1. n peNandd=(d;...d,) € N" such that p > 3and d, = maxd,.

2. A n x n orthogonal matrix Q such that QP = I and the diagonal matrix

D(z) with ith diagonal entry equal to z% commutes with Q for z € R.

3. A sequence {X;} C R" such that Xy, = Xy, the points x, = D(0)Q"x,
are distinct for 0 < r < p and the vectors

Sk = DQ)OXpq1 — X (31)

are such that, for 0 < r < p, the vectors D'(0)x, and D’(0Q)s, are not

aligned and neither are the vectors D(0)s, and D(0)s, 1.

4. Sequences {7k} CR {g,} CR"and {hy} € H" such that

@ Fiip = fi 8usp = 8 and hiy, = hy for all k.
(b) (h)ij =0ifd; +d; > d,.
(©) Ifd=d,—1andJ ={j|d; > O} then
@1 = Y _(hi)y &) - (32)
=

@ Ifdy <2 L ={l|d =dy}and S = (G, )| di +d; = dy,
d; >0, d; > O} then

_ 1 _
fe=2 @G+ 5 ) G0 O (39)

leL (i,j)es
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A seed and 1 € (0, 1) generate a dandelion through the formulae

Xi(2) = Q" D)%, xe = X (A5, xe = Xi(0), (34)

fio =M F o =0, (35)

g = 2" 0"D0 g, v =0, (36)

he = X DO Q¥ 0 F DOV, O = Q*n° 07, 37)
where

&)= @i if d=d, ad (g7);, =0 otherwise, (38)
(h,to)ij = (Ek)ij if d,‘ +d] = dn and (,’lzo),] =0 otherwise. (39)

Thisresult isformalized by the following lemma:
Lemma 2. IfS(n, p,d, Q, xy, 7,(, 7 hy) is a seed and ) € (0, 1) then there

exists a unique dandelion D(S) with Xy, fi, & Mk, O, Vi and 6y as in (34)—(39).
Moreover, D(S)’s steps sy = Xj11 — Xi are given by

sk = Q¥ D (W5 (40)

for sy defined in (31). O
It iseasy to apply lemma 1 and theorem 3 to D(S):
Lemma 3. If S(n, p.d, Q. %, f1, 8 i) is a seed, A € (0,1), x, fo &

and hy are given by (34)—(37) and the functions V. € Lip*(R), defined for
0 <r < p, satisfy

V(i) = fryis U (i) = 5.8r4is U (0) = sphy s, (41)

fori € {0, 1} then the functions Fi(w, ) = 2%Vt mod p(w) satisfy (30). ]

To build asymmetric dandelion and specify the value of the objective function
along the search segments {x; + ws;, w € [0, 1]} it is enough to find the right
seed and functions .. Once we find them, the existence of an objective function

Comp. Appl. Math., Vol. 26, N. 1, 2007



144 ON THE DIVERGENCE OF LINE SEARCH METHODS

F with VF (x) = gk, VZF (x¢) = hy and F (xx + wsg) = Ay mog »(w) for
Xy fro g and hy in (34)—(37) is guaranteed by lemma 3 and theorem 3. To find
a seed we proceed as in section 2: we plug (34)—(37) into the expressions that
define

(@ the method of our interest,
(b) the compatibility conditions in the definition of seed and theorem 3,

(c) additiona constraints, like the Wolfe conditions in section 5 and the
convexity conditionsin section 6.

and analyze the result. If equations (34)—(37) are compatible with the method's
symmetries, as they are for the BFGS and Newton's methods, then we have a
chance of handling these constraints and may even find closed form solutions
for them. If equations (34)—(37) are not related to the method’s symmetriesthen
the dandelion will not bloom.

5 The Wolfe conditions

In this section we show that the Wolfe conditions

fear — fx < 0gisk (42)

and

St8k+1 = Bgisk (43)
may not prevent the cyclic behavior illustrated in figures 1 and 2. In fact, we can
have cyclic behavior even if we replace the second Wolfe condition (43) by the
stronger requirement s; g1 = O, which is called exact line search condition.
These conditions are invariant with respect to orthogonal changes of variables
and scaling and can be easily checked for the dandelions coming from a seed:

Lemma 4. Let S(n, p,d, Q, Xk, f1. Qs hi) be a seed and D(m, n, p, k., x;,
Jx» &k, hi) the corresponding dandelion.

(@ If5.8,.1=0for0<r < p then s g1 =0 forall k.
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(b) If5'g, <O for O <r < p then the first Wolfe condition (42) holds for

o fadf g~ f
o <op= Min {M}

0=r<p 5,8

() If sig, <O for 0 <r < p then the second Wolfe condition (43) is
verified for

s'g
B > Bo= max -7, O
O<r<p S8

6 Convexity along the search lines

Convexity isanimportant simplifying assumption in optimization. Itistempting
to conjecture that strict convexity along the search lines guarantees the conver-
genceof line search methods 3. Sometimes even stronger conjectures are made,
like having convergence if we choose agloba minimizer or thefirst local mini-
mizer aong the search line. We now show that strict convexity along the search
lines does not rule out the cyclic behavior depicted in figures 1 and 2. To do that,
we present a theorem that yields an objective function which is strictly convex
along the search lines of a dandelion that comes from a seed:

Theorem 4. Let S(n, p,d, Q, Xk, fi. Qs i) be a seed, » € (0,1) and x;,
Xi» fio & and hy be given by (34)—(37). Let & be the convex hull of {xi, 0 <
k < p}. Consider the lines &, = {xx + w(xr+1— xx), w € R} and assume that
LNYN{=Pforr+1<k<r+p—21L1IfforO<r <p,

s'gr < fro1— fr <sSigr41, sSthys, >0 and  slh,i1s, >0 (44)
then there exist a function F € LC?(R") and ko such that ifk > ko then F(x;) =
fi» VF (x) = gr, VF (xi) = hy and s,’{VZF(xk + wsg)sy > O0forallw e R. [

If the vector d that defines the seed S has more than two entries equal to 0
thenthelines ¥, and ¢, andr +1 < k < r + p — Laredigoint for amost al
choices of the points x;. Therefore, to build examples of divergence in which

3By strict convexity along the search line we mean that the directional second derivatives
sEV2F (xy + wsy)sy are positive.
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the objective function is strictly convex along the search lines we can focus on
(44) and check the intersections later, just to make sure we were not unlucky.
Thisiswhat we did in section 2 and will do again in the next section.

7 The BFGS method

In this section we present an example of divergence for the BFGS method in
whichtheobjectivefunctionisstrictly convex alongthesearchlines. Theessence
of this example is already present in [13] and we suggest that you read this
reference as an introduction to this section. Our purpose hereisto show that the
concepts of flower, dandelion and seed reduce the construction of exampleslike
theonein[13] to the solution of algebraic problems. Software like Mathematica
or Mapple can decideif such a gebraic problems have solutions and find accurate
approximation to these solutions. The validation of the example becomesthen a
question of using these approximate solutions wisely to check the requirements
in the definitions of flower, dandelion and seed and the hypothesis of thelemmas
and theorems in the previous sections.

We analyze the BFGS method with exact line searches, i.e., sj g1 = 0. In
this case the Hessian approximations B, are updated according to the formula:

O 1
Biy1= Bi+ —— &g — ——(8kr1 — &) (8kv1 — &0 (45)
S8k S 8k

where g, = VF (x;). Theiterates x; evolve according to
sk = —a B Mg and Xit1 = X + Sk. (46)

Equations (45)—(46) areinvariant with respect to orthogonal changesof variables
and scaling, in the sense that if Q is an orthogonal matrix, A € R and F, By
and x; satisfy equations (45)—(46) then F(x) = F(A"1Q'x), By = A 2QB Q"
and x; = A Qx; satisfy them too. It ishard to exploit these symmetries because
the BFGS method was conceived to correct the matrices B;. However, it hasan
additional symmetry: if wetake B, of the form

n—1

Ofyi t
By =— E — Gt 47
k — gll;+iSk+i gk+ gk—H ( )
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combined with the conditions
sig <0 and 584, =0 for l1<j<n and keN, (48)

then equation (46) is automatically satisfied and (45) holds if

8k+n = Pk (8k+1 — &k), (49)
for o, such that
sltc—i-ngk"‘”
Ogn = — ; 2 - (50)
S 8k Py,

Notice that if we assume (48) and take oy = 1 for 0 < k < n, o4 in (50) for
k > n then the o, are positive and the vectors g, . .. gr1,—1 aelinearly inde-
pendent, because if we suppose that Z?;é Wjgk+; = Owith uo = 1then (48)
leads to the contradiction 0 = s Z’};é wigk+j = si& < 0. Therefore, under
(48)—(50) the matrices B, defined by (47) are positive definite and to build an
exampl e of divergence for the BFGS method we can ignore «;, and B, and focus
on (48)—(49).

To apply the theory above we plug (34)—(37) into (48) and (49) and deduce
that aseed S(n, p,d, Q. Xk, f. gs» h) is consistent with the BFGS method if

518, <0 and 5.D(A)Q’g,,; =0 for 1<j<n, (51
Zn§k+n = Pk (Z§k+1 - gk) ) (52)

where Z = A% D(A~1) Q. If wefix Z then (52) becomessimilar to an eigenvalue
problem, with the p’s playing therole of eigenvalues and theg’s of eigenvectors.
We solved eguations (52) for g, and py in the case
COsZz —SNZ; 1
sng;  CoSZ; 1
-1 1

) = ¥0.9and n = 6, as described in the lemma
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Lemma5. IfQ and D()\) are the matrices above, d, = 3,n = 6and» = /0.9
then there exist vectors g, € R® and coefficients and p, € R that satisfy (52)

and are such that g, 11 = &, Prr11 = Py and the six vectors in the set
{DA)Q'gy;, j=0.1,....5} (53)

are linearly independent for each k € N. O

The linear independence of the vectors D(1~/)Q/g,, ; in lemma 5 implies
that we can solve the following linear systems of equations on the vectorss:

5ig,=-1 and S,D(A)Qg,; =0 for 1<j<6. (54
The vectorss; obtained from (54) define steps s, by (40):
si = X*5, for X=DXOQ

and we claim that the points

10
To = —(I-x1)7 Y x5, (55)
=0
k=1
X o= X%+ ) X5 for k>0 (56)
j=0
satisfy
Xi+66 = Xk (57)

and lead to points x; = X*x such that s, = xx41 — x¢. Infact, using (56) it
is straightforward to deduce that x; .1 — x; = XX 1 — Xk%, = X550 = 51
To verify (57), notice that (56) yields

k+65
Xiees = X [Xo+ D X7%5; + x7%A (58)
j=66
where
65
A=(I-X%)%o+) XI5 (59)

j=0
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Now, since g, 1, = &, equation (54) impliesthat 5,11 = 5 and

65 5 10 10

> X5 = (Z X“’) Y oXIs; = - x"H7 - X% X5

j=0 r=0 j=0 =0
Combining this equation, (55) and (59) we conclude that A = 0 and eguation
(58) and the identity 5, _s = 5; lead to (57).

In the proof of lemma5 we show that the g, can be chosen so that the vectors

5« defined by (54) satisfy the linear independence requirementsin the definition
of seed. TheXx; and g, above, d = (0,0, 0, 1, 1, 3),

fi=1 and hi = D'(0)5;5% D' (0) (60)

are also compatible with this definition. Asaconsequence, n = 6, p = 66, d,
Q Xi,f .8, ad hy; define aseed S. This seed leads to a dandelion D(S) with
steps s, and gradients g, compatible with the BFGS method with the matrices
By in (45) and step sizes o, in (50). Equations (34)—(37) and (54) imply that the
function values and gradients associated to D(S) satisfy

S;{gk = —)\.3k < )\.3k+3 — )\‘3]( = fk+l — fk <0= S,l{gk+1. (61)

Lemma 4 shows that the iterates x; corresponding to D satisfy the first Wolfe
condition for 0 < o < 1 — 3. Moreover, amost al choices of the vectors g,
in the proof of lemma5 lead to lines &, = {D(0) O*x; + wD(0) Q%5;, w € R}
suchthat &, N =@ forr+1 <k <r+65ands;D'(0)s,+1 # 0. Equation
(60) shows that s; s > 0 and s;hxi15¢ > 0. Asaresult, equation (61) and
theorem 4 yield an objective function F € LC?(R®) such that the iterates x;
generated by applying the BFGS method to F with xo = xo and B, above satisfy
st V2F (x; + wsg)sy > Ofor k largeand w € R.

Thiscompletesthe presentation of an example showing that thereisnot enough
strength in the definition of the BFGS method, the exact line search condition and
the Wolfe conditions to prevent the cyclic behavior in figures 1 and 2, even when
the objective function is strictly convex along the search lines and has compact
level sets.

You may now be wondering if we could not find asimpler example, in dimen-
sion less than 6. Unfortunately, we were not able to find such example because
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the eigenvalue problem (52) does not seem to have real solutions p, # O for
n < 6. Noticethat thisisa purely algebraic issue, which has nothing to do with
nonlinear programming. Similarly, the minimum dimension at which we could
build counter examples with the techniques described here for other methods
could be bigger or smaller than 6, depending on the particular symmetries of the
method and the existence of solutionsfor the corresponding algebraic problems.

8 Appendix

We now prove the results stated in the previous sections. Our main tool is the
following corollary of the Whitney’s extension theorem:

Lemma 6. Let E be a bounded subset of R" and suppose F : E — R,
G : E - Rtand H : E — H" are functions with domain E and M is a

constant. If

I1H(x) —HWIl =< M|y — x|, (62)
IG(y) = G(x) = Hx)(y =)l < Mlly — x|, (63)

1
[FO) = F&x) = GR)'(y = x) = 5 =)' H®)(y = x)|
<My —x|® (64)

then there exists F € Lipz(R”) such that F(x) = F(x), VF(x) = G(x) and
V% (x) = H(x) for x € E. Moreover, there exists constants C and R such that
if ||x|| = R then VF (x) is positive definite and |V?F (x)~Y|| < R. O

Whitney'stheorem is stated in different levels of generality in the pure mathe-
maticsliterature. Themost completeand general approachisdueto C. Fefferman
[7, 8] but, unfortunately, it is stated in alanguage that is too abstract for the av-
erage non linear programming researcher. In page 48 of [10], L. Hormander
presents a more concrete version of the theorem for functionsin C™. This ver-
sion of the theorem is stated using n-uples to denote partial derivatives, i.e., if

o= (a1,...,a,) € N, |a| =) «; and f isafunction with partial derivatives
of order |«| then 0% (x) is defined as
. aper | e
IFx) = dx11ox52 ... 9xy" F .
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Moreover, a! = [[o; and x* = [[x*. Using this notation, the arguments used
to prove theorem 2.3.6 in [10] can be adapted to prove the following version of
Whitney’s theorem:

Theorem 5. Let E be a bounded set in R" and consider, for each a € N" with
|| < m, a Lipschitz continuous function u, : E — R. If there exists a constant
M such that

1
Ug(x) — E Eua+ﬁ(y)(x — P < M|x — y| eI+t
|Bl<m—la| =

forall x,y € E and o € N" with |a| < m then there exists f € Lip" (R") such
that 3%f (x) = uy(x) for all @ € N* with |a| < m and x € E. Moreover, there
exists a constant C such that [0%f (x)| < C for all x € R" and a € N" with

|| < m. ]

This theorem alows us to extend much of the discussion in this work to
Lip” (R™) for m > 2. However, for m > 2 we cannot group the partial deriva-
tives in vectors (gradients) and matrices (Hessians) as we did in the statement
of lemma 6. As aconsequence, the geometry behind the examples gets blurred
by the technicalities as m increases and we decided it would be best to focus
on the consegquences of lemma 6 instead of exploring more genera results like
theorem 5.

We can apply Whitney’s result to adandelion D with x; = X (A*) because if

Si(2) = Xi+1(2) — Xi(2), Xi(w, 2) = Xi(2) + wSi(z)  (65)

and § > 0issmall and the intervals {[ay, b]} are compatible with D then the
distance between pointsin the 2 dimensional surface

o]

U {Xi(w, 2), we[ar, b] and z € [0, 51}
k=0

can be estimated in terms of w and z:
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Lemma 7. Given a dandelion with x;, = Xi(A¥), compatible intervals {[ay,
bil} and Xy in (65) there exists 8 > O such that ifwj, we € lag, bil, zj, 2k €
[0,8], y; = X;(w;, 2;), yk = Xa(wi, zx) and ||y; — yi|l < 8 then either

(@j=kmodp, Bb)j=k+1lmodp or (c)k=j+1modp (66)

and in case (a)

ly; = yell = 8 (lwj — wiel +1zj — zl) » (67)
in case (b)
Iy — well =8 (lw;l +1z; — zil + 11— wy) (68)
and in case (c)
ly; = yell = 8 (11— wj| + |zj — zel + wl) . a (69)

We also use the next lemmas. After the statement of these lemmas we prove
the theorems and the paper ends with the proofs of the lemmas.

Lemmag8. Consider E C R", constants K > 1, § > Oand functions F : E —
R,G:E— R'and H : E - H". Ifforall x,z € E there exist m € N and

Vi, .- Ym € E such that, for yo = x and y,,11 = 7,
m
D Uy — yill < Klix —zll, (70)
i=0
I1H (i) — H(yi+D) |l < Kllyiva — yill, (71)
1
1G(yi+r) = G(yi) — E(H(Yi+l) + H(yi))Yivr — yi)ll
< Kllyis1 — yill% (72)

1
I F(yit1) — F(i) — E(G(yi+l) + Gy — )
< Kllyiea — yill%, (73)

then all x,y € E with ||x — y|| < 8 satisfy (62) — (64) with M = 3K*. ]
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Lemma 9. If the dandelion D(m,n, p, A, X, fi, &, hx) and the functions
{F}}, {Gi} and { H}} are compatible and the equations (26)—(29) hold for k > kg
then there exists M € R such that if j, k > ko and u, w € R then

| Hie(u, M) = Hi(w, 29[| < Mlu — w, (74)
k k 1 k k
1Gr(u, A*) — Gr(w, A") — E(Hk(un\ ) + Hi(w, A))Ah||
<M|u— w|2, (75)
k k 1 k Kyt
||Fk(M,)\, )_Fk(w7)\' )_E(Gk(uv)" )+Gk(w7)" )) Ah”

< Mu — w3, (76)
| Hy(w, A7) — Hi(w, )| < M|AF — A7), (77)

IGe(w, M) — Gr(w, 1) — %(Huw, M) + Hi(w, M) Av|

< M= WP7 (78)
| Fie(w, A7) — Fi(w, A*) — %(Gk(w, M) + Gr(w, A9) Av||

< MM =3, (79)

for Ah = Xi(u, \¥) — Xp(w, M%), Av = Xp(w, M) — Xp(w, A¥) and X as
in (65). O

Lemma 10. If fo, f1, go, g1, ho and h1 € R are such that go < f1 — fo < g1,
h1 > Oand hy > O then there exists € Lip*(R) such that ¥ (0) = fo,

V(D) = f1, ¥'(0) =go ¥'(D) = g1, ¥"(0) = ho, ¥"(1) = hyand ¥"(w) > 0
forallw e R. U

Lemma 11. Given a function € Lip'(R?) such that ¥ (i,0) = 0 and
Vi (i, 0) = O for i € {0, 1} there exists ¢ € Lip*(R?) such that

@ ¢@G,2) =0 and Vp(i,z) =0 for i € {0,1} and z € R.

B ¢(w,0 =y (w,0) and Vo (w,0) = Vi (w, 0) for w e R. ]
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Lemma 12. Consider A € (0, 1), a function F € Lipz(Rz), functions Y1 and
Ysin Lipz([O, 1], R") and Y3(z) = Y2(2) — Y1(2). If the vectors Y{(0), Y;(0) and
Y3(0) are linearly independent and, fori € {0, 1},

F(i,00=0, VF@G,00=0 and V%(i,0=0 (80)

then there exist § > 0, G € Lipl(Rz, R"™) and H € LipO(RZ, H") such that if
z€[0,8]andi € {0, 1} then

G(i,z) =0, G(w,2)'Y3(z) = g—F(w, 2),
o F w (81)
G(w’ O)tv(w) = a_(wa 0)7
Z

2
E(w, 0)'V(w)+ G(w, 0)'U(w) = 8—F(w, 0), (82
0z 072
H(i,z) =0, H(w, z)Y3(z) = E(w,z),
ow (83)

0G
Hw, )V (w) = a—Z(w, 0)

V(w) =1 —w)Y{0) +wYy(0) and
Uw) = (1 — w)Y](0) + Y, (0).

Proof of Theorem 2. Item 2 in the definition of flower in section 3 implies
that there exists § > 0 such that if |x; — x;|| < é then j = kmod p. The
periodicity of ¢, v and 6, given by (22), item 2 in definition 1 and the bounds
(22)«25) imply that if x and z belongtotheset E = {x;, k € N} U {x, k € N}
and ||x — z|| < é thenthere exists k suchthat m = 1 and y; = yx; satisfy the
conditions (70)—73) in lemma 8. Therefore, lemmas 6 and 8 imply that there
existsafunction F asrequired by theorem 2. O

Proof of Theorem 3. Consider kg and § obtained from lemma 7 and

o0

E = U {Yk(w, )\k), w e [ak, bk]} .
k=ko
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Lemma 7 and the three equationsin (26) imply that the expressions

F(Xi(w, 1)) = F(w, A5,
G(Xi(w, M%) = Gr(w, 15,
H(X(w, 2) = Hy(w, A5)

define functions F, G and H with domain E, i.e,, if X ;(w;, M) = Xy (wy, A)
then

Fj(w;j, M)) = Fp(wg, MY,
Gj(wjv)"j) = Gk(lUk,)\,k),
H](w]s)\'J) = Hk(U}k,)\,k).

Lemmas 7 and 9 show that thefunctions F', G and H above satisfy the hypothesis
of lemma 8 and theorem 3 follows from lemma 6. O

Proof of Theorem 4. For p > 0, consider the compact convex set

S, ={x e R"| sup|lx — y|l < p}.
yes
Sincey N N{Y=@dforr+1 <k <r+ p— 1lthereexistse > 0 such that
LN NK{y =@ forthesamek andr. Foreach0 < r < p thereexista, < 0
and b, > 1 such that

LN &Kz = (X (0) +wS,(0), wela,bl).

Extending the definition of a; and b, by periodicity, ax = ai mod , and by =
by mod p, We Obtain intervals [ay, bx] compatible with D. Combining lemmas 1,
3 and 10 and theorem 3 we obtain k; and F € Lipz(]R{”) such that if £ > k4
then F (xy) = fi, VF (xx) = gk, VI (x) = hy and s{ VZF (x; + wsy)s, > 0 for
w € [ay, byl

The points X, (0) belong to theinterior of the compact convex set &, and there
exist cx < Oanddy > 1suchthat ¢xy), = ¢k, diy, = di and

LN e = { X (0) + wSk(0), w € [cx, dil}
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and vectors Uy, Vi suchthat Uy, = Uk, Viyp = Vi, Ui Sk(0) < 0, V5, (0) > 0

and

Ui(x—Xr(0)—c,Sk(0) <0 and V! (x—X;(0)—d;Sx(0)) <0 for x € K.

Let L be aLipschitz constant for the second derivatives of F, i > 0 such that
VIS Q)| < =UiSi(0)  and  pi/1Si(0)]| < VS (0) for keN

and 7 : R — R bethefunction t(w) = max(w, 0)3. The function

— L &
F@) = F@+ 230 (fU/6 = X,(0) = :S,(0)
r=0

+ 7(V}(x — X,(0) — d,5,(0))))
and ko > k1 suchthat p/lscll < —3U/siy and wlIskll < 3V sk,
U,ﬁ(xk+bksk—Xk(0)—ckSk(O)) >0 and Vk[(xk-i-bksk—Xk(O)—dkSk(O)) >0

for k > ko are as required by theorem 4. Infact, F coincides with F in §&, and
if Kk > kg and w > by then
2F 2r
Siw(xk + wsk)se > Siﬁ(sk + bisi)sk — L(w — by) || skl

6L
+ E(V:swzvk' (xx — brsy — X (0) — di S, (0)) O

6L
+ (w — bk)ﬁv;skf > L(w — by)|Ise.

Proof of Lemma 1. Let F be the function obtained by applying theorem 2 to
D. Lemma 12 applied to thefunctions F = F, — F, Y, = X, and Y, = Xit1
yield functions G, and H; such that G;(x) = VF(x) + Gx(x) and Hy(x) =
V% (x) + Hy(x) are asclaimed in lemma 1. O

Proof of Lemma 2. Equations (34)—(37) show that
Xi@) =) 29@)e;  and  g=) AUV (84)
j=1 i=1
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where e; € R”" is the vector withe;; = 1 and e;; = Ofori # j, ltem 4bin
definition 7 impliesthat if 7 = {(i, j) suchthat d; + d; < d,} then

he= Y KOG () eet. (85)
i,))eT
Since Q7 = I and Xy, = X, the X, in (34) satisfy item (a) in the definition of
dandelion. Therelations f,,, = f, 81, = & ad hyy, = hy imply that f;,
g and hy, accumulate at the limits ¢y, ¥ and 6, in the last column of (34)—(37)
and these limits satisfy (22). We now verify (23)—(25). Equation (85) yields
(23). Thefirst equation in (84) leadsto

Ay =X — Xk = Z)»kdj (X1, (86)
jeJ
where J = {j | d; > 0}. The second equation in (84) and (85) imply that
lge — Ve = O Al < Y 1@ — O (R @)1 + 00%)  (87)

uelU jedJ

for U = {u |d, = d, — 1} and equations (87) and (32) show that the g; satisfy

(24). Equations (38), (39) and (86) lead to

g A =AY (g0 and AT AL =AY () (i (R 5,
jeG @i,j)eT

for L and S in item 4b of definition 7, and (25) follows from (33). Finally, the
linear independence requirementsin items (b) and (c) of definition 4 follow from
item 3in definition 7. O

Proof of Lemma 3. Direct computation using (34)—(37) and (41) show that
the function F;, satisfies (30). O

Proof of Lemma 4. To prove thislemma, plug (34)—37) into the expressions
in the hypothesis of lemma 4 and compare the results with (42)—(43). O
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Proof of Lemma 5. Thematrix Z in (52) can be written as

Z, 0 O 0 O
02, 0 0 O
Z=xDO"Ho = 0 02z 0 0], (88)
0O 0 02z, O
0O 0O 0 0 Zs
wherethe Z;’sarethefollowing 1 x 1 and 2 x 2 blocks:
3fcosdz —sing; 3 2 2
Z1 = 3 B, Zo=-2° Zz=2 Zy=-2%, Zs=1. (89)
sin 3 COS@
If we identify the blocks Z; with the complex numbers
a=23%% =223 3=2% z=-3% =1 (90)
then (52) can be interpreted as the equations
2286 = or (2k8jk+1 — &jk) » (91)
in the complex variables g; « given by
grr = (@1 +i(gp)2, g2k = (81)3 (92)
g3x = (84 8ax = (845, g5k = (81)e- (93)
Inthecase pri11 = pr and g, 1, = g, equation (91) isequivalent to
A(1/po, 1/p2, ..., 1/p10, —2j)8; =0, (94)
where g; = (8.0, 8.1, 8j,2: 8.3 ---» 8,7, &j,10)" and
1 2 0 0 0 0 wd® o 0 0 0
0 1 z 0 0 0 0oy o 0 0
0 0 1 z 0 0 0 0 b o 0
0 0 0 1 z 0 0 0 0 yf o0
0 0 0 0 1 z 0 0 0 0y
A(y,z) = v® 0 0 0 0 1 z 0 0 0 0 . (95)
0 yd® o 0 0 0 1 0 0 0
0 0o gy o 0 0 0 1 z 0 0
0 0 0o b o0 0 0 0 1 z 0
K 0 0 0 0 yof 0 0 0 0 1 z
0 0 0 0 e 0 0 0 0 1
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Equation (94) suggests that we take po, p1, . . ., p10 Such that the corresponding
matrices A in (95) are singular. Given such p’swe can find vectors g; # O that
satisfy (94) and use them to define the vectors g taking real and imaginary parts
of (92)—<93). This approach leads to the polynomial equations

det(A(y, —z;)) =0 for j=12345 (96)

onthey, = 1/p,. To obtain accurate approximations for appropriated p, we
take

e = —1.9948, y; = —0.3737, yg = —1.2355, yg = 0.9857, y;o = 0.11717

and apply Newton’smethod to find theremaining y;. Expression (96) correspond
to asystem of six real equations and Newton’s method starting with

Yo = 2.04831, y1 = 3.33798, yp = —1.15867,
y3 = 0.300795, s = —0.634211, ys = —2.44761,

converges quickly to a solution of this system. This approach led to ratio-
nal approximations y's for the y;’s such that || det(A (7, —z;))I| < 10-10% for
j =1,2,3,4 and 5 and such that the Jacobian of the system (96) is well con-
ditioned a y. A standard argument using Kantorovich's theorem proves the
existence of an exact y in a neighborhood of radius 10~5% of our rational ap-
proximation. Using the approximation y we dropped the last row in each of
the matrices A(y, —z;) and computed highly accurate approximations for the
five complex vectors g/ € R in (94) normalized by the condition (g/); = 1.
Using (92)—(93) we obtained accurate approximations to the vectors g ; required
by lemma 5. Using these approximations we verified that the vectors in (53)
are indeed linearly independent and solved the systems (54) for the vectors s;.
Finally, we computed approximationsfor thex in (55)—(56) and verified that the
corresponding lines ¥; and &, in the hypothesis of theorem 4 are at least 10~°
apart. Our computations indicate that the exact lines ¥; and &, do not cross.
We did arigorous sensitivity analysis of the computations above and it indicated
that 500 digitsis precision enough to guarantee that our conclusions apply to the
exact y's, g's, s’sand x’s. O
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Proof of Lemma 6. Applying the version of Whitney’s theorem in page 6 of
[8] to w(r) = ¢ and aproperly scaled version of the polynomials

1
P (y) = F(x) + G)'(y —x) + E(y —x)' Hx)(y —x)

weobtainafunction F e Lip?(R") andaconstant C > Osuchthat F(x) = F(x),
VF(x) = VF(x) and V& (x) = V2 (x) foral x € E and | V2F(x)| < 1/C
forall x € R". Let R > 0 besuchthat 2||x|| < R for all x € E and consider a
polynomial & such that

R2 / R2 " R2 2 n{(.2 ! p2 1
c1><7>=c1> (T):CD <T):<D(R )= (r):O and ©'(R?) = .
The constants C and R and the function F defined by

_ ~ R
F(x) = F(x) for [lx|| < >

— . 5 R

F(x) = F(x) + ®@(|x[I9) fOYE < [lxl = R,
i > 1 2 2
F(X)=F(X)+E(le|| — R?)  for|x|| > R,

satisfies the requirement of lemma 6. O

Proof of Lemma 7. By compatibility of {[a:, b;]} and D and periodicity
(Xi+p = Xi), there exists e > 0 for which the segments ¢ = { X, (w, 0), w €
[ak,bk]} aresuchthat dist (&6, ©;) > eifr+1<k<r+p—-1.1f5 > 0is

ro

small enough then the surfaces
B = {Xe(w,2), w e [a, bil, z €[0,8]}
are such that
dist(R2,R) >8 for r+l<k<r+p-—1 (97)

The definition of dandelion and the Lipschitz continuity of the derivatives of X,
imply that for § > Osmall if v,z € [0,5],k € Nand a, b, ¢ € R then

laSi(z) + bX}(2) + cX; 1 D]

) (98)
> 33(laSk @)l + 16X (D) + lle X 1D,
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laSk(v) +bX;(2) + cSira (@)l (99)
> 38(laSk ()| + 16X () + lleSera () D).
We aso have that
Xi(v) = Xi(2) + (v — )X (2) + Ax(v, 2) (100)
where A (v, z) satisfies the inequality

Ak, 2] < 8lv —z| max [ X" ()l
z€[0,1]

when v, z € [0, §]. The linear independence requirements in the definition of
dandelion imply that X, (0) # 0 and (100) implies that if § > 0 is small and
v, z € [0, 8] then

2[(v — X @] = 1 X (v) — Xi @) (101)

We now show that § > 0 for which the expressions (97)—101) above arevalid
fulfils the requirements in lemma 7. Given y; and y, as in the hypothesis of
lemma7 thereexistsi € [k, k — p) suchthati = j mod p Since ||y; — yll <6
and X; = X, the surfaces 3¢ and 3¢ are at most § apart and (97) leaves only the
threepossibilities: (a)i = k,(b)i = k+1or(c)i = k+ p— 1. Thiscorresponds
to (66) and to complete this proof we now verify the bounds (67)—<69). In case
(@ X; = Xy and S; = S; and the definition of y; and y; in the hypothesis and
(100) lead to

yi— v = (wj — wi) Se(zo) + L —w;) (Xu(z) — Xi(zp)
+ wj (Xer1(z)) — Xer1(z0))

= (w; — wo)Si(ze) + L = w))(z; — ) X} (z0)
+wi(zj — 20 X1 (@) + L — w) Ap(z), z1) + wjArsa(z;, 2i)-

The bounds (98) and (101) and the abbreviation (w; — wy)Sk(zx) =T yield

Iy = yell = 38(IT 1+ 11— w)(zj — 20X @Ol + lwjzj — 260 Xpy 1@
—1Q = wj) Ax(zr, 2N = llwj Agya(zk, z)-
> S (I + 11— wj) (Xe(z)) — Xi(zx) + wj(Xps1(2) — Xpga (2l
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and (67) follows from the equationsT" = X ; (w;, zx) — y and
yi— X;w;, z) = 1 —w)) (Xe(z)) — Xa(zp) + wy (Xar1(z)) — Xasa(z0) -
Incase (b) X; = Xiq1and S; = Si41 and (100) lead to

Vi = Y = w;Sk1(z)) + (2 — 20 X (z0) + (L — wi) Se(zx) + A (2, 25)
and using (99) and (101) we deduce that

ly; = yell = 38 (Ilw;S; )l + 1z — 20 X @O+ 11 — we) ezl
—1A; ez = 8 (lw; S I+ 11X (z)) — X @Ol + 11— we) Sk(zo) )

and (68) follows at once. Finally, case (c) isanalogousto case (b). O

Proof of Lemma 8. Givenx,z € E, let yq, ..., y, beasinthe hypothesis of
lemma 8 and define

Yo=X, yupr =2 and f;=F(y;), g =G(y;) and h; = H(y)).

The bounds (71) and (70) yield

J
lhj = holl <) Ilhi — hi_q]|
"=.1 (102)

J
<Y Klyi = yiaall < K?|lx — 2|
i=1

and (62) is obtained by taking j = m + 1in (102). The identity

J 1
gj — 8 —ho(y; — yo) = Z 8i = 8i-1 = 5 (i + hi-) (i = yi-1)
i=1

1 j
=5+ hica — 2h0) (i — i
+ > i:l( +hi_1 0) (i — Yi-1)

and the bounds (70), (72) and (102) and imply that

lg; — g0 — ho(y; — yo)ll < 2K3||x — 2|12 (103)
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Taking j = m 4+ 1 we deduce that x and z satisfy (63). Finally, notice that

1
fi— fo—8(y; — yo) — é(yj — y0)'ho(y; — Yo)

/ 1
= <fi — fica— 5(81‘ +gi-1) (yi — yil))
i=1

1 J
+ 3 Z(gifl — g0 — ho(yi—1 — y0))' (yi — yi-1) (104)

1 j
t3 > (g — 80— ho(yi — ¥0))' (i — yi-1)
i=1

1 , 1
— 5()’,/ = y0) ' ho(y; — yo) + EA

for A = 7 (yi + vi_1 — 2y0)'ho(yi — yi_1). Thelast termsin (104) cancel
because

j
A =) (i —y0) + i1 — Y0 ho (3 — Yo) = (i1 — Y0)
i=1

J Jj
= > (i —y0)'ho(yi — o) — > _(i-1— y0)'ho(yi-1 — o)

i=1 i=1
= (y; — y0)'ho(y; — y0)-

Thus, if we take j = m + 1 then (70), (103) and (104) yield (64) for
M = 3K*. O

Proof of Lemma 9. The bounds (74) and (77) follow from the Lipschitz con-
tinuity of H,. Equation (75) can be derived from the first equation in (29),

Ah =X (u, M — Xe(w, A = (u — w)sy. (105)

and the Lipschitz continuity of the first derivatives of G,. Equation (76) is
a consequence of the first equation in (27) and (29), (105) and the Lipschitz
continuity of the second derivatives of F;. The bounds (78) and (79) are clearly
satisfied if j = k and from now on we assumethat j # k. Inthiscase

144

Mk < ﬁlk" — Ak (106)
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and X; (M) = Xp (W) + X007 — AK) + 2X7(0) (A% — A%) + i, where
Wik = [l [E(X7@) - X"(0)deds satisfies
L1+ 2)2
(1—2)?
for a Lipschitz constant L for X;'. The bound (106) and X € Lip?([0, 1], R")
lead to
Av = (1—w)(X W) = X (W) + w(X a1 (W) = X1 05))

ikl < LIMF = A0k + 002 < FUPYIE

’

j k 1 2j 2k j k3 (107)
= ) = Vew) + 507 =22 Uu(w) + O () =3P

for
U= 1—w)X,0 +wX,,,(0) and Vi =(1—w)X}©0) + wX},,(0).
The conditions F € Lip*(R?) and G € Lip'(R?, R") imply that

9G
Gr(w, Ay = Gk(w,0)+kla—;(w,0)+0(k2]), (108)

Gr(w, M) — Gr(w, M) = %(w,O)(kj -+ oqn —akP, (109)
2

. F . 10¢F .
Fr(w, A7) — Fr(w, A5 = —w, 0 — 15 + Z—5 (w, 0)(x¥ —21%)
az 2 972

(110)
+ oM = AkP3).

The bound (78) follows from the second equation in (29), (107) and (109). Fi-

nally, the bound (79) can be deduced from the second equation in (27), equations

(28), (106), (107), equation (108) with! = j and ! = k and equation (110). [

Proof of Lemma 10. Given e > 0, consider the function

Fe(w) = fo+ (f1— fow + Ce(w),

where C,.(w) isthe piecewise cubic given by

wgg + w?ho ifw <0,

wgo + w2ho + acw® if we (0, €],

wgg + w2ho + acws + be(w — €)3 if w e (e, 2¢],
fe+ge(Cw — 1) + €Qw — 1)? if we (21— 2€],
w—Dg;+ w—-D%1+de(w—-1D3+cc(w—-1-¢)3 ifwe@d—21—¢l,
(w—Dg; + (w—1)%h1 +de(w —1)3 ifwe(1—e¢, 1],
(w—1Dgy + (w—1)%n if w> 1,
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withg, = g, — f1+ foand h; = h;/2fori € {0, 1}. Thefunction F, belongsto
Lip?(R) if and only if it has continuous second order derivatives at w = 2¢ and
w = 1 — 2¢. Thiscondition leads to alinear system of six equations on the six
variables a,, b, c., d., f. and g.. Solving this system we obtain

8o+ 0(e) g - 8110

= = - 111
9T TBe2(1— 2¢) 6e2(1— 2¢) (111
The second derivative of F, isa piecewise linear function with values

ho, ho + 6ea., €, €, hi — 6ed,, h (112)

athenodesw =0, w =€, w=2c,w=1—-2¢c,w=1—eandw = 1. The
hypothesis implies that g, < 0 and g; > 0 and (111) shows that a. > 0 and
d. < 0if € > Oissmall. Therefore, (112) impliesthat F.”(w) > O for al w if
€ issmall enough. O
Proof of Lemma 11. Applying Whitney’s theorem to the set
E={O. [y =3 U{@y Iy <3} U{x0]|lx|] <3 cR?

and the functions F : E — Rand G : E — R? given by

Fw,00=v¢(w,0, F@G@z2=0 Gw0=Ww,0, G@z=0,
fori = 0, 1 weobtain afunction ¢ € Lip*(R?) such that

¢w,0) =y w, 0, Vow,0=VWw0, ¢Giz)=0 Vi z2)=0

fori = 0,1and |w]|,|z] < 3. Lett : R — R be a C* function such that
7(x) = 1for |x| < 2and t(x) = Ofor |x| > 3. Thefunction

p(w,2) =1(2) (t(ww,2) + L — (W)Y (w, 2))

satisfiesitems (a) and (b) inlemma 11. O
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Proof of Lemma 12. Let Z;, Z, and Z3 be the functions defined by
Z1(z) = Y1(2), Z5(2) = Y5(2), Z3(z) = Y3(2).

The vectors Z1(0), Z»(0) and Z3(0) are linearly independent. Therefore, there
exist Wy, Wo, W3 € R" such that

W!Z;(0) =1 and W!Z;0)=0 ifi#j (113

The implicit function theorem guarantees the existence of § > 0 and functions
a;; € Lip'([0, 8]), defined for 1 < i, j < 3, such that

4 (0) = 1 and a;(0) =0 if i # (114)
and the vectors
Ai(2) = ain(D)W1 + ai2(2) W2 + ai3(z) W3 (115)
are such that
Ai(2)Zi(z) =1 and Ai(2)'Zi(z)=0 ifi#]j (116)
for z € [0, 8]. Lemma 11 applied to v = 3£ yields ¢ € Lip*(R?) such that

¢(,z2) =0,

Vb (i, 2) = 0,

6.0 = L w,0), (117)
07

¢ 3%F
—(w,0 = —(w,0
0z @.0) 972 (. 0)
forw e Randi € {0, 1}. We now show that any G € Lip'(R2, R") such that

oF
Gw,2) = - (w, 2)A3(2) + ¢ (w, 2)(A1(2) + 42(2)) (118)

for z € [0, §] satisfies (81) and (82). Equations (80) and (117) imply that
G(i,z) = 0 and second and third equations in (81) follows from (114)—(118)
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and the definition of S(z) and V (w). To verify (82), notice that (117) and (118)
lead to

G 92F
—w,0) =
0z 0

oF
(w, )Wz + —(w, 0)A5(0)
woz w

9%F 9

. (119)
+ a—zz(w, 0 (W1 + W) + E(w, 0)(AL(0) + A5(0)).

Equation (116) yields A’ (0)'Z;(0) + A;(0)’ Z'.(0) = 0 and (114)~116) imply
that
a ;(0) = —W,.’Zf/ 0. (120)
If j = 3then Z'(0) = Y3(0) = Y;(0) — ¥{(0) = Z>(0) — Z1(0) and (120)
leadsto
ay3(0) = 1, a53(0) = —1, az(0) = 0. (121)

Reminding that Z;(0) = Y;"(0) and using (116) and (120)—<121) we obtain

A1(0) = —WiY{(O) W1 — WiY5 (0)W2 + W, (122)
A(0) = —WRY[(O)W1 — WY, ()W, — W, (123)
A500) = —W3Y{ (0)W1 — W3Y5 (0)Wa. (124)

Equations (117) and (118) show that
oF oF

and (82) follows from (116), (118), (122)—(124) and the fact that
Vw) =1 -w)Z1(0) + wZ(0) and

(126)
Uw) =1—w)Y,!"(0) +wY,"(0).
To complete this proof we define H as
3°F .
H(w,z) = W(w,z)As(z)As(Z) + A(w, 2)
(127)

+ b(w)A1(2)A1(2)" + (b(w) + c(w))(A2(2)A1(2)"
+ A1(2)A2(2)") + c(w) A2(2) A2(2)'

for
3
A(w,z) = %(w, 2) ((A1(2) + A2(2)A3(2)" + A3(2)(A1(z) + A2(2))"),  (128)
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1 G
b(w) = [— (Z1(0) — wZ2(0))’ a_z(w’ 0), (129)
c(w) = ; ((w—-—12Z1(0)+ Z (O))l E(w 0 (130)
1—w+ w? ! 2 az =

Equations (80) and (117) imply that H (i, z) = O fori € {0, 1} and (118) and
(116) imply the second equation in (83). Using (117), (126) and (127)—(130)
we get

Hw,0)V(w) = (b(w) +wc(w)) W1 + (1 — w)b(w) + c(w))W>

9
+ id (w, 0)W3
Jw

3G G 131
= Zl(O)’a—Z(w,O)WlJrZz(O)’a—Z(w,O)Wz (130

2

dwoz
Equations (113), (119) and (122)—(124) show that

+

(w, 0)W3.

92F
dwaz

G
23(0)’8—(11), 0) = (w, 0).
Z

Finally, equations (113) shows that the right hand side of (131) is the expansion
of 9G/dz (w, 0) on the basis {W1, W,, W3} of atri-dimensional subspace that
contains G /dz (w, 0) and we have shown (83). O
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