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Abstract. We discuss the convergence of line search methods for minimization. We explain

how Newton’s method and the BFGS method can fail even if the restrictions of the objective

function to the search lines are strictly convex functions, the level sets of the objective functions

are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation

illustrates a new way to combine general mathematical concepts and symbolic computation to

analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic

analysis of the iterates of nonlinear programming algorithms.
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1 Introduction

Line search methods are fundamental algorithms in nonlinear programming.

Their theory started with Cauchy [4] and they were implemented in the first

electronic computers in the late 1940’s and early 1950’s. They have been in-

tensively studied since then and today they are widely used by scientists and

engineers. Their convergence theory is well developed and is described at length

in many good surveys, as [11], and even in text books, like [2] and [12].

Line search methods, as discussed in this work, are used to solve the uncon-

strained minimization problem for a smooth function f :

minimize f (x) for x ∈ Rn. (1)
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130 ON THE DIVERGENCE OF LINE SEARCH METHODS

We see them as discrete dynamical systems of the form

xk = xk−1 + αkdk−1, dk = D( f, xk, αk, dk, ek),

ek+1 = E( f, xk, αk, dk, ek),
(2)

where {xk} ⊂ R
n is the sequence we expect to converge to the solution of problem

(1) and ek contains auxiliary information specific to each method. At the kth step

we choose a search direction dk and analyze f along the line {xk +wdk, w ∈ R}.
We search for a step size αk ∈ R such that the sequence xk satisfies constraints

C( f, xk, αk, dk) ≥ 0 (3)

that are simple and try to force the xk to converge to a local minimizer of f .

For example, Newton’s method for minimizing a function can be written in

the framework (2) by taking

D( f, xk, αk, dk, ek) = −∇2 f (xk)
−1∇ f (xk)

and E = 0. The BFGS method could be considered by taking ek ∈ Rn×n and

setting

D( f, xk, αk, dk, ek) = −e−1
k gk , (4)

E( f, xk, αk, dk, ek) = ek + αk

st
k gk

gk gt
k − 1

st
k gk

(gk+1 − gk)(gk+1 − gk)
t , (5)

for gk = ∇ f (xk), gk+1 = ∇ f (xk + αkdk) and sk = αkdk . A typical example of

constraints C on the stepsize αk in (3) are the Wolfe conditions:

σαk∇ f (xk)
t dk + f (xk)− f (xk + αkdk) ≥ 0, (6)

dt
k (∇ f (xk + αkdk)− β∇ f (xk)) ≥ 0, (7)

where 0 < σ < β < 1. Usually, condition (6) enforces a sufficient decay in the

value of f from step k to k + 1 and condition (7) leads to steps sk = xk+1 − xk

which are not too short.

A typical theorem about the convergence of line search methods look like this

one adapted from page 212 in Nocedal and Wright’s book [12]:
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Theorem 1. Suppose f : Rn → R has continuous second order derivatives,

� = {x ∈ R such that f (x) ≤ f (x0)} (8)

is bounded and there exist C > 0 such that

yt∇2 f (x)y ≥ C‖y‖2 for all x, y ∈ R. (9)

If the n × n matrix e0 is symmetric positive definite and the iterates xk gener-

ated by the BFGS method, as described in (2)–(5), satisfy the Wolfe conditions

(6)–(7) then the sequence {xk} converges to a minimizer of f (which is unique

since f is strictly convex by (9)). �

Starting in the 1960’s, similar theorems have been proved for several line

search methods. Since that time people have tried to find more general results

regarding the convergence of line search methods. Most researchers were happy

with constraints like the Wolfe conditions and acknowledged their need, because

it is easy to enforce them in practice and it is also easy to build examples in which

results like theorem 1 are false if similar constraints are not imposed. However,

convexity constraints like (9) were regarded as too strong and undesirable. Much

effort was devoted to eliminating them but progress was slow and frustrating due

to the nonlinear nature of expressions like (5). As a consequence, M. Powell,

one of the leading researchers in this area, wrote in [16] that:

Moreover, theoretical studies have suggested several improvements

to algorithms, and they provide a broad view of the subject that

is very helpful to research. However, because of the difficulty of

analyzing nonlinear calculations, the vast majority of theoretical

questions that are important to the performance of optimization al-

gorithms in practice are unanswered. . .

A final answer regarding the need of the convexity hypothesis (9) in theorem 1

was first published in 2002 by Y. Dai [6] and it was somewhat surprising: if f is

not convex then the iterates generated by the BFGS method may never approach

any point z such that ∇ f (z) = 0.

We were unaware of Dai’s work and in the year his result was published we

found a similar answer regarding the convergence of the BFGS method [13].
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132 ON THE DIVERGENCE OF LINE SEARCH METHODS

Our approach, however, was quite different from his. Our work was based on

the observation that equations (4)– (7) have symmetries which can be exploited

to build a counterexample for theorem 1 without the hypothesis (9). After the

publication of [13] we generalized the argument used in that paper and our

purpose in this work is to present this generalization.

Our approach is motivated by the work started by S. Lie in the late 1800’s,

in which symmetries have lead to remarkable solutions of nonlinear differential

equations [3]. We developed a technique to produce examples with search lines

as in Figure 1.

Figure 1 – An example in which the iterates (black dots) approach a cycle with period 3.

The inclined lines represent the search lines and the horizontal lines are the limiting

search directions. The vertical lines indicate that the projection of the iterates in the

horizontal plane are the vertices of the limit cycle.

The line search methods we discuss are invariant with respect to orthogonal

changes of variables and scaling, in the sense that if they assign a step sk = xk+1−
xk to the point xk and objective function F , Q is an orthogonal matrix and λ ∈ R
then the step sk corresponding to the objective function F(x) = F(λ−1 Qt x)

at the point xk = λQxk is sk = λQsk . We argue that in relevant cases these

symmetries lead to iterates as in Figure 1.

Actually, the possibility of cyclic behavior for line search methods was already

mentioned by Curry in 1944 [5]. It was also discussed in [6, 9, 13, 15]. Here we

go one step further and present a systematic way to build examples that display

this behavior. The qualitative behavior of the iterates in our examples is captured

by the concepts of flower and dandelion described in section 3. In intuitive terms

the iterates can be seen as defining the petals of a flower and their accumulation
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points lie in a cycle that define the flower’s core. When the iterates approach the

core along well defined directions we say that the flower is a dandelion.

Figure 2 – A flower and a dandelion with six petals. The dots outside the circles represent

the iterates. They accumulate at the points at the circles, which are not critical points

of f .

In sections 2 and 7 we present concrete examples of dandelions, for Newton’s

method and the BFGS method, respectively. In these examples the line searches

are exact, the first Wolfe condition is satisfied and the restrictions of the objective

functions to the search lines are strictly convex, the level sets of f are compact,

but yet the iterates have the cyclic asymptotic behavior illustrated in Figure 1.

The BFGS and Newton’s methods are among the most important line search

methods and our examples refute the following conjecture:

If when applying the BFGS or Newton’s methods we choose the

first local minimizer along the search line then the iterates converge

to a local minimizer of the objective function.

Besides symmetries, this work is based on a theorem proved by H. Whitney

in 1934 [17]. Whitney’s theorem regards the extension of Cm functions from

subsets of Rn to Rn . It says that if a function F and its partial derivatives up

to order m are defined in a subset E of Rn and F ’s Taylor series up to order m

behave properly in E then F can be extended to a Cm function in Rn . Whitney’s

theorem is a handy tool to highlight the weak points of nonlinear programming

algorithms.

In section 2 we illustrate how symmetries and Whitney’s theorem can be com-

bined to analyze nonlinear line search methods in particular situations as if they

were linear. This analysis is not adversely affected by the number of dimensions.

To the contrary, as we go to higher dimensions the number of free parameters
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134 ON THE DIVERGENCE OF LINE SEARCH METHODS

at our disposal increases. We are then able to observe phenomena contrary to

our 2 or 3 dimensional intuition. However, as the experience with Lax Pairs has

shown [3], “ exploiting symmetry” is easier said than done. The algebraic ma-

nipulations necessary to implement our ideas can be overwhelming. Although

the example for Newton’s method presented in section 2 is a direct consequence

of symmetry, we would not be able to build the example for the BFGS method

in section 7 without the software Mathematica. Fortunately, today we have the

luxury of tools like Mathematica and can focus on the fundamental geometrical

aspects of the line search methods.

Our arguments can be adapted to objective functions with mth order Lips-

chitz continuous derivatives or to the more general class Cm,ω
loc (R

n) of functions

discussed by C. Fefferman in [7], but we do not aim for utmost generality and

restrict ourselves to objective functions with Lipschitz continuous second order

derivatives, so that we can speak in terms of gradients and Hessians and avoid the

use of higher order multilinear forms. On the other hand, [1] indicates that things

are different for analytic objective functions, mainly because these functions are

“ rigid” and it is not possible to change them only locally, or more technically,

due to the lack of analytic partitions of the unity.

This work has six more sections and an appendix. Section 2 motivates our

approach by using it to analyze the convergence of Newton’s method. The

technical concepts that formalize our arguments are presented in sections 3 and

4. Section 5 discusses the Wolfe conditions and section 6 explains how to build

examples in which the objective function is convex along the search lines. In

section 7 we combine the results from the previous sections to build an example

of divergence for the BFGS method. In the appendix we prove our claims.

Finally, we would like to emphasize that it is important to look at the results in

this work from a broad perspective. The examples presented here should not be

taken as evidence against the use of Newton’s method or the BFGS method. To

the contrary, these methods perform quite well in practice. In real life numerical

algorithms are implemented in floating point arithmetic and rounding errors

would break our examples apart (and introduce other subtle problems). This work

highlights the limitations of the asymptotic analysis of these algorithms. Our

examples show that, even if taken to extremes, complex nonlinear calculations
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may not be able to explain the practical behavior of nonlinear programming

algorithms. The main advice one can extract from this work is the following rule

of thumb:

If you find that it is difficult to prove that a line search method

converges under certain conditions, and other people have tried the

same for a couple of decades and did not succeed, then consider the

possibility that in theory the method may actually fail under these

conditions, even if all your numerical experiments indicate that it

always converge.

2 Newton’s method

We now describe a family examples of divergence for Newton’s method for

minimization. The examples are parameterized by the step size α: given α > 0

we build an example in which all step-sizes αk are equal to α. This section

motivates the theory presented later on. Although the geometry underlying the

examples is accurately described by Figure 1, the algebraic details make they

look more complex than they really are. Thus, we suggest that you pay little

attention to the formulae and focus on the structure of our argument, which can

be summarized as follows:

(a) we guess general expressions for the iterates xk , function values fk , gra-

dients gk and Hessians hk which we believe to be compatible with the

symmetries in Newton’s method and the theory presented below.

(b) we plug these expressions into the formula that define Newton’s method

and obtain equations relating our guesses in item (a).

(c) we solve these equations and the next sections guarantee the existence of an

objective function F such that F(xk) = fk , ∇F(xk) = gk , ∇2F(xk) = hk

and st
k∇2F(xk + wsk)sk > 0 for w ∈ R and k big enough.

Following this recipe, we decomposed R6 as a direct sum of a three dimensional

“ horizontal” subspace and a three dimensional “ vertical” subspace and tried
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iterates xk , function values fk , gradients gk and Hessians hk of the form 1:

xk = Qk D(λk)x, fk = λk f , (10)

gk = λk Qk D(λ−k)g, hk = λk Qk D(λ−k)h D(λ−k)Q−k, (11)

for λ ∈ (0, 1), x = (xh , xv) and g = (gh , gv) with xh , xv, gh and gv ∈ R3 and

Q =
(

Qh 0

0 Qv

)
, D(λ) =

(
I 0

0 λI

)
, h =

(
A C

Ct 0

)
, (12)

where I is the 3 × 3 identity matrix, Qh and Qv are 3 × 3 orthogonal matrices,

A is a symmetric 3 × 3 matrix and C is a 3 × 3 matrix. We then concluded that

λ = 1

2
, xh = xv =


 1

0

1


,

Qh = 1

2




√
3 −1 0

1
√

3 0

0 0 −2


, Qv =


 0 −1 0

1 0 0

0 0 1




(13)

are convenient: they are simple and after picking them we still have the freedom

to choose g, A and C in order to satisfy the hypothesis of the theory presented

in the next sections and obtain iterates xk which are consistent with the formula

∇2F(xk)sk + α∇F(xk) = 0 (14)

that defines Newton’s method with step-size α. If we replace ∇F(xk) and

∇2F(xx) in (14) by gk and hk in (11) then λ, Qh and Qv cancel out and we

obtain the equations

Ash + Csv + αgh = 0, and Ct sh + αgv = 0, (15)

1The matrices hk are not positive definite and in practice one would take another search

direction if, for example, this fact was detected during a Cholesky factorization of hk . However,

to keep the algebra as simples as possible, in this work we do not enforce the condition that the

Hessians ∇2 f (xk) are s.p.d. In [14] we show that Newton’s method may fail even ∇2 f (xk) is

s.p.d. for all k and the Wolfe conditions are satisfied.
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where

sh = (Qh − I )xh and sv = (λQv − I )xv. (16)

Notice that, due to the invariance of Newton’s method with respect to orthogonal

changes of variables and scaling, there is no “ k” in (15)– (16). Equations (15)

yields

gv = −Ct sh/α (17)

Equations (10) and (11) show that st
k gk = 2−kst g, st

k gk+1 = 2−(k+1)st D(2)Qg,

and fk+1 − fk = −2−(k+1) f . Therefore, if

st g < 0, st D(2)Qg = 0 and f > 0 (18)

then sk = xk+1−xk is a descent direction, the line searches are exact (st
k gk+1 = 0)

and the first Wolfe condition

fk+1 − fk ≤ σ st
k gk

holds for

0 < σ < min
{
1, − f /(2st g)

}
.

We now apply the results from the next sections: items 4c and 4d in the definition

of seed in section 4 require that

gh = Cxv and f = (gv)t xv (19)

and section 6 says that to guarantee the convexity of the objective function along

the search lines we should ask for

2st g < − f < 0, st hs > 0 and st Q D(2)h D(2)Qt s > 0. (20)

To complete the specification of the terms in (10)– (11) we chose the 9 entries

of C and the 6 independent entries of A in order to satisfy (15)– (20). These

equations and inequalities are linear in A and C and the following matrices

satisfy them:

A = (2 + √
3)


 (2 + √

3)
(
17 − 22α + 16α2) 2α 2(α − 1)

2α (2 + √
3)(2α − 1) 0

2(α − 1) 0 0


,

C = (2 + √
3)


 3α − 5α2 − 4 1 − α + 3α2 α(1 + 5α)

0 2 − √
3 0

2 − √
3 0 0


.

(21)
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Equations (10)– (13), (16)– (19) and (21) define iterates and function values,

gradients and Hessians of the objective function at them. The next sections

guarante the existence of an objective function F with Lipschitz continuous

second order derivatives such that F(xk) = fk , ∇F(xk) = gk and ∇2F(xk) = hk .

Moreover, neither the vectors D′(0)x and D′(0)s nor the vectors D(0)s and

D(0)D(2)s are aligned 2 and the lines �k = {D(0)xk + wD(0)sk, w ∈ R} are

such that �r ∩ �k = ∅ for all r + 1 < k < r + 5 and theorem 3 and lemmas 1

and 3 in the following sections show that we have much freedom to chose the

value of F(x) along the search segments {xk +wsk, w ∈ [0, 1]}: if the function

ψ : [0, 1] → R has Lipschitz continuous second order derivatives and

ψ(0) = f , ψ(1) = f /2, ψ ′(0) = gt s, ψ ′(1) = 0,

ψ ′′(0) = st hs, and ψ ′′(1) = st Q D(2)h D(2)Qt s/2

then F can be chosen so that F(xk + wsk) = (1/2)kψ(w) for w ∈ [0, 1] and

k large. In fact, condition (20) and theorem 4 in section 6 show that F can be

chosen so that st
k F(xk + wsk)sk > 0 for w ∈ R and k large and the level sets

�( f, z) = {
x ∈ Rn such that f (x) ≤ z

}
are bounded.

3 Flowers and Dandelions

We now present a framework to apply Whitney’s theorem to study the conver-

gence of line search methods. We describe examples in which the iterates xk

and the function values fk , the gradients gk and the Hessians hk of the objective

function are grouped into p converging subsequences, which we call petals (see

Figure 2). The limits of these subsequences {xk}, { fk}, {gk} and {hk} are the mem-

bers of periodic sequences {χk}, {ϕk}, {γk} and {θk}, so that limq→∞ x pq+r = χr

for all r and χr+p = χr , limq→∞ f pq+r = ϕr for all r and ϕr+p = ϕr , γr+p = γr

and θr+p = θr . In formal terms:

2 D′(λ) here is the derivative of D(λ) with respect to λ.
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Definition 1. A flower F(n, p, λ, xk, fk, gk, hk) is a collection formed by

1. λ ∈ (0, 1) and positive integers n and p.

2. Sequences {xk} and {χk} in Rn and a constant M > 0 such that

(a) xi = x j ⇔ i = j .

(b) χ j = χk ⇔ j ≡ k mod p.

(c) λk ≤ M‖xk − χk‖ ≤ M2λk .

3. Sequences { fk}, {ϕk} ⊂ R, {gk}, {γk} ⊂ R
n and {hk}, {θk} ⊂ H

n such that

ϕk+p = ϕk, γk+p = γk, θk+p = θk, (22)

‖hk − θk‖ ≤ Mλk, (23)

‖gk − γk − θk(xk − χk)‖ ≤ Mλ2k, (24)

‖ fk − ϕk − γ t
k (xk − χk)− 1

2
(xk − χk)

t hk(xk − χk)‖ ≤ Mλ3k (25)

where Hn is the set of n × n symmetric matrices. �

Notice that the mod in item 2.b and equation (22) in the definition above

imply that the sequences {χk}, {γk} and {θk} have period p and item 2.c implies

that as k → ∞ the sequence xk accumulates at the limit cycle defined by the

χk . The next definitions and theorems relates the fk , gk and hk in a flower to an

objective function F with Lipschitz continuous second derivatives:

Definition 2. Suppose U ⊂ R
n and V ⊂ R

p. We define Lipm(U, V ) as the

space of functions F : U → V with Lipschitz continuous mth derivatives. If

V = R then we call this space simply by Lipm(U ). �

Definition 3. We define LC2(Rn) as the set of functions f in Lip2(Rn) for

which there exists constants C f and R f ∈ R, which depend on f , such that if

‖x‖ ≥ R f then ∇2 f (x) is positive definite and ‖∇2 f (x)−1‖ ≤ C f . �
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The class LC2(Rn) is interesting because if f ∈ LC2(Rn) then there exists a

constant D f such that

f (x) ≥ 1

2C f
‖x‖2 − D f and ‖∇ f (x)‖ ≥ 1

C f
‖x‖ − D f .

As a consequence, the level sets

�( f, z) = {
x ∈ Rn such that f (x) ≤ z

}
are compact, as required by many theorems regarding the convergence of line

search methods, and all points x with ∇ f (x) = 0 are such that ‖x‖ ≤ D f C f .

Thus, the elements of LC2(Rn) have a compact set of critical points and if an

algorithm fails to find one of them then the algorithm is to be blamed, not the

objective function. The next theorem shows that flowers can be interpolated by

functions in LC2(Rn):

Theorem 2. Given a flowerF(n, p, λ, xk, fk, gk, hk) there exists F ∈ LC2(R)

such that F(xk) = fk , ∇F(xk) = gk and ∇2F(xk) = hk for all k. �

If the flower is a dandelion then we can improve this result and specify the

objective function and its derivatives along the segments {xk +wsk, w ∈ [0, 1]}:

Theorem 3. If the functions {Fk}, {Gk} and {Hk} and the intervals {[ak, bk]}
are compatible with the dandelionD(m, n, p, λ, xk, fk, gk, hk) then there exists

k0 ∈ N and F ∈ LC2(Rn) such that F(xk +wsk) = Fk(w, λ
k), ∇F(xk +wsk) =

Gk(w, λ
k) and ∇2F(xk + wsk) = Hk(w, λ

k) for k > k0 and w ∈ [ak, bk]. �

This theorem will make sense after you read the following definitions:

Definition 4. A flower F(n, p, λ, xk, fk, gk, hk) is a dandelion if there exist

functions Xk ∈ Lip2([0, 1],Rn) such that, for all k and Sk(z) = Xk+1(z)−Xk(z),

(a) Xk+p = Xk and xk = Xk(λ
k).

(b) The vectors Sk(0), X ′
k(0) and X ′

k+1(0) are linearly independent.

(c) The vectors Sk(0), Sk+1(0) and X ′
k+1(0) are linearly independent. �

Comp. Appl. Math., Vol. 26, N. 1, 2007



WALTER F. MASCARENHAS 141

Definition 5. The intervals [ak, bk], defined for k ∈ N, are compatible with a

dandelion if

(a) ak = ak+p ≤ 0 and bk+p = bk ≥ 1 for k ∈ N.

(b) The segments {Xk(0)+wSk(0), w ∈ [ak, bk]} and {Xr (0)+wSr (0), w ∈
[ar , br ]} are disjoint if r + 1 < k < r + p − 1. �

Definition 6. For all k ∈ N, consider functions Fk ∈ Lip2(R2), Gk ∈ Lip1(R2,

R
n) and Hk ∈ Lip0(R2,Hn). We say that {Fk}, {Gk} and {Hk} are compatible

with a dandelion D if Fk+p = Fk, Gk+p = Gk and Hk+p = Hk and there exists

k0 such that if k > k0, i ∈ {0, 1}, w ∈ R and z = λk then

Fk(i, z) = fk+i , Gk(i, z) = gk+i , Hk(i, z) = hk+i , (26)

∂Fk

∂w
(w, z) = Gk(w, z)t sk,

∂Fk

∂z
(w, 0) = Gk(w, 0)

t Vk(w), (27)

∂2 Fk

∂z2
(w, 0) = ∂Gk

∂z
(w, 0)t Vk(w)+ Gk(w, 0)

tUk(w), (28)

∂Gk

∂w
(w, z) = Hk(w, z)sk,

∂Gk

∂z
(w, 0) = Hk(w, 0)Vk(w) (29)

for Vk(w) = (1 − w)X ′
k(0) + wX ′

k+1(0) and Uk(w) = (1 − w)X ′′
k (0)+

wX ′′
k+1(0). �

If we do not care about the derivatives of F in directions normal to the segments

{xk + wsk, w ∈ [0, 1]} then the search for compatible functions Fk , Gk and Hk

is simplified by the following lemma

Lemma 1. Let D(m, n, p, λ, xk, fk, gk, hk) be a dandelion and, for k ∈ N,

functions Fk ∈ Lip2(R2) for which Fk+p = Fk. If there exist k0 ∈ N such that

Fk(i, λ
k) = fk+i ,

∂Fk

∂w
(i, λk) = gt

k+i sk,
∂2 Fk

∂w2
(i, λk) = st

khk+i sk (30)

for i ∈ {0, 1} and k > k0 then there exist functions Gk ∈ Lip1(R2,Rn) and

Hk ∈ Lip0(R2,Hn) such that D and {Fk}, {Gk} and {Hk} are compatible. �
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Therefore, we can focus on Fk(w, z) and neglect Hk(w, z) and Gk(w, z) for

w �∈ {0, 1}. In the next section we describe a class of dandelions for which we

can restrict ourselves to functions Fk of the form Fk(w, z) = zdnψk(w).

4 Symmetric dandelions and their seeds

In this section we present a family of dandelions that includes the examples for

the BFGS and Newton’s methods mentioned in the introduction. These dande-

lions combine symmetries imposed by an orthogonal matrix Q with contractions

dictated by a diagonal matrix D. They are defined by their seeds:

Definition 7. A seed S(n, p, d, Q, xk, f k, gk, hk) is a collection formed by

1. n, p ∈ N and d = (d1 . . . dn) ∈ Nn such that p ≥ 3 and dn = max di .

2. A n × n orthogonal matrix Q such that Q p = I and the diagonal matrix

D(z) with i th diagonal entry equal to zdi commutes with Q for z ∈ R.

3. A sequence {xk} ⊂ R
n such that xk+p = xk, the points χr = D(0)Qr xr

are distinct for 0 ≤ r < p and the vectors

sk = D(λ)Qxk+1 − xk (31)

are such that, for 0 ≤ r < p, the vectors D′(0)xr and D′(0)sr are not

aligned and neither are the vectors D(0)sr and D(0)sr+1.

4. Sequences { f k} ⊂ R, {gk} ⊂ R
n and {hk} ⊂ H

n such that

(a) f k+p = f k , gk+p = gk and hk+p = hk for all k.

(b) (hk)i j = 0 if di + d j > dn.

(c) If dl = dn − 1 and J = { j | d j > 0} then

(gk)l =
∑
j∈J

(hk)l j (xk) j . (32)

(d) If dn ≤ 2, L = {l | dl = dn} and S = {(i, j) | di + d j = dn,

di > 0, d j > 0} then

f k =
∑
l∈L

(gk)l(xk)l + 1

2

∑
(i, j)∈S

(hk)i j (xk)i (xk) j . � (33)
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A seed and λ ∈ (0, 1) generate a dandelion through the formulae

Xk(z) = Qk D(z)xk, xk = Xk(λ
k), χk = Xk(0), (34)

fk = λkdn f k, ϕk = 0, (35)

gk = λkdn Qk D(λ−k)gk, γk = Qk g∞
k , (36)

hk = λkdn D(λ−k)Qkhk Q−k D(λ−k), θk = Qkh∞
k Q−k, (37)

where

(g∞
k )i = (gk)i if di = dn and (g∞

k )i = 0 otherwise, (38)

(h∞
k )i j = (hk)i j if di + d j = dn and (h∞

k )i j = 0 otherwise. (39)

This result is formalized by the following lemma:

Lemma 2. If S(n, p, d, Q, xk, f k, gk, hk) is a seed and λ ∈ (0, 1) then there

exists a unique dandelionD(S)with Xk, fk , gk, hk, ϕk , γk and θk as in (34)–(39).

Moreover, D(S)’s steps sk = xk+1 − xk are given by

sk = Qk D(λk)sk (40)

for sk defined in (31). �

It is easy to apply lemma 1 and theorem 3 to D(S):

Lemma 3. If S(n, p, d, Q, xk, f k, gk, hk) is a seed, λ ∈ (0, 1), xk , fk , gk

and hk are given by (34)–(37) and the functions ψr ∈ Lip2(R), defined for

0 ≤ r < p, satisfy

ψr (i) = fr+i , ψ ′
r (i) = st

r gr+i , ψ ′′
r (i) = st

r hr+i sr (41)

for i ∈ {0, 1} then the functions Fk(w, z) = zdnψk mod p(w) satisfy (30). �

To build a symmetric dandelion and specify the value of the objective function

along the search segments {xk + wsk, w ∈ [0, 1]} it is enough to find the right

seed and functionsψr . Once we find them, the existence of an objective function
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F with ∇F(xk) = gk , ∇2F(xk) = hk and F(xk + wsk) = λkdnψk mod p(w) for

xk , fk , gk and hk in (34)– (37) is guaranteed by lemma 3 and theorem 3. To find

a seed we proceed as in section 2: we plug (34)– (37) into the expressions that

define

(a) the method of our interest,

(b) the compatibility conditions in the definition of seed and theorem 3,

(c) additional constraints, like the Wolfe conditions in section 5 and the

convexity conditions in section 6.

and analyze the result. If equations (34)– (37) are compatible with the method’s

symmetries, as they are for the BFGS and Newton’s methods, then we have a

chance of handling these constraints and may even find closed form solutions

for them. If equations (34)– (37) are not related to the method’s symmetries then

the dandelion will not bloom.

5 The Wolfe conditions

In this section we show that the Wolfe conditions

fk+1 − fk ≤ σgt
ksk (42)

and

st
k gk+1 ≥ βgt

ksk (43)

may not prevent the cyclic behavior illustrated in figures 1 and 2. In fact, we can

have cyclic behavior even if we replace the second Wolfe condition (43) by the

stronger requirement st
k gk+1 = 0, which is called exact line search condition.

These conditions are invariant with respect to orthogonal changes of variables

and scaling and can be easily checked for the dandelions coming from a seed:

Lemma 4. Let S(n, p, d, Q, xk, f k, gk, hk) be a seed and D(m, n, p, λ, xk,

fk, gk, hk) the corresponding dandelion.

(a) If st
r gr+1 = 0 for 0 ≤ r < p then st

k gk+1 = 0 for all k.
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(b) If st
r gr < 0 for 0 ≤ r < p then the first Wolfe condition (42) holds for

σ < σ0 = min
0≤r<p

{
λdn f r+1 − f r

st
r gr

}
.

(c) If st
r gr < 0 for 0 ≤ r < p then the second Wolfe condition (43) is

verified for

β > β0 = max
0≤r<p

st
r gr+1

st
r gr

. �

6 Convexity along the search lines

Convexity is an important simplifying assumption in optimization. It is tempting

to conjecture that strict convexity along the search lines guarantees the conver-

gence of line search methods 3. Sometimes even stronger conjectures are made,

like having convergence if we choose a global minimizer or the first local mini-

mizer along the search line. We now show that strict convexity along the search

lines does not rule out the cyclic behavior depicted in figures 1 and 2. To do that,

we present a theorem that yields an objective function which is strictly convex

along the search lines of a dandelion that comes from a seed:

Theorem 4. Let S(n, p, d, Q, xk, f k, gk, hk) be a seed, λ ∈ (0, 1) and xk,

χk , fk , gk and hk be given by (34)–(37). Let � be the convex hull of {χk, 0 ≤
k ≤ p}. Consider the lines �k = {χk +w(χk+1 − χk), w ∈ R} and assume that

�r ∩ �k ∩ � = ∅ for r + 1 < k < r + p − 1. If, for 0 ≤ r < p,

st
r gr < fr+1 − fr < st

r gr+1, st
r hr sr > 0 and st

r hr+1sr > 0 (44)

then there exist a function F ∈ LC2(Rn) and k0 such that if k > k0 then F(xk) =
fk , ∇F(xk) = gk, ∇2F(xk) = hk and st

k∇2F(xk + wsk)sk > 0 for all w ∈ R. �

If the vector d that defines the seed S has more than two entries equal to 0

then the lines �r and �k and r + 1 < k < r + p − 1 are disjoint for almost all

choices of the points xk . Therefore, to build examples of divergence in which

3By strict convexity along the search line we mean that the directional second derivatives

st
k∇2F(xk + wsk)sk are positive.
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the objective function is strictly convex along the search lines we can focus on

(44) and check the intersections later, just to make sure we were not unlucky.

This is what we did in section 2 and will do again in the next section.

7 The BFGS method

In this section we present an example of divergence for the BFGS method in

which the objective function is strictly convex along the search lines. The essence

of this example is already present in [13] and we suggest that you read this

reference as an introduction to this section. Our purpose here is to show that the

concepts of flower, dandelion and seed reduce the construction of examples like

the one in [13] to the solution of algebraic problems. Software like Mathematica

or Mapple can decide if such algebraic problems have solutions and find accurate

approximation to these solutions. The validation of the example becomes then a

question of using these approximate solutions wisely to check the requirements

in the definitions of flower, dandelion and seed and the hypothesis of the lemmas

and theorems in the previous sections.

We analyze the BFGS method with exact line searches, i.e., st
k gk+1 = 0. In

this case the Hessian approximations Bk are updated according to the formula:

Bk+1 = Bk + αk

st
k gk

gk gt
k − 1

st
k gk

(gk+1 − gk)(gk+1 − gk)
t , (45)

where gk = ∇F(xk). The iterates xk evolve according to

sk = −αk B−1
k gk and xk+1 = xk + sk . (46)

Equations (45)– (46) are invariant with respect to orthogonal changes of variables

and scaling, in the sense that if Q is an orthogonal matrix, λ ∈ R and F , Bk

and xk satisfy equations (45)– (46) then F(x) = F(λ−1 Qt x), Bk = λ−2 Q Bk Qt

and xk = λQxk satisfy them too. It is hard to exploit these symmetries because

the BFGS method was conceived to correct the matrices Bk . However, it has an

additional symmetry: if we take Bk of the form

Bk = −
n−1∑
i=0

αk+i

gt
k+i sk+i

gk+i g
t
k+i , (47)
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combined with the conditions

st
k gk < 0 and st

k gk+ j = 0 for 1 ≤ j < n and k ∈ N, (48)

then equation (46) is automatically satisfied and (45) holds if

gk+n = ρk(gk+1 − gk), (49)

for ρk such that

αk+n = st
k+ngk+n

st
k gkρ

2
k

. (50)

Notice that if we assume (48) and take αk = 1 for 0 ≤ k < n, αk in (50) for

k ≥ n then the αk are positive and the vectors gk, . . . gk+n−1 are linearly inde-

pendent, because if we suppose that
∑n−1

j=0 µ j gk+ j = 0 with µ0 = 1 then (48)

leads to the contradiction 0 = st
k

∑n−1
j=0 µ j gk+ j = st

k gk < 0. Therefore, under

(48)– (50) the matrices Bk defined by (47) are positive definite and to build an

example of divergence for the BFGS method we can ignore αk and Bk and focus

on (48)– (49).

To apply the theory above we plug (34)– (37) into (48) and (49) and deduce

that a seed S(n, p, d, Q, xk, f k, gk, hk) is consistent with the BFGS method if

st
k gk < 0 and st

k D(λ− j )Q j gk+ j = 0 for 1 ≤ j < n, (51)

Zngk+n = ρk

(
Z gk+1 − gk

)
, (52)

where Z = λdn D(λ−1)Q. If we fix Z then (52) becomes similar to an eigenvalue
problem, with the ρ’s playing the role of eigenvalues and the g’s of eigenvectors.
We solved equations (52) for gk and ρk in the case

Q =




cos π
33 − sin π

33
sin π

33 cos π
33

−1
1

−1
1



, D(λ) =




1
1

1
λ

λ

λ3



,

λ = 11
√

0.9 and n = 6, as described in the lemma
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Lemma 5. If Q and D(λ) are the matrices above, dn = 3, n = 6 andλ = 11
√

0.9

then there exist vectors gk ∈ R6 and coefficients and ρk ∈ R that satisfy (52)

and are such that gk+11 = gk, ρk+11 = ρk and the six vectors in the set

{
D(λ− j )Q j gk+ j , j = 0, 1, . . . , 5

}
(53)

are linearly independent for each k ∈ N. �

The linear independence of the vectors D(λ− j )Q j gk+ j in lemma 5 implies

that we can solve the following linear systems of equations on the vectors sk :

st
k gk = −1 and st

k D(λ− j )Q j gk+ j = 0 for 1 ≤ j < 6. (54)

The vectors sk obtained from (54) define steps sk by (40):

sk = Xksk for X = D(λ)Q

and we claim that the points

x0 = − (I − X11
)−1

10∑
j=0

X j s j , (55)

xk = X−k


x0 +

k−1∑
j=0

X j s j


 for k > 0 (56)

satisfy

xk+66 = xk (57)

and lead to points xk = Xk xk such that sk = xk+1 − xk . In fact, using (56) it

is straightforward to deduce that xk+1 − xk = Xk+1xk+1 − Xk xk = Xksk = sk .

To verify (57), notice that (56) yields

xk+66 = X−k


x0 +

k+65∑
j=66

X j−66s j + X−66�


 (58)

where

� = (
I − X66

)
x0 +

65∑
j=0

X j s j . (59)
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Now, since gk+11 = gk , equation (54) implies that sk+11 = sk and

65∑
j=0

X j s j =
(

5∑
r=0

X11r

)
10∑
j=0

X j s j = (I − X11)−1(I − X66)

10∑
j=0

X j s j .

Combining this equation, (55) and (59) we conclude that � = 0 and equation

(58) and the identity s j−66 = s j lead to (57).

In the proof of lemma 5 we show that the gk can be chosen so that the vectors

sk defined by (54) satisfy the linear independence requirements in the definition

of seed. The xk and gk above, d = (0, 0, 0, 1, 1, 3),

f k = 1 and hk = D′(0)skst
k D′(0) (60)

are also compatible with this definition. As a consequence, n = 6, p = 66, d,

Q xk , f k ,gk and hk define a seed S. This seed leads to a dandelion D(S) with

steps sk and gradients gk compatible with the BFGS method with the matrices

Bk in (45) and step sizes αk in (50). Equations (34)– (37) and (54) imply that the

function values and gradients associated to D(S) satisfy

st
k gk = −λ3k < λ3k+3 − λ3k = fk+1 − fk < 0 = st

k gk+1. (61)

Lemma 4 shows that the iterates xk corresponding to D satisfy the first Wolfe

condition for 0 < σ < 1 − λ3. Moreover, almost all choices of the vectors gk

in the proof of lemma 5 lead to lines �k = {D(0)Qk xk +wD(0)Qksk, w ∈ R}
such that �r ∩ �k = ∅ for r + 1 < k < r + 65 and st

k D′(0)sk+1 �= 0. Equation

(60) shows that st
khksk > 0 and st

khk+1sk > 0. As a result, equation (61) and

theorem 4 yield an objective function F ∈ LC2(R6) such that the iterates xk

generated by applying the BFGS method to F with x0 = x0 and Bk above satisfy

st
k∇2F(xk + wsk)sk > 0 for k large and w ∈ R.

This completes the presentation of an example showing that there is not enough

strength in the definition of the BFGS method, the exact line search condition and

the Wolfe conditions to prevent the cyclic behavior in figures 1 and 2, even when

the objective function is strictly convex along the search lines and has compact

level sets.

You may now be wondering if we could not find a simpler example, in dimen-

sion less than 6. Unfortunately, we were not able to find such example because
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the eigenvalue problem (52) does not seem to have real solutions ρk �= 0 for

n < 6. Notice that this is a purely algebraic issue, which has nothing to do with

nonlinear programming. Similarly, the minimum dimension at which we could

build counter examples with the techniques described here for other methods

could be bigger or smaller than 6, depending on the particular symmetries of the

method and the existence of solutions for the corresponding algebraic problems.

8 Appendix

We now prove the results stated in the previous sections. Our main tool is the

following corollary of the Whitney’s extension theorem:

Lemma 6. Let E be a bounded subset of Rn and suppose F : E → R,

G : E → R
n and H : E → H

n are functions with domain E and M is a

constant. If

‖H(x)− H(y)‖ ≤ M‖y − x‖, (62)

‖G(y)− G(x)− H(x)(y − x)‖ ≤ M‖y − x‖2, (63)

|F(y)− F(x)− G(x)t(y − x)− 1

2
(y − x)t H(x)(y − x))|

≤ M‖y − x‖3 (64)

then there exists F ∈ Lip2(Rn) such that F(x) = F(x), ∇F(x) = G(x) and

∇2F(x) = H(x) for x ∈ E. Moreover, there exists constants C and R such that

if ‖x‖ ≥ R then ∇2F(x) is positive definite and ‖∇2F(x)−1‖ ≤ R. �

Whitney’s theorem is stated in different levels of generality in the pure mathe-

matics literature. The most complete and general approach is due to C. Fefferman

[7, 8] but, unfortunately, it is stated in a language that is too abstract for the av-

erage non linear programming researcher. In page 48 of [10], L. Hörmander

presents a more concrete version of the theorem for functions in Cm . This ver-

sion of the theorem is stated using n-uples to denote partial derivatives, i.e., if

α = (α1, . . . , αn) ∈ Nn , |α| = ∑
αi and f is a function with partial derivatives

of order |α| then ∂αf (x) is defined as

∂αf (x) = ∂α1∂α2 . . . ∂αk

∂xα1
1 ∂xα2

2 . . . ∂xαk
n

f (x).
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Moreover, α! = ∏
αi and xα = ∏

xαi . Using this notation, the arguments used

to prove theorem 2.3.6 in [10] can be adapted to prove the following version of

Whitney’s theorem:

Theorem 5. Let E be a bounded set in Rn and consider, for each α ∈ Nn with

|α| ≤ m, a Lipschitz continuous function uα : E → R. If there exists a constant

M such that∣∣∣∣∣∣uα(x)−
∑

|β|≤m−|α|

1

β!uα+β(y)(x − y)β

∣∣∣∣∣∣ ≤ M‖x − y‖m−|α|+1

for all x, y ∈ E and α ∈ Nn with |α| ≤ m then there exists f ∈ Lipm(Rn) such

that ∂αf (x) = uα(x) for all α ∈ Nn with |α| ≤ m and x ∈ E. Moreover, there

exists a constant C such that |∂αf (x)| ≤ C for all x ∈ R
n and α ∈ N

n with

|α| ≤ m. �

This theorem allows us to extend much of the discussion in this work to

Lipm(Rn) for m > 2. However, for m > 2 we cannot group the partial deriva-

tives in vectors (gradients) and matrices (Hessians) as we did in the statement

of lemma 6. As a consequence, the geometry behind the examples gets blurred

by the technicalities as m increases and we decided it would be best to focus

on the consequences of lemma 6 instead of exploring more general results like

theorem 5.

We can apply Whitney’s result to a dandelionD with xk = Xk(λ
k) because if

Sk(z) = Xk+1(z)− Xk(z), Xk(w, z) = Xk(z)+ wSk(z) (65)

and δ > 0 is small and the intervals {[ak, bk]} are compatible with D then the

distance between points in the 2 dimensional surface

∞⋃
k=0

{
Xk(w, z), w ∈ [ak, bk] and z ∈ [0, δ]}

can be estimated in terms of w and z:

Comp. Appl. Math., Vol. 26, N. 1, 2007



152 ON THE DIVERGENCE OF LINE SEARCH METHODS

Lemma 7. Given a dandelion with xk = Xk(λ
k), compatible intervals {[ak,

bk]} and Xk in (65) there exists δ > 0 such that if w j , wk ∈ [ak, bk], z j , zk ∈
[0, δ], y j = X j (w j , z j ), yk = Xk(wk, zk) and ‖y j − yk‖ ≤ δ then either

(a) j ≡ k mod p, (b) j ≡ k +1 mod p or (c) k ≡ j +1 mod p (66)

and in case (a)

‖y j − yk‖ ≥ δ
(|w j − wk | + |z j − zk |

)
, (67)

in case (b)

‖y j − yk‖ ≥ δ
(|w j | + |z j − zk | + |1 − wk |

)
(68)

and in case (c)

‖y j − yk‖ ≥ δ
(|1 − w j | + |z j − zk | + |wk |

)
. � (69)

We also use the next lemmas. After the statement of these lemmas we prove

the theorems and the paper ends with the proofs of the lemmas.

Lemma 8. Consider E ⊂ R
n, constants K > 1, δ > 0 and functions F : E →

R, G : E → R
n and H : E → H

n. If for all x, z ∈ E there exist m ∈ N and

y1, . . . , ym ∈ E such that, for y0 = x and ym+1 = z,

m∑
i=0

‖yi+1 − yi‖ ≤ K‖x − z‖, (70)

‖H(yi )− H(yi+1)‖ ≤ K‖yi+1 − yi‖, (71)

‖G(yi+1)− G(yi )− 1

2
(H(yi+1)+ H(yi ))(yi+1 − yi )‖

≤ K‖yi+1 − yi‖2, (72)

‖F(yi+1)− F(yi )− 1

2
(G(yi+1)+ G(yi ))(yi+1 − yi )‖

≤ K‖yi+1 − yi‖3, (73)

then all x, y ∈ E with ‖x − y‖ ≤ δ satisfy (62)− (64) with M = 3K 4. �
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Lemma 9. If the dandelion D(m, n, p, λ, xk, fk, gk, hk) and the functions

{Fk}, {Gk} and {Hk} are compatible and the equations (26)–(29) hold for k > k0

then there exists M ∈ R such that if j, k > k0 and u, w ∈ R then

‖Hk(u, λ
k)− Hk(w, λ

k)‖ ≤ M |u − w|, (74)

‖Gk(u, λ
k)− Gk(w, λ

k)− 1

2
(Hk(u, λ

k)+ Hk(w, λ
k))�h‖

≤ M |u − w|2, (75)

‖Fk(u, λ
k)− Fk(w, λ

k)− 1

2
(Gk(u, λ

k)+ Gk(w, λ
k))t�h‖

≤ M |u − w|3, (76)

‖Hk(w, λ
j )− Hk(w, λ

k)‖ ≤ M |λk − λ j |, (77)

‖Gk(w, λ
j )− Gk(w, λ

k)− 1

2
(Hk(w, λ

j )+ Hk(w, λ
k))�v‖

≤ M |λk − λ j |2, (78)

‖Fk(w, λ
j )− Fk(w, λ

k)− 1

2
(Gk(w, λ

j )+ Gk(w, λ
k))t�v‖

≤ M |λk − λ j |3, (79)

for �h = Xk(u, λk) − Xk(w, λ
k), �v = Xk(w, λ

j ) − Xk(w, λ
k) and X as

in (65). �

Lemma 10. If f0, f1, g0, g1, h0 and h1 ∈ R are such that g0 < f1 − f0 < g1,

h1 > 0 and h2 > 0 then there exists ψ ∈ Lip2(R) such that ψ(0) = f0,

ψ(1) = f1, ψ ′(0) = g0, ψ ′(1) = g1, ψ ′′(0) = h0, ψ ′′(1) = h1 and ψ ′′(w) > 0

for all w ∈ R. �

Lemma 11. Given a function ψ ∈ Lip1(R2) such that ψ(i, 0) = 0 and

∇ψ(i, 0) = 0 for i ∈ {0, 1} there exists φ ∈ Lip1(R2) such that

(a) φ(i, z) = 0 and ∇φ(i, z) = 0 for i ∈ {0, 1} and z ∈ R.

(b) φ(w, 0) = ψ(w, 0) and ∇φ(w, 0) = ∇ψ(w, 0) for w ∈ R. �
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Lemma 12. Consider λ ∈ (0, 1), a function F ∈ Lip2(R2), functions Y1 and

Y2 in Lip2([0, 1],Rn) and Y3(z) = Y2(z)−Y1(z). If the vectors Y ′
1(0), Y ′

2(0) and

Y3(0) are linearly independent and, for i ∈ {0, 1},

F(i, 0) = 0, ∇F(i, 0) = 0 and ∇2F(i, 0) = 0 (80)

then there exist δ > 0, G ∈ Lip1(R2,Rn) and H ∈ Lip0(R2,Hn) such that if

z ∈ [0, δ] and i ∈ {0, 1} then

G(i, z) = 0, G(w, z)t Y3(z) = ∂F

∂w
(w, z),

G(w, 0)t V (w) = ∂F

∂z
(w, 0),

(81)

∂G

∂z
(w, 0)t V (w)+ G(w, 0)tU (w) = ∂2 F

∂z2
(w, 0), (82)

H(i, z) = 0, H(w, z)Y3(z) = ∂G

∂w
(w, z),

H(w, 0)V (w) = ∂G

∂z
(w, 0)

(83)

for
V (w) = (1 − w)Y ′

1(0)+ wY ′
2(0) and

U (w) = (1 − w)Y ′′
1 (0)+ wY ′′

2 (0).
�

Proof of Theorem 2. Item 2 in the definition of flower in section 3 implies

that there exists δ > 0 such that if ‖xk − x j‖ ≤ δ then j ≡ k mod p. The

periodicity of ϕk , γk and θk given by (22), item 2 in definition 1 and the bounds

(22)– (25) imply that if x and z belong to the set E = {xk, k ∈ N} ∪ {χk, k ∈ N}
and ‖x − z‖ ≤ δ then there exists k such that m = 1 and y1 = χk satisfy the

conditions (70)– (73) in lemma 8. Therefore, lemmas 6 and 8 imply that there

exists a function F as required by theorem 2. �

Proof of Theorem 3. Consider k0 and δ obtained from lemma 7 and

E =
∞⋃

k=k0

{
Xk(w, λ

k), w ∈ [ak, bk]
}
.
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Lemma 7 and the three equations in (26) imply that the expressions

F(Xk(w, λ
k)) = Fk(w, λ

k),

G(Xk(w, λ
k)) = Gk(w, λ

k),

H(Xk(w, λ
k)) = Hk(w, λ

k)

define functions F , G and H with domain E , i.e., if X j (w j , λ
j ) = Xk(wk, λ

k)

then

Fj (w j , λ
j ) = Fk(wk, λ

k),

G j (w j , λ
j ) = Gk(wk, λ

k),

Hj (w j , λ
j ) = Hk(wk, λ

k).

Lemmas 7 and 9 show that the functions F , G and H above satisfy the hypothesis

of lemma 8 and theorem 3 follows from lemma 6. �

Proof of Theorem 4. For ρ > 0, consider the compact convex set

�ρ = {x ∈ Rn | sup
y∈�

‖x − y‖ ≤ ρ}.

Since �k ∩ �r ∩ � = ∅ for r + 1 < k < r + p − 1 there exists ε > 0 such that

�k ∩ �r ∩ �2ε = ∅ for the same k and r . For each 0 ≤ r < p there exist ar < 0

and br > 1 such that

�r ∩ �2ε = {Xr (0)+ wSr (0), w ∈ [ar , br ]}.

Extending the definition of ak and bk by periodicity, ak = ak mod p and bk =
bk mod p, we obtain intervals [ak, bk] compatible with D. Combining lemmas 1,

3 and 10 and theorem 3 we obtain k1 and F ∈ Lip2(Rn) such that if k > k1

then F(xk) = fk , ∇F(xk) = gk , ∇2F(xk) = hk and st
k∇2F(xk + wsk)sk > 0 for

w ∈ [ak, bk].
The points Xk(0) belong to the interior of the compact convex set �ε and there

exist ck < 0 and dk > 1 such that ck+p = ck , dk+p = dk and

�k ∩ �ε = {
Xk(0)+ wSk(0), w ∈ [ck, dk]

}
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and vectors Uk , Vk such that Uk+p = Uk , Vk+p = Vk , U t
k Sk(0) < 0, V t

k Sk(0) > 0

and

U t
k(x−Xk(0)−ck Sk(0)) ≤ 0 and V t

k (x−Xk(0)−dk Sk(0)) ≤ 0 for x ∈ �ε.

Let L be a Lipschitz constant for the second derivatives of F , µ > 0 such that

µ 3
√‖Sk(0)‖ < −U t

k Sk(0) and µ 3
√‖Sk(0)‖ < V t

k Sk(0) for k ∈ N

and τ : R → R be the function τ(w) = max(w, 0)3. The function

F(x) = F(x)+ L

µ3

p∑
r=0

(
τ(U t

r (x − Xr (0)− cr Sr (0)))

+ τ(V t
r (x − Xr (0)− dr Sr (0)))

)
and k0 > k1 such that µ 3

√‖sk‖ < −3U t
ksk and µ 3

√‖sk‖ < 3V t
k sk ,

U t
k(xk +bksk − Xk(0)−ck Sk(0)) > 0 and V t

k (xk +bksk − Xk(0)−dk Sk(0)) > 0

for k > k0 are as required by theorem 4. In fact, F coincides with F in �ε and

if k > k0 and w > bk then

st
k

∂2 F

∂w2
(xk + wsk)sk ≥ st

k

∂2 F

∂w2
(sk + bksk)sk − L(w − bk)‖sk‖

+ 6L

µ3
(V t

r sk)
2V t

k (xk − bksk − Xk(0)− dk Sr (0))

+ (w − bk)
6L

µ3
(V t

r sk)
3 > L(w − bk)‖sk‖.

�

Proof of Lemma 1. Let F be the function obtained by applying theorem 2 to

D. Lemma 12 applied to the functions F̃ = Fk − F , Y1 = Xk and Y2 = Xk+1

yield functions G̃k and H̃k such that Gk(x) = ∇F(x) + G̃k(x) and Hk(x) =
∇2F(x)+ H̃k(x) are as claimed in lemma 1. �

Proof of Lemma 2. Equations (34)– (37) show that

Xk(z) =
n∑

j=1

zd j (xr ) j e j and gk =
n∑

i=1

λk(dn−di )(gk)i ei (84)
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where ei ∈ R
n is the vector with eii = 1 and ei j = 0 for i �= j , Item 4b in

definition 7 implies that if T = {(i, j) such that di + d j ≤ dn} then

hk =
∑
(i, j)∈T

λk(dn−di −d j )(hk)i j ei e
t
j . (85)

Since Q p = I and xk+p = xk , the Xk in (34) satisfy item (a) in the definition of

dandelion. The relations f k+p = f k , gk+p = gk and hk+p = hk imply that fk ,

gk and hk accumulate at the limits ϕk , γk and θk in the last column of (34)– (37)

and these limits satisfy (22). We now verify (23)– (25). Equation (85) yields

(23). The first equation in (84) leads to

�k = xk − χk =
∑
j∈J

λkd j (xk) j , (86)

where J = { j | d j > 0}. The second equation in (84) and (85) imply that

‖gk − γk − θ∞
k �k‖ ≤ nλk

∑
u∈U

|(gk)u −
∑
j∈J

(hk)u j (xk) j | + O(λ2k) (87)

for U = {u |du = dn − 1} and equations (87) and (32) show that the gk satisfy

(24). Equations (38), (39) and (86) lead to

g∞
k �k = λkdn

∑
j∈G

(gk) j (xk) j and �t
kθ

∞
k �k = λkdn

∑
(i, j)∈T

(hk)i j (xk)i (xk) j ,

for L and S in item 4b of definition 7, and (25) follows from (33). Finally, the

linear independence requirements in items (b) and (c) of definition 4 follow from

item 3 in definition 7. �

Proof of Lemma 3. Direct computation using (34)– (37) and (41) show that

the function Fk satisfies (30). �

Proof of Lemma 4. To prove this lemma, plug (34)– (37) into the expressions

in the hypothesis of lemma 4 and compare the results with (42)– (43). �
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Proof of Lemma 5. The matrix Z in (52) can be written as

Z = λ3 D(λ−1)Q =




Z1 0 0 0 0

0 Z2 0 0 0

0 0 Z3 0 0

0 0 0 Z4 0

0 0 0 0 Z5



, (88)

where the Zi ’s are the following 1 × 1 and 2 × 2 blocks:

Z1 = λ3

(
cos π

33 − sin π
33

sin π
33 cos π

33

)
, Z2 = −λ3, Z3 = λ2, Z4 = −λ2, Z5 = 1. (89)

If we identify the blocks Zi with the complex numbers

z1 = λ3e
π i
33 , z2 = −λ3, z3 = λ2, z4 = −λ2, z5 = 1. (90)

then (52) can be interpreted as the equations

z6
k ĝk+6 = ρr

(
zk ĝ j,k+1 − ĝ j,k

)
, (91)

in the complex variables ĝ j,k given by

ĝ1,k = (gk)1 + i(gk)2, ĝ2,k = (gk)3, (92)

ĝ3,k = (gk)4, ĝ4,k = (gk)5, ĝ5,k = (gk)6. (93)

In the case ρk+11 = ρk and gr+11 = gr equation (91) is equivalent to

A(1/ρ0, 1/ρ2, . . . , 1/ρ10,−z j )ĝ j = 0, (94)

where ĝ j = (ĝ j,0, ĝ j,1, ĝ j,2, ĝ j,3, . . . , ĝ j,7, ĝ j,10)
t and

A(y, z) =




1 z 0 0 0 0 y0z6 0 0 0 0

0 1 z 0 0 0 0 y1z6 0 0 0

0 0 1 z 0 0 0 0 y2z6 0 0

0 0 0 1 z 0 0 0 0 y3z6 0

0 0 0 0 1 z 0 0 0 0 y4z6

y5z6 0 0 0 0 1 z 0 0 0 0

0 y6z6 0 0 0 0 1 z 0 0 0

0 0 y7z6 0 0 0 0 1 z 0 0

0 0 0 y8z6 0 0 0 0 1 z 0

0 0 0 0 y9z6 0 0 0 0 1 z

z 0 0 0 0 y10z6 0 0 0 0 1



. (95)
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Equation (94) suggests that we take ρ0, ρ1, . . . , ρ10 such that the corresponding

matrices A in (95) are singular. Given such ρ’s we can find vectors ĝ j �= 0 that

satisfy (94) and use them to define the vectors g taking real and imaginary parts

of (92)– (93). This approach leads to the polynomial equations

det(A(y,−z j )) = 0 for j = 1, 2, 3, 4, 5 (96)

on the yr = 1/ρr . To obtain accurate approximations for appropriated ρr we

take

y6 = −1.9948, y7 = −0.3737, y8 = −1.2355, y9 = 0.9857, y10 = 0.11717

and apply Newton’s method to find the remaining yi . Expression (96) correspond

to a system of six real equations and Newton’s method starting with

y0 = 2.04831, y1 = 3.33798, y2 = −1.15867,

y3 = 0.300795, y4 = −0.634211, y5 = −2.44761,

converges quickly to a solution of this system. This approach led to ratio-

nal approximations y′s for the yi ’s such that ‖ det(A(y,−z j ))‖ < 10−1000 for

j = 1, 2, 3, 4 and 5 and such that the Jacobian of the system (96) is well con-

ditioned at y. A standard argument using Kantorovich’s theorem proves the

existence of an exact y in a neighborhood of radius 10−500 of our rational ap-

proximation. Using the approximation y we dropped the last row in each of

the matrices A(y,−z j ) and computed highly accurate approximations for the

five complex vectors ĝ j ∈ R11 in (94) normalized by the condition (ĝ j )1 = 1.

Using (92)– (93) we obtained accurate approximations to the vectors g j required

by lemma 5. Using these approximations we verified that the vectors in (53)

are indeed linearly independent and solved the systems (54) for the vectors sk .

Finally, we computed approximations for the xk in (55)– (56) and verified that the

corresponding lines �k and �r in the hypothesis of theorem 4 are at least 10−5

apart. Our computations indicate that the exact lines �k and �r do not cross.

We did a rigorous sensitivity analysis of the computations above and it indicated

that 500 digits is precision enough to guarantee that our conclusions apply to the

exact y’s, g’s, s’s and x ’s. �
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Proof of Lemma 6. Applying the version of Whitney’s theorem in page 6 of

[8] to ω(t) = t and a properly scaled version of the polynomials

Px(y) = F(x)+ G(x)t(y − x)+ 1

2
(y − x)t H(x)(y − x)

we obtain a function F̃ ∈ Lip2(Rn) and a constant C > 0 such that F̃(x) = F(x),
∇F̃(x) = ∇F(x) and ∇2F̃(x) = ∇2F(x) for all x ∈ E and ‖∇2F̃(x)‖ ≤ 1/C
for all x ∈ Rn . Let R > 0 be such that 2‖x‖ < R for all x ∈ E and consider a
polynomial � such that

�

(
R2

4

)
= �′

(
R2

4

)
= �′′

(
R2

4

)
= �(R2) = �′′ (r2

)
= 0 and �′(R2) = 1

C
.

The constants C and R and the function F defined by

F(x) = F̃(x) for ‖x‖ ≤ R

2
,

F(x) = F̃(x)+�(‖x‖2) for
R

2
< ‖x‖ ≤ R,

F(x) = F̃(x)+ 1

C

(‖x‖2 − R2
)

for ‖x‖ > R,

satisfies the requirement of lemma 6. �

Proof of Lemma 7. By compatibility of {[ak, bk]} and D and periodicity

(Xk+p = Xk), there exists ε > 0 for which the segments �ε
k = {

Xk(w, 0), w ∈
[ak, bk]

}
are such that dist (�ε

r ,�ε
k) > ε if r + 1 < k < r + p − 1. If δ > 0 is

small enough then the surfaces

�δ
k = {

Xk(w, z), w ∈ [ak, bk], z ∈ [0, δ]}
are such that

dist(�δ
r ,�δ

k) > δ for r + 1 < k < r + p − 1. (97)

The definition of dandelion and the Lipschitz continuity of the derivatives of Xk

imply that for δ > 0 small if v, z ∈ [0, δ], k ∈ N and a, b, c ∈ R then

‖aSk(z)+ bX ′
k(z)+ cX ′

k+1(z)‖
≥ 3δ(‖aSk(z)‖ + ‖bX ′

k(z)‖ + ‖cX ′
k+1(z)‖),

(98)
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‖aSk(v)+ bX ′
k(z)+ cSk+1(z)‖

≥ 3δ(‖aSk(v)‖ + ‖bX ′
k(z)‖ + ‖cSk+1(z)‖).

(99)

We also have that

Xk(v) = Xk(z)+ (v − z)X ′
k(z)+�k(v, z) (100)

where �k(v, z) satisfies the inequality

‖�k(v, z)‖ < δ|v − z| max
z∈[0,1]

‖X ′′(z)‖

when v, z ∈ [0, δ]. The linear independence requirements in the definition of

dandelion imply that X ′
k(0) �= 0 and (100) implies that if δ > 0 is small and

v, z ∈ [0, δ] then

2‖(v − z)X ′
k(z)‖ ≥ ‖Xk(v)− Xk(z)‖. (101)

We now show that δ > 0 for which the expressions (97)– (101) above are valid

fulfils the requirements in lemma 7. Given y j and yk as in the hypothesis of

lemma 7 there exists i ∈ [k, k − p) such that i ≡ j mod p Since ‖y j − yk‖ ≤ δ

and Xi = X j the surfaces �δ
i and �δ

k are at most δ apart and (97) leaves only the

three possibilities: (a) i = k, (b) i = k +1 or (c) i = k + p−1. This corresponds

to (66) and to complete this proof we now verify the bounds (67)– (69). In case

(a) X j = Xk and Sj = Sk and the definition of y j and yk in the hypothesis and

(100) lead to

y j − yk = (
w j − wk

)
Sk(zk)+ (1 − w j )

(
Xk(z j )− Xk(zk)

)
+ w j

(
Xk+1(z j )− Xk+1(zk)

)
= (w j − wk)Sk(zk)+ (1 − w j )(z j − zk)X

′
k(zk)

+ w j (z j − zk)X
′
k+1(zk)+ (1 − w j )�k(z j , zk)+ w j�k+1(z j , zk).

The bounds (98) and (101) and the abbreviation (w j − wk)Sk(zk) = � yield

‖y j − yk‖ ≥ 3δ
(‖�‖ + ‖(1 − w j )(z j − zk)X

′
k(zk)‖ + ‖w j (z j − zk)X

′
k+1(zk)‖

)
− ‖(1 − w j )�k(zk, z j )‖ − ‖w j�k+1(zk, z j )‖.

≥ δ
(‖�‖ + ‖(1 − w j )(Xk(z j )− Xk(zk))+ w j (Xk+1(z j )− Xk+1(zk)‖

)
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and (67) follows from the equations � = X j (w j , zk)− yk and

y j − X j (w j , zk) = (1 − w j )
(
Xk(z j )− Xk(zk)

)+ w j

(
Xk+1(z j )− Xk+1(zk)

)
.

In case (b) X j = Xk+1 and Sj = Sk+1 and (100) lead to

y j − yk = w j Sk+1(z j )+ (z j − zk)X
′
j (zk)+ (1 − wk)Sk(zk)+� j (zk, z j )

and using (99) and (101) we deduce that

‖y j − yk‖ ≥ 3δ
(‖w j S j (z j )‖ + ‖(z j − zk)X

′
j (zk)‖ + ‖(1 − wk)Sk(zk)‖

)
−‖� j (zk, z j )‖ ≥ δ

(‖w j S j (z j )‖ + ‖X j (z j )− X j (zk)‖ + ‖(1 − wk)Sk(zk)‖
)

and (68) follows at once. Finally, case (c) is analogous to case (b). �

Proof of Lemma 8. Given x, z ∈ E , let y1, . . . , ym be as in the hypothesis of

lemma 8 and define

y0 = x, ym+1 = z and f j = F(y j ), g j = G(y j ) and h j = H(y j ).

The bounds (71) and (70) yield

‖h j − h0‖ ≤
j∑

i=1

‖hi − hi−1‖

≤
j∑

i=1

K‖yi − yi−1‖ ≤ K 2‖x − z‖
(102)

and (62) is obtained by taking j = m + 1 in (102). The identity

g j − g0 − h0(y j − y0) =
j∑

i=1

gi − gi−1 − 1

2
(hi + hi−1)(yi − yi−1)

+ 1

2

j∑
i=1

(hi + hi−1 − 2h0)(yi − yi−1)

and the bounds (70), (72) and (102) and imply that

‖g j − g0 − h0(y j − y0)‖ ≤ 2K 3‖x − z‖2. (103)
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Taking j = m + 1 we deduce that x and z satisfy (63). Finally, notice that

f j − f0 − gt
0(y j − y0)− 1

2
(y j − y0)

t h0(y j − y0)

=
j∑

i=1

(
fi − fi−1 − 1

2
(gi + gi−1)

t(yi − yi−1)

)

+ 1

2

j∑
i=1

(gi−1 − g0 − h0(yi−1 − y0))
t(yi − yi−1)

+ 1

2

j∑
i=1

(gi − g0 − h0(yi − y0))
t(yi − yi−1)

− 1

2
(y j − y0)

t h0(y j − y0)+ 1

2
�

(104)

for � = ∑ j
i=1(yi + yi−1 − 2y0)

t h0(yi − yi−1). The last terms in (104) cancel

because

� =
j∑

i=1

((yi − y0)+ (yi−1 − y0))
t h0 ((yi − y0)− (yi−1 − y0))

=
j∑

i=1

(yi − y0)
t h0(yi − y0)−

j∑
i=1

(yi−1 − y0)
t h0(yi−1 − y0)

= (y j − y0)
t h0(y j − y0).

Thus, if we take j = m + 1 then (70), (103) and (104) yield (64) for

M = 3K 4. �

Proof of Lemma 9. The bounds (74) and (77) follow from the Lipschitz con-

tinuity of Hk . Equation (75) can be derived from the first equation in (29),

�h = Xk(u, λ
k)− Xk(w, λ

k) = (u − w)sk . (105)

and the Lipschitz continuity of the first derivatives of Gk . Equation (76) is

a consequence of the first equation in (27) and (29), (105) and the Lipschitz

continuity of the second derivatives of Fk . The bounds (78) and (79) are clearly

satisfied if j = k and from now on we assume that j �= k. In this case

λ j + λk <
1 + λ

1 − λ
|λ j − λk | (106)
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and Xk(λ
j ) = Xk(λ

k) + X ′
k(0)(λ

j − λk) + 1
2 X ′′

k (0)(λ
2 j − λ2k) + µ j,k , where

µ j,k = ∫ λk

λ j

∫ ξ
0 (X

′′(ζ )− X ′′(0))dζdξ satisfies

|µ j,k | ≤ L|λk − λ j ||λk + λ j |2 ≤ L(1 + λ)2

(1 − λ)2
|λk − λ j |3,

for a Lipschitz constant L for X ′′
k . The bound (106) and Xk ∈ Lip2([0, 1],Rn)

lead to

�v = (1 − w)(Xk(λ
j )− Xk(λ

k))+ w(Xk+1(λ
j )− Xk+1(λ

k))

= (λ j − λk)Vk(w)+ 1

2
(λ2 j − λ2k)Uk(w)+ O(|λ j − λk |3)

(107)

for

Uk = (1 − w)X ′
k(0)+ wX ′

k+1(0) and Vk = (1 − w)X ′′
k (0)+ wX ′′

k+1(0).

The conditions Fk ∈ Lip2(R2) and Gk ∈ Lip1(R2,Rn) imply that

Gk(w, λ
l) = Gk(w, 0)+ λl ∂Gk

∂z
(w, 0)+ O(λ2l), (108)

Gk(w, λ
j )− Gk(w, λ

k) = ∂G

∂z
(w, 0)(λ j − λk)+ O(|λ j − λk |2), (109)

Fk(w, λ
j )− Fk(w, λ

k) = ∂F

∂z
(w, 0)(λ j − λk)+ 1

2

∂2 F

∂z2
(w, 0)(λ2 j − λ2k)

+ O(|λ j − λk |3).
(110)

The bound (78) follows from the second equation in (29), (107) and (109). Fi-

nally, the bound (79) can be deduced from the second equation in (27), equations

(28), (106), (107), equation (108) with l = j and l = k and equation (110). �

Proof of Lemma 10. Given ε > 0, consider the function

Fε(w) = f0 + ( f1 − f0)w + Cε(w),

where Cε(w) is the piecewise cubic given by

wg0 + w2h0 if w ≤ 0,
wg0 + w2h0 + aεw3 if w ∈ (0, ε],
wg0 + w2h0 + aεw3 + bε(w − ε)3 if w ∈ (ε, 2ε],
fε + gε(2w − 1)+ ε(2w − 1)2 if w ∈ (2ε, 1 − 2ε],
(w − 1)g1 + (w − 1)2h1 + dε(w − 1)3 + cε(w − 1 − ε)3 if w ∈ (1 − 2ε, 1 − ε],
(w − 1)g1 + (w − 1)2h1 + dε(w − 1)3 if w ∈ (1 − ε, 1],
(w − 1)g1 + (w − 1)2h1 if w > 1,
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with gi = gi − f1 + f0 and hi = hi/2 for i ∈ {0, 1}. The function Fε belongs to

Lip2(R) if and only if it has continuous second order derivatives at w = 2ε and

w = 1 − 2ε. This condition leads to a linear system of six equations on the six

variables aε , bε , cε , dε , fε and gε . Solving this system we obtain

aε = − g0 + O(ε)

6ε2(1 − 2ε)
, dε = − g1 + O(ε)

6ε2(1 − 2ε)
. (111)

The second derivative of Fε is a piecewise linear function with values

h0, h0 + 6εaε, ε, ε, h1 − 6εdε, h1 (112)

at the nodes w = 0, w = ε, w = 2ε, w = 1 − 2ε, w = 1 − ε and w = 1. The

hypothesis implies that g0 < 0 and g1 > 0 and (111) shows that aε > 0 and

dε < 0 if ε > 0 is small. Therefore, (112) implies that Fε ′′(w) > 0 for all w if

ε is small enough. �

Proof of Lemma 11. Applying Whitney’s theorem to the set

E = {(0, y) | |y| ≤ 3} ∪ {(1, y) | |y| ≤ 3} ∪ {(x, 0) | |x | ≤ 3} ⊂ R
2

and the functions F : E → R and G : E → R
2 given by

F(w, 0) = ψ(w, 0), F(i, z) = 0, G(w, 0) = ∇ψ(w, 0), G(i, z) = 0,

for i = 0, 1 we obtain a function φ ∈ Lip1(R2) such that

φ(w, 0) = ψ(w, 0), ∇φ(w, 0) = ∇ψ(w, 0), φ(i, z) = 0, ∇φ(i, z) = 0

for i = 0, 1 and |w|, |z| ≤ 3. Let τ : R → R be a C∞ function such that

τ(x) = 1 for |x | < 2 and τ(x) = 0 for |x | > 3. The function

φ(w, z) = τ(z)
(
τ(w)φ(w, z)+ (1 − τ(w))ψ(w, z)

)
satisfies items (a) and (b) in lemma 11. �
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Proof of Lemma 12. Let Z1, Z2 and Z3 be the functions defined by

Z1(z) = Y ′
1(z), Z2(z) = Y ′

2(z), Z3(z) = Y3(z).

The vectors Z1(0), Z2(0) and Z3(0) are linearly independent. Therefore, there

exist W1, W2, W3 ∈ Rn such that

W t
i Zi (0) = 1 and W t

i Z j (0) = 0 if i �= j. (113)

The implicit function theorem guarantees the existence of δ > 0 and functions

ai j ∈ Lip1([0, δ]), defined for 1 ≤ i, j ≤ 3, such that

aii (0) = 1 and ai j (0) = 0 if i �= j (114)

and the vectors

Ai (z) = ai1(z)W1 + ai2(z)W2 + ai3(z)W3 (115)

are such that

Ai (z)
t Zi (z) = 1 and Ai (z)

t Z j (z) = 0 if i �= j (116)

for z ∈ [0, δ]. Lemma 11 applied to ψ = ∂F
∂z yields φ ∈ Lip1(R2) such that

φ(i, z) = 0,

∇φ(i, z) = 0,

φ(w, 0) = ∂F

∂z
(w, 0),

∂φ

∂z
(w, 0) = ∂2 F

∂z2
(w, 0)

(117)

for w ∈ R and i ∈ {0, 1}. We now show that any G ∈ Lip1(R2,Rn) such that

G(w, z) = ∂F

∂w
(w, z)A3(z)+ φ(w, z)(A1(z)+ A2(z)) (118)

for z ∈ [0, δ] satisfies (81) and (82). Equations (80) and (117) imply that

G(i, z) = 0 and second and third equations in (81) follows from (114)– (118)
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and the definition of S(z) and V (w). To verify (82), notice that (117) and (118)

lead to

∂G

∂z
(w, 0) = ∂2 F

∂w∂z
(w, 0)W3 + ∂F

∂w
(w, 0)A′

3(0)

+ ∂2 F

∂z2
(w, 0)(W1 + W2)+ ∂F

∂z
(w, 0)(A′

1(0)+ A′
2(0)).

(119)

Equation (116) yields A′
i (0)

t Z j (0) + Ai (0)t Z ′
j (0) = 0 and (114)– (116) imply

that

a′
i j (0) = −W t

i Z ′
j (0). (120)

If j = 3 then Z ′
j (0) = Y ′

3(0) = Y ′
2(0) − Y ′

1(0) = Z2(0) − Z1(0) and (120)

leads to

a′
13(0) = 1, a′

23(0) = −1, a′
33(0) = 0. (121)

Reminding that Z ′
i (0) = Y ′′

i (0) and using (116) and (120)– (121) we obtain

A′
1(0) = −W t

1Y ′′
1 (0)W1 − W t

1Y ′′
2 (0)W2 + W3, (122)

A′
2(0) = −W t

2Y ′′
1 (0)W1 − W t

2Y ′′
2 (0)W2 − W3, (123)

A′
3(0) = −W t

3Y ′′
1 (0)W1 − W t

3Y ′′
2 (0)W2. (124)

Equations (117) and (118) show that

G(w, 0) = ∂F

∂w
(w, 0)W3 + ∂F

∂z
(w, 0)(W1 + W2) (125)

and (82) follows from (116), (118), (122)– (124) and the fact that

V (w) = (1 − w)Z1(0)+ wZ2(0) and

U (w) = (1 − w)Y1
′′(0)+ wY2

′′(0).
(126)

To complete this proof we define H as

H(w, z) = ∂2 F

∂w2
(w, z)A3(z)A3(z)

t +�(w, z)

+ b(w)A1(z)A1(z)
t + (b(w)+ c(w))(A2(z)A1(z)

t

+ A1(z)A2(z)
t)+ c(w)A2(z)A2(z)

t

(127)

for

�(w, z) = ∂φ

∂w
(w, z)

(
(A1(z)+ A2(z))A3(z)

t + A3(z)(A1(z)+ A2(z))
t) , (128)
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b(w) = 1

1 − w + w2 (Z1(0)− wZ2(0))
t ∂G

∂z
(w, 0), (129)

c(w) = 1

1 − w + w2 ((w − 1)Z1(0)+ Z2(0))
t ∂G

∂z
(w, 0). (130)

Equations (80) and (117) imply that H(i, z) = 0 for i ∈ {0, 1} and (118) and

(116) imply the second equation in (83). Using (117), (126) and (127)– (130)

we get

H(w, 0)V (w) = ((b(w)+ wc(w))W1 + ((1 − w)b(w)+ c(w))W2

+ ∂φ

∂w
(w, 0)W3

= Z1(0)
t ∂G

∂z
(w, 0)W1 + Z2(0)

t ∂G

∂z
(w, 0)W2

+ ∂2 F

∂w∂z
(w, 0)W3.

(131)

Equations (113), (119) and (122)– (124) show that

Z3(0)
t ∂G

∂z
(w, 0) = ∂2 F

∂w∂z
(w, 0).

Finally, equations (113) shows that the right hand side of (131) is the expansion

of ∂G/∂z (w, 0) on the basis {W1,W2,W3} of a tri-dimensional subspace that

contains ∂G/∂z (w, 0) and we have shown (83). �
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