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Abstract. The prediction of the reversible evolution of macroscopic magnetostriction strain

and magnetisation in ferromagnetic materials is still an open issue. Progress has been recently

made in the description of the magneto-elastic behaviour of single crystals.

Herein, we propose to extend this procedure to the prediction of the behaviour of textured soft

magnetic polycrystals. This extension implies a magneto-mechanical homogenisation. The model

proposed is discussed and the results are compared to experimental data obtained on industrial

iron-silicon alloys.
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1 Introduction

The prediction of the magnetic behaviour of ferromagnetic materials, even in

the isotropic case is still an active field of research (Bozorth, 1951; Jiles, 1991;

A. Hubert et al., 1998). Another open issue is the prediction of the strain in-

duced by magnetisation, called magnetostriction, which is closely linked to the

magnetisation process, and to the magnetic domains structure. The mechanisms

involved in this process can be naturally written at the magnetic domain scale

– that is lower than the grain size – whereas the scale of interest for electrical
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engineering – the machine scale – is nearest to the centimeter scale. The object of

this paper is to propose a multi-scale approach that could link these two different

scales, providing a macroscopic magneto-elastic model with a strong physical

content.

After an illustration of some magneto-elastic effects, a brief description of

the magnetisation process is given. A micromagnetic model for single crystals,

proposed by Buiron et al. (1999, 2001) is presented as well as its extension to

polycrystalline media. The results are then compared to experimental data and

discussed.

2 Magneto-elastic couplings

Magnetic and mechanical behaviours are coupled. It means that the magnetic

behaviour cannot be accurately determined unless the mechanical fields are taken

into account, and, on the other hand, the deformation state is depending on the

magnetic configuration. This coupling has two main consequences.

2.1 Stress effect on magnetisation

In the case of Nickel, a compressive stress of 70 MPa doubles the initial per-

meability while the same amount of tensile stress reduces it about one tenth of

the zero stress value. On the contrary, for materials like 68-permalloy (68%

Ni-Fe alloy), the effect of stress is just the opposite. The magnetic behaviour

of polycristalline iron under stress is much more complicated. At low magnetic

fields, tension raises the M-H curve whereas it lowers it for higher magnetic

fields (Villari effect – see for example Cullity (1972)).

2.2 Magnetostriction strain

Magnetostriction is the deformation that spontaneously occurs in ferromagnetic

materials when an external magnetic field is applied. This coupling effect can

be used to build magnetostrictive actuators and sensors. Magnetostriction is

also partly responsible (added to magnetic forces effect) of the noise emitted by

electrical devices. This strain is also very sensitive to the mechanical loading

(figure 1(b)).

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



LAURENT DANIEL, OLIVIER HUBERT and RENÉ BILLARDON 287

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
x 10

5

H (A/m)

M
 (

A
/m

)

σ = 0
σ = 55 MPa
σ = −55 MPa

(a) Effect of stress on the magnetisation

curve

0 0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1
x 10

−5

H (A/m)

εµ

σ = 0
σ = 69 MPa
σ = −69 MPa

(b) Magnetostriction strain

Figure 1 – Experimental llustration of magneto-elastic couplings in iron, after Cul-

lity (1972).

Moreover, this phenomenon explains several particular behaviours, such as the

�E effect or the INVAR and ELINVAR effects (Bozorth, 1951).

The �E effect is an apparent loss of linearity in the elastic behaviour of demag-

netised specimens. This is due to the superimposition of the magnetostriction

strain to the elastic strain during the strain measurement (see figure 2). Linear be-

haviour is recovered when the stress is high enough to saturate magnetostriction.

σ

ε

εµ
sat

saturated

demagnetised

Figure 2 – Illustration of �E effect.

INVAR and ELINVAR effects are an apparent insensitivity for specific compo-

sitions to a change in temperature. The INVAR effect is the apparent absence of
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thermal dilatation in a specific range of temperature, due to the superimposition

of the magnetostriction strain to the thermal strain. The ELINVAR effect is the

apparent constancy of the Young modulus with a change in temperature.

These complex coupling phenomena are supposed to be strongly correlated

with the magnetic microstructure, and thus have to be described and modelled

at the relevant scale. This point is the object of next section, where the study has

been restricted to polycristalline media, and where the case of iron-based alloys

is emphasized.

3 Magnetisation process at the grain scale

Each grain of a ferromagnetic polycrystalline material is divided into domains

(figure 3) that are magnetised at saturation, whatever the external magnetic field

(Bozorth, 1951). In each domain α, the magnetisation �Mα can be written:

�Mα = Ms �γ = Ms
t [γ1, γ2, γ3] , with γ 2

1 + γ 2
2 + γ 2

3 = 1 (1)

Increasing values of H

H

<100>

<010>

Figure 3 – Magnetisation process – Schematic two-dimensionnal representation in the

case of iron crystal.

The magnetisation in these domains is initially oriented along the easy direc-

tions of magnetisation of the crystal. Easy directions being <100> for iron, six

domain families α are possible. The domains structure changes while increasing

the external magnetic field thanks to domain walls motion: domains whose ori-

entation is closer to the orientation of the applied field grow while others shrink.

For high values of the applied magnetic field, the magnetisation of the domains
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rotates towards the direction of the magnetic field. When complete magnetic sat-

uration is reached, each grain is composed of a unique domain that is magnetised

in the direction of the applied field.

4 Microscopic model

The first step of this magneto-mechanical modelisation is to get an accurate

description of the single crystal behaviour, accounting for the two distinct mech-

anisms involved in the magnetisation process. It can be noticed that the same

model can be applied for a grain embedded in a polycrystal.

4.1 Magnetostriction strain

If the magnetisation �Mα is known, the magnetostriction strain ε
µ
α in the domain

is known and can be written in the crystallographic frame CF. In the case of a

cubic crystallographic symmetry, the tensor ε
µ
α is (A. Hubert et al., 1998):

ε
µ
α = 3

2




λ100
(
γ 2

1 − 1
3

)
λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100
(
γ 2

2 − 1
3

)
λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100
(
γ 2

3 − 1
3

)




CF

(2)

where λ100 and λ111 are the magnetostrictive constants for the single crystal, λ100

(resp. λ111) being the strain measured in the direction parallel to the <100>

(resp. <111>) axis of a single crystal, when it is magnetised at saturation along

this axis.

Relation (2) can be written in the following condensed form:

ε
µ
α = D : γ (3)

defining: 


γ = �γ ⊗ �γ

D = 3

2

(
λ100K

a + λ111K
b
) (4)
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with1: 


Ka = L − J

Kb = I − L

Lijkl = δij δkl δik

Jijkl = 1
3 δij δkl

(5)

4.2 Mechanical behaviour

Considering the low level of stresses that will be considered hereafter, the me-

chanical behaviour of a single crystal is written in the framework of linear elas-

ticity, with an usual Hooke law:

σ g = C
I : εe

g (6)

where σ g and εe
g denote the stress and the elastic strain tensors in the single

crystal whereas CI is the stiffness tensor for the single crystal, assumed to be

magnetic field independent.

4.3 Magnetic behaviour

We use here after the description of the magneto-elastic behaviour of single

crystals proposed by Buiron et al. (1999, 2001). This approach is derived from

Néel magnetic phase model (Néel, 1944).

4.3.1 Magnetic state variables

The state variables chosen to describe the magnetisation of a single crystal are

divided in two distinct sets. For each domain family α, we define:

• The disorientation angle θα being the angle between the crystallographic

easy direction of the α domain family and the present direction of its

magnetisation �Mα. We assume here that �Mα is always in the plane formed

by the easy direction and the magnetic field.

• The volumetric fraction fα of the α domain family in the single crystal.

1δij is the Krönecker symbol and I the identity fourth order tensor.
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4.3.2 Potential energy of a domain

In order to determine the state variables, we write the potential energy at the

magnetic domain scale, considering three major contributions:

Wα = Wmag
α + Wan

α + Wσ
α (7)

• Wmag
α is the magnetostatic energy, tending to create a magnetisation par-

allel to the magnetic field. It can be written:

Wmag
α = −µ0 �Hg · �Mα (8)

where �Hg denotes the mean magnetic field in the crystal and �Mα the mag-

netisation in the α domain: �Mα = Ms �γ = Ms
t [γ1, γ2, γ3].

• Wan
α is the anisotropy energy tending to prevent, in each domain, the

rotation of the magnetisation from the easy axes. In the case of cubic

crystallographic structure:

Wan
α = K1

(
γ 2

1 γ 2
2 + γ 2

2 γ 2
3 + γ 2

3 γ 2
1

) + K2
(
γ 2

1 γ 2
2 γ 2

3

)
(9)

where K1 and K2 denote the anisotropy constants for the single crystal.

If we note:

β = K
b : γ , (10)

the anisotropy energy can be written:

Wan
α = K1

2
β : β + K2. det(γ − β) (11)

• Wσ
α is the magneto-elastic energy describing the couplings effects between

the magnetisation and the local stress σ g (mean value within the single

crystal):

Wσ
α = −σ g : εµ

α = −σ g : D : γ (12)

where ε
µ
α is the magnetostriction strain tensor in the α domain, defined by

equation (3).
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Using the previous notations, the total potential energy of a domain is defined

by equation (13):

Wα = −µ0 �Hg. �Mα + K1

2
β : β + K2. det(γ − β)−σ g : D : γ (13)

This expression does not account for the exchange energy and for the pure

elastic energy. The elastic energy is assumed to be constant over a grain, and

thus does not participate to the equilibrium of a single crystal. On the other hand,

the variations of the exchange energy near the domains border is accounted for

thanks to the parameter As presented here after (Buiron, 2000).

4.3.3 State variables calculation

• The θα variables are obtained after minimisation of the potential energy of

each domain family:

Wα(θα) = min(Wα) , θα ∈ [0, θmax] (14)

If �u0 is the initial easy axis for the domain α, θmax is defined by:

θmax = Arccos

(
�u0 · �Hg

|| �Hg||

)
(15)

• The fα variables are obtained using the explicit relation proposed by

Buiron et al. (2001):

fα = exp(−As · Wα)

6∑
α=1

exp(−As · Wα)

(16)

where As is an adjustment parameter, accounting for the non uniformity

of the exchange energy, the magnetic field and the stress tensor within the

single crystal.
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4.3.4 Definition of the single crystal behaviour

Once the state variables are known for each domain family α, we can define the

magnetisation as the mean magnetisation over the crystal:

�Mg = 〈 �Mα〉 =
6∑

α=1

fα
�Mα (17)

We can also define the mean magnetostriction strain in the single crystal:

εµ
g = 〈εµ

α 〉 =
6∑

α=1

fα εµ
α (18)

4.4 Results

Experimental measurements are available in the litterature for pure iron single

crystal2 (Webster, 1925). The material constants used are as follows:


CI
11 = 238 GPa ; CI

12 = 142 GPa ;
CI

44 = 232 GPa. (McClintock et al., 1966)

Ms = 1, 71.106 A/m. (Bozorth, 1951)

λ100 = 2, 1.10−5 ; λ111 = −1, 7.10−5. (Bozorth, 1951)

K1 = 42, 7 kJ/m3 ; K2 = 0. (Bozorth, 1951)

(19)

Figure 4 shows a very good agreement between experimental and numerical

results, both concerning the magnetisation and the magnetostriction.

5 Multiscale model

In the case of polycrystalline media, the strain, the stress, the magnetisation and

the magnetic field are not homogeneous within the material. The local behaviour

(at the grain scale) has to be written with respect to the local loading. This

local loading can be, with specific assumptions concerning the microstructure,

deduced from the macroscopic loading.
2For which the crystallographic symmetry is cubic.
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Figure 4 – Iron single crystal anhysteretic behaviour – Experimental (Webster, 1925)

(lines) and modelled (points) data.

5.1 Multiscale approach – principle

We work on a Representative Volume Element (RVE) of a polycrystalline ferro-

magnetic material. Its texture is known through an Orientation Data File obtained

after an EBSD (or X-ray) measurement. The single crystal properties (detailed

in equation (19)) are known.

The objective is to link the macroscopic response (mean magnetisation �MM

and strain E) of this RVE to the macroscopic loading (the external field �Hext and

the macroscopic stress �).

The general idea of this micro-macro approach (see figure 5) is to postulate a

localisation law, in order to calculate the local loading. The micro-model is then

applied at the domains scale and the macro-level is reached through an averaging

operation. Since both the local values for the stress and the magnetic field depend

on the local magnetisation and strain, an iterative process has to be used.

Each step of this calculation is described here after.
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Figure 5 – Multi-scale scheme.

5.2 Localisation step

5.2.1 Elastic behaviour

The aim of this step consists in deriving the local stress from the external loading,

postulating a particular form for the function g in relation (20).

σ g = g
(
�, �Hext

)
(20)

The function g is here deduced from a self-consistent approach. Each grain

is considered as an inclusion in the homogeneous medium equivalent to the

polycrystal, so that the problem can be linked to the solution of the Eshelby

inclusion problem (Esheby, 1957).

The magnetostriction strain ε
µ
g is considered as a free strain. The Eshelby

tensor SE is calculated3 following Mura (1982). SE links the free strain (ε
µ
g ) in

a region (the inclusion) of the infinite media to the total strain εI in this region:

εI = S
E : εµ

g (21)

3For the applications considered in this paper inclusions are taken spherical, assuming an

isotropic distribution of the grains.
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From the Eshelby solution, we can deduce, through a self-consistent scheme,

the stiffness tensor of the homogeneous medium equivalent to the polycrystal.

Details of this approach are given in appendix A. Each grain (of stiffness CI )

is considered as an inclusion in this equivalent homogeneous medium. The

equivalent stiffness tensor Ceff is solution of the implicit equation (22):

C
eff = 〈CI : (CI + C

∗)−1 : (Ceff + C
∗)〉 (22)

where the symbol < . > denotes an averaging operation over the volume and

C∗ denotes the Hill constraint tensor.

We can also define the two 4th order localisation operators (see details in

appendix A):

• the strain localisation tensor A:

A = (CI + C
∗)−1 : (Ceff + C

∗) (23)

• the stress concentration tensor B:

B = C
I : A : C

eff−1
(24)

This scheme is used to express the relation (20). The local stress is written as

the sum of two terms (equation (25)).

σ g = B : � + C
I : (

S
E − I

) : εµ
g (25)

The first one depends on the macroscopic stress tensor � and on the stress

concentration law. The second term is linked to the elastic incompatibility strain

due to the existence of a free strain ε
µ
g in the grain, and to the stiffness of the

surrounding medium. In the case of iron-silicon alloys, the magnetostriction

magnitude – that do not exceed 10−5 – justify the fact that the incompatibility

stresses involved remain in the elastic domain.

It must be noticed that this relation is an implicit relation, since ε
µ
g is a function

of σ g.
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5.2.2 Magnetic behaviour

The aim of this step consists in deriving the local magnetic field from the external

loading, postulating a given form for the function h in relation (26).

�Hg = h
(
�, �Hext

)
(26)

This equation is usually written (in electrotechnical engineering) in the form

of relation (27).

�Hg = �Hext + �Hd (27)

where the local perturbation of the macroscopic magnetic field is taken into

account through the demagnetising field �Hd . The general form of the localisation

law can be written:

�Hg − �Hext = K( �MM − �Mg) (28)

with �MM the mean magnetisation in the material, �Mg the local magnetisation.

K is a 2nd order operator, depending on the magnetisation, on the stress state,

and on the shape choosen for the inclusion.

In the case of stress independent linear isotropic magnetic behaviour, and

spherical inclusions, the tensor K can be replaced by a scalar value Nc (see

appendix B).

Nc = 1

3 + 2χM

, χM being the equivalent media susceptibility (29)

Herein, as a first approximation, we choose to extend this relation to anisotropic

non-linear magnetic behaviour. We keep the form of equation (28), and use a

particular value for Nc. It could also be possible to use a variable value of Nc

computed from the value of χM recalculated at each step of the iterative scheme.

5.3 Local behaviour

The grain behaviour model has been described in paragraph 4. From the local

loading σ g and �Hg, we can obtain in each grain the magnetisation �Mg and the

total strain εg (εg = ε
µ
g + CI−1 : σ g).
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5.4 Homogenisation

The last step in the micro-macro modelisation is the homogenisation step to get

back to the macro-scale. We define:


�MM = < �Mg >

E = < εg >
(30)

As the scheme is self-consistent, an iterative procedure has to be built up. The

calculation is then done until convergence.

6 Results and comparison to experimental data

100   mµ

(a) Optical observation (b) EBSD texture measurement

Figure 6 – Observation of a commercial Fe-3%Si alloy.

Computations have been made using a 500 grains RVE of an industrial alloy.

This commercial iron-silicon alloy indicates no morphologic texture (figure 6(a)).

The mean grain size is about 70 µm. The texture is known thanks to EBSD

measurements (figure 6(b)).

Sample for all experiments consists of 250 mm long and 12.5 mm wide bands

cut by electro-erosion machining (in order to avoid residual stresses that have a

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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strong influence on the magneto-mechanical behaviour). The specimens are cut

every 10◦ from the rolling direction (RD).

6.1 Macroscopic elastic behaviour

Tensile tests have been carried out to measure the Young’s modulus and the

Poisson’s ratio thanks to standard strain gauges measurements. Young’s modulus

and Poisson’s ratio evolution in the sheet plane are plotted in figure 7(a) and

7(b). A good agreement between experimental and numerical data is shown.

Calculations using the Reuss and Voigt extremal hypotheses are also plotted.
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(a) Young’s modulus
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Figure 7 – Experimental (�) and modelled elastic properties evolution, with respect

to the orientation in the sheet plane. Symbols SC, V and R respectively refer to the

self-consistent, Voigt and Reuss hypotheses.

Other methods for estimating the elastic moduli of a textured polycristal, such

as the Hashin and Shtrickman bounds, or finite elements methods with periodic

boundary conditions are presented in Daniel (2003). These methods give esti-

mates between the Voigt and Reuss bounds (for which no specific assumption

is made concerning the phases distribution). The particular variation with θ ,

linked to the combination of the single crystal anisotropy with the texture data,

is similar for all these estimates.
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6.2 Macroscopic magnetic behaviour

Two kinds of calculations have been made concerning the magnetic uncoupled

behaviour: firstly without considering any demagnetising field (homogeneous

magnetic field hypotheses: Nc = 0, �Hg = �Hext ), and secondly introducing a

demagnetising field calculation (Nc = 5.10−4).

It must be noticed that the resolution of the implicit equation (28) leads, in the

case of non-linear behaviour to numerical difficulties: the computational costs

are high, and the convergence depends on the quality of the initial solution in

the general algorithm (see figure 5): an appropriate choice of this initial solution

enables to avoid dissuasive computation times.

Magnetic measurements were obtained using a non-standard experimental

frame (Hubert et al., 2002). The results are plotted on figure 8(b).
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(a) Homogeneous (dashed line) and

non-homogeneous magnetic field

calculations.
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Figure 8 – Experimental and numerical anhysteretic magnetisation curves in the rolling

(RD) and in the transverse direction (TD).

The demagnetising field introduction tends to decrease the magnetic perme-

ability (figure 8(a)). The effect is inexistant for very high or very low values of

the external field – for which the macroscopic behaviour is almost linear and the

local magnetic field heterogeneity low –, but very strong in the saturation knee

area, where a high level of magnetic field heterogeneity is highlighted (figure 9).
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Figure 9 – Local magnetic field heterogeneity for || �Hext || = 100, 500 and 1000 A/m

within a VER constituted of 500 grains.

Comparison with experimental data (figure 8(b)) shows a good qualitative

agreement, although the predicted magnetisation is over-estimated.

6.3 Macroscopic magnetostrictive behaviour

The same experimental procedure, with strain gauges, is used to measure mag-

netic strains. These mesurements are corrected to deduct the so-called form-

effect (Billardon et al., 1995; Daniel et al., 2003) and obtain the true magne-

tostriction strain. Experimental and numerical results are plotted on figure 10.

The demagnetising field calculation tends to weakly reduce the magnetostric-

tion amplitude (figure 10(a)). The predicted general level is correct compared to

experimental measurements (figure 10(b)), but the relative anisotropy between

the rolling and the transverse directions is not respected. This problem is the

object of a work in progress (Daniel et al., 2003); this point is related to the

initial state of the specimens, and particularly residual stresses and surface ef-

fects, that can explain this disagreement beetween calculation and experimental

observations (Daniel, 2003).

7 Conclusion

A 3-dimensional physically based magneto-elastic model has been presented.

It provides accurate results for single crystal behaviour, and a good description

of magnetic and elastic uncoupled behaviours of ferromagnetic polycrystalline
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Figure 10 – Experimental and numerical anhysteretic magnetostriction curves in the

rolling (RD) and in the transverse direction (TD).

materials. The level of magnetostriction can also be predicted.

Several works are presently in progress to improve this micro-macro approach.

A first way is to refine the magnetic localisation law, for example introducing

a magnetic field dependency for K in equation (28).

Another direction would be to get a more precise description and understand-

ing of the domains microstructure. This description is presently limited to the

volumetric fraction fα and the disorientation angle θα for each domain family.

This kind of micro-macro strategy could then participate in the understanding

of the effect of stress on the magnetic behaviour, especially in the case of multi-

axial loadings.

Appendix A: Determination of the stress and strain localisation tensors

Relations (23) and (24) defining respectively the stress localisation tensor A and

the stress concentration tensor B are derived from the solution of the Eshelby’s

inclusion problem (Esheby, 1957). Their definition is for example extensively

defined in Bornert et al. (2001) and summarized hereafter.
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Figure 11 – Schematic representation of the Eshelby’s inclusion problem.

Consider an unloaded homogeneous infinite medium of moduli Co. A region I

of this medium (the inclusion) is submitted to a free strain εL. This strain is

the strain that would act in the inclusion if no resistance was exerted by the

surrounding medium. The actual strain εI in the inclusion can be linked to the

free strain using the Eshelby tensor (Esheby, 1957):

εI = S
E : εL (31)

The fourth order tensor SE only depends on the elastic moduli Co and on

the shape chosen for the inclusion. Elements concerning the calculation of this

tensor can be found in Mura (1982). The stress in the inclusion is linked to the

elastic strain by the Hooke relation:

σ g = C
o : εe

g = C
o : (

εI − εL
) = C

o : (
S

E − I
) : εL (32)

It can be shown (Bornert et al., 2001) that the problem of an elastic heterogene-

ity (that is the case considered for polycrystals) can be reduced to an inclusion

problem. A fictive equivalent free strain εL∗
is defined, that would lead to the

same strain and stress state in the inclusion than the one acting in the hetero-

geneity. The macroscopic loading is defined by the macroscopic stress �, and

the macroscopic strain is E. Stress and strain in the inclusion are defined by

relations (33) and (34)

σ g = � + C
o : (

S
E − I

) : εL∗
(33)

εI = E + S
E : εL∗

(34)
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that can be written:

εL∗ = S
E−1 : (

εI − E
)

(35)

Introducing this relation in equation (33), one obtains:

σ g = � + C
∗ : (

E − εI
)

(36)

C∗ being the Hill constraint tensor defined by relation (37):

C
∗ = C

o : (SE−1 − I) (37)

If we now come back to the problem of the elastic heterogeneity (the strain

being purely elastic), the behaviour law is:

σ g = C
I : εe

g = C
I : εI (38)

and at the macroscopic scale:

� = C
eff : E (39)

From equation (36), it comes:

C
I : εI = C

eff : E + C
∗ : (

E − εI
)

(40)

that leads to:

εI = (
C

I + C
∗)−1 :

(
C

eff + C
∗) : E (41)

that can also be written using equation (38):

σ g = C
I : (

C
I + C

∗)−1 : (
C

eff + C
∗) : E (42)

The strain localisation tensor is derived from equation (41):

A = (CI + C
∗)−1 : (Ceff + C

∗) (43)

This fourth order operator links the macroscopic strain to the local strain in the

inclusion:

εI = A : E (44)
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The stress concentration tensor is derived from equation (38), (39) and (44):

B = C
I : A : C

eff−1
(45)

This fourth order operator links the macroscopic stress to the local stress in the

inclusion:

σ g = B : � (46)

The definitions of A and B are given in the paper as equation (23) and (24).

The macroscopic stress is linked to the local stresses through relation (47)

(equation (42) is used):

� = 〈 σ g 〉
= 〈 CI : (

CI + C∗)−1 : (
Ceff + C∗) : E 〉

= 〈 CI : (
CI + C∗)−1 : (

Ceff + C∗) 〉 : E

(47)

This leads to a relationship that must be verified by the effective moduli tensor

Ceff , noted equation (22) in the paper:

C
eff = 〈 C

I : (CI + C
∗)−1 : (Ceff + C

∗) 〉 (48)

Appendix B: Determination of the magnetic field localisation operator

Relations (28) and (29) defining the localisation law for the magnetic field are

derived from the solution of a magnetostatic problem for an inclusion.

We consider a spherical isotropic magnetic region embedded in an infinite

isotropic magnetic medium. This medium is submitted to an uniform (at the

boundary) magnetic field �H∞ = H∞ �x.

The behaviour law for the spherical region (of radius R) is written:

�Mg = χg
�Hg (49)

The behaviour law for the infinite medium is written:

�Mo = χo
�Ho (50)
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Figure 12 – Schematic representation of the inclusion problem.

Without any current density, the Maxwell equations can be written:{
div �B = 0, where �B denotes the magnetic induction,
�rot �H = �0, where �H denotes the magnetic field.

(51)

Under these conditions, the magnetic field can be derived from a scalar poten-

tial:

�H = − �grad ϕ (52)

Applying the isotropic behaviour law ( �B = µ �H ) leads to the Poisson equation

for the potential:

�ϕ = 0 (53)

The solutions for the potential ϕ can be written:


ϕg = −Hg r cos θ, inside the sphere

ϕo = −H∞ r

(
1 − k

r3

)
cos θ , outside the sphere

(54)

H∞ being the value for the magnetic field very far from the inclusion. The

magnetic field can then be written, following equation (52):

– inside the sphere:

�Hg = Hg �x (55)
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– outside the sphere:

�Ho = H∞
[ (

1 + k

r3
(3 cos2 θ − 1)

)
�x + 3k

r3
cos θ sin θ �y

]
(56)

The boundary conditions at the interface of the inclusion give (�n is the unit

vector normal to the sphere surface):

a) for θ = π

2
and r = R:

[ �H ] ∧ �n = 0 ⇒ Hg = H∞
(

1 − k

R3

)
(57)

where the symbol [ �H ] denotes the jump of �H through the surface ([ �H ] =
�Hext − �Hint ).

From equation (57) we can deduce:

k =
(

1 − Hg

H∞

)
R3 (58)

b) for θ = 0 and r = R:

[ �B].�n = [ �H + �M].�x = 0 ⇒ Mg + Hg = Mo(0, R) + Ho(0, R)

⇒ Mg + Hg = (χo + 1) H∞
(

1 + 2k

R3

) (59)

Replacing the value of k in equation (59) leads to:

Mg + Hg = (χo + 1) H∞
(

3 − 2Hg

H∞

)
(60)

that can also be written:

Mg + 3Hg + 2χoHg = 2χoH∞ + M∞ + 3H∞ (61)

finally leading to the expression:

Hg − H∞ = 1

3 + 2χo

(M∞ − Mg) (62)
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As both magnetisation and magnetic fields appearing in equation (62) are

parallel to the direction �x, this relation can be written in a vectorial way:

�Hg − �H∞ = 1

3 + 2χo

( �M∞ − �Mg) (63)

This relation justify the choice made for relation (28), and the particular value

of Nc in equation (29).
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