

Volume 30, N. 1, pp. 5–17, 2011 Copyright © 2011 SBMAC ISSN 0101-8205 www.scielo.br/cam

Regularity results for semimonotone operators

 ROLANDO GÁRCIGA OTERO^{1*} and ALFREDO IUSEM^{2**}
 ¹Instituto de Economia, Universidade Federal de Rio de Janeiro, Avenida Pasteur 250, Urca, 22290-240 Rio de Janeiro, RJ, Brazil
 ²Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil
 E-mails: rgarciga@ie.ufrj.br / iusp@impa.br

Abstract. We introduce the concept of ρ -semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of *T*, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ -semimonotonicity of *T* in terms of Lispchitz continuity of $[T + \rho^{-1}I]^{-1}$ and a sufficient condition related to expansivity of *T*. We also establish surjectivity results for maximal ρ -semimonotone operators.

Mathematical subject classification: 47H05, 47Hxx.

Key words: hypomonotonicity, surjectivity, prox-regularity, semimonotonicity.

1 Introduction

Before introducing the class of ρ -semimonotone operators we recall the concept of monotonicity and a few of its relaxations.

Definition 1. Let *H* be a Hilbert space, $T : H \to \mathcal{P}(H)$ a point-to-set operator and G(T) its graph.

i) *T* is said to be monotone iff

 $\langle x - y, u - v \rangle \ge 0, \qquad \forall (x, u), (y, v) \in G(T).$

[#]CAM-212/10. Received: 15/VIII/10. Accepted: 05/I/11.

Correspondence to: Rolando Gárciga Otero

^{*}Partially supported by CNPq.

^{**}Partially supported by CNPq grant no. 301280/86

- ii) T is said to be maximal monotone if it is monotone and additionally G(T) = G(T') for all monotone operator $T' : H \to \mathcal{P}(H)$ such that $G(T) \subset G(T')$.
- iii) For $\rho \in \mathbb{R}_{++}$, *T* is said to be ρ -hypomonotone iff

$$\langle x - y, u - v \rangle \ge -\rho ||x - y||^2, \quad \forall (x, u), (y, v) \in G(T).$$

- iv) For $\rho \in \mathbb{R}_{++}$, *T* is said to be maximal ρ -hypomonotone if it is ρ -hypomonotone and additionally G(T) = G(T') for all ρ -hypomonotone operator $T' : H \to \mathcal{P}(H)$ such that $G(T) \subset G(T')$.
- v) T is said to be premonotone iff

$$\langle x - y, u - v \rangle \ge -\sigma(y) \|x - y\|, \quad \forall (x, u), (y, v) \in G(T),$$

where $\sigma : H \to \mathbb{R}$ is a positive valued function defined over the whole space *H*.

Next we introduce the class of operators which are the main subject of this paper.

Definition 2. Let $T : H \to \mathcal{P}(H)$ be a point-to-set operator, G(T) its graph and $\rho \in (0, 1)$ a real number.

i) T is said to be ρ -semimonotone iff

$$\langle x - y, u - v \rangle \ge -\frac{\rho}{2} \left(\|x - y\|^2 + \|u - v\|^2 \right)$$
 (1)

for all $(x, u), (y, v) \in G(T)$.

ii) *T* is said to be maximal ρ -semimonotone if it is ρ -semimonotone and additionally G(T) = G(T') for all ρ -semimonotone operator $T' : H \rightarrow \mathcal{P}(H)$ such that $G(T) \subset G(T')$.

The concepts of hypomonotonicity and premonotonicity were introduced in [5] and [2] respectively. We mention that a notion of maximal premonotonicity has also been introduced in [2], but the definition is rather technical and thus we prefer to omit it.

We mention that we restrict the range of the parameter ρ to the interval (0, 1) because all operators turn out to be ρ -semimonotone for $\rho \ge 1$, as can be easily verified.

It is clear that monotone operators are both premonotone and ρ -hypomonotone for all $\rho > 0$, and that ρ -hypomonotone operators with $\rho \in (0, 1/2)$ are 2ρ semimonotone. It is also elementary that T is ρ -hypomonotone iff $T + \rho I$ is monotone (I being the identity operator in H).

In order to have a clearer view of the relation among these notions, it is worthwhile to look at the special case of self-adjoint linear operators in the finite dimensional case. If $\Lambda(A)$ is the spectrum (i.e., set of eigenvalues) of the selfadjoint linear operator $A : H \to H$, it is well known that A is monotone iff $\Lambda(A) \subset [0, \infty)$ and it follows easily from the comment above that A is ρ hypomonotone iff $\Lambda(A) \subset [-\rho, \infty)$. On the other hand, linear premonotone operators are just monotone. It is also elementary that A is ρ -semimonotone iff

$$\Lambda(A) \subset (-\infty, -\eta(\rho)] \cup [-\beta(\rho) + \infty),$$

with $0 < \beta(\rho) < \eta(\rho)$ given by (7) and (9), i.e., the eigenvalues of self-adjoint ρ -semimonotone operators can lie anywhere on the real line, excepting for an open interval around $-1/\rho$ contained in the negative halfline.

One of the main properties of maximal monotone operators is related to the regularization of the inclusion problem consisting of finding $x \in H$ such that $b \in T(x)$, with T monotone and $b \in H$. Such problem may have no solution, or an infinite set of solutions, but the problem $b \in (T + \lambda I)(x)$ is well posed in Hadamard's sense for all $\lambda > 0$, meaning that there exists a unique solution, and it depends continuously on b. This is a consequence of Minty's Theorem (see [4]), which states that for a maximal monotone operator T, the operator $T + \lambda I$ is onto, and its inverse is Lipschitz continuous with constant $L = \lambda^{-1}$, (and henceforth point-to-point), for all $\lambda > 0$.

When the notion of monotonicity is relaxed, one expects to preserve at least some version of Minty's result. In the case of hypomonotonicity, the fact that $T + \rho I$ is monotone when T is ρ -hypomonotone easily implies that Minty's result holds for maximal ρ -hypomonotone operators whenever λ belongs to (ρ, ∞) , with the Lipschitz constant of $(T + \lambda I)^{-1}$ taking the value $(\lambda - \rho)^{-1}$. The situation is more complicated when *T* is premonotone. Examples of premonotone operators *T* defined on the real line such that $T + \lambda I$ fails to be monotone for all $\lambda > 0$ have been presented in [2]. Nevertheless, the following surjectivity result has been proved in [2]: when *T* is maximal premonotone and *H* is finite dimensional then $T + \lambda I$ is onto for all $\lambda > 0$. Minty's Theorem cannot be invoked in this case, and the proof uses an existence result for equilibrium problems originally established in [3] and extended later on in [1].

Before discussing the ρ -semimonotone case, it might be illuminating to look at the surjetivity issue in the one-dimensional case. It is easy to check that $T + \lambda I$ is strictly increasing when T is monotone and $\lambda > 0$, or T is ρ hypomonotone and $\lambda > \rho$, and furthermore the values of the regularized operator $T + \lambda I$ go from $-\infty$ to $+\infty$. The surjectivity is then an easy consequence of the maximality of the graph G(T). When T is pre-monotone, $T + \lambda I$ may fail to be increasing for all $\lambda > 0$ (see Example 3 in [2]), but still it holds that the operator values go from $-\infty$ to $+\infty$, and the surjectivity is also guaranteed. This is not the case for ρ -semimonotone operators. Not only a ρ -semimonotone operator T defined on \mathbb{R} may be such that $T + \lambda I$ fails to be monotone for all $\lambda > 0$, but T, and even $T + \lambda I$, may happen to be strictly decreasing! (see Example 1 below). We will nevertheless manage to establish regularity of $T + \lambda I$ when T is ρ -semimonotone and λ belongs to a certain interval $(\beta(\rho), \eta(\rho)) \subset (0, +\infty)$, with $\beta(\rho), \eta(\rho)$ as in (7), (9) below (in the case of T like in Example 1, the surjectivity will be a consequence of the fact that Tis strictly decreasing). We cannot invoke Minty's result in an obvious way, since $T + \lambda I$ will not in general be monotone; rather, the proof will proceed through the analysis of the regularity properties of the operator $[T + \beta(\rho)I]^{-1} + \gamma(\rho)I$, with $\gamma(\rho)$ as in (8) below.

2 Semimonotone operators

In this section we will establish several properties of semimonotone operators. We start our analysis with some elementary ones.

Proposition 1. An operator $T : H \to \mathcal{P}(H)$ is ρ -semimonotone if and only if the operator T^{-1} is ρ -semimonotone; furthermore, T is maximal ρ -semimonotone if and only if T^{-1} is maximal ρ -semimonotone. **Proof.** The result follows immediately from Definition 2, taking into account that $(x, u) \in G(T)$ iff $(u, x) \in G(T^{-1})$.

We mention that monotonicity of T is also equivalent to monotonicity of T^{-1} , but the similar statement fails to hold for ρ -hypomonotone operators. In fact, one of the motivations behind the introduction of the class of ρ -semi-monotone operators is the preservation of this symmetry property enjoyed by monotone operators.

Proposition 2. If $T : H \to \mathcal{P}(H)$ is ρ -semimonotone and α belongs to $(\rho, 1/\rho)$ then αT is $\bar{\rho}$ -semimonotone with $\bar{\rho} = \rho \max\{\alpha, 1/\alpha\}$.

Proof. Note first that $\bar{\rho}$ belongs to (0, 1). Let $\bar{T} = \alpha T$ and take (x, \bar{u}) , $(y, \bar{v}) \in G(\bar{T})$. By definition of \bar{T} , there exist $u \in T(x), v \in T(y)$ such that $\bar{u} = \alpha u, \bar{v} = \alpha v$. By ρ -semimonotonicity of T

$$\begin{aligned} \langle x - y, \bar{u} - \bar{v} \rangle &= \alpha \langle x - y, u - v \rangle \ge -\frac{\rho}{2} \left(\alpha \|x - y\|^2 + \alpha \|u - v\|^2 \right) \\ &= -\frac{\rho}{2} \left(\alpha \|x - y\|^2 + \frac{1}{\alpha} \|\bar{u} - \bar{v}\|^2 \right) \ge -\frac{\bar{\rho}}{2} \left(\|x - y\|^2 + \|\bar{u} - \bar{v}\|^2 \right), \end{aligned}$$

establishing $\bar{\rho}$ -semimonotonicity of $\bar{T} = \alpha T$.

Proposition 3. If $T : H \to \mathcal{P}(H)$ is δ -semimonotone for some $\delta \in (0, 1)$, then *T* is ρ -semimonotone for all $\rho \in (\delta, 1)$.

Proof. Elementary.

Proposition 4. If $T : H \to \mathcal{P}(H)$ (or $T^{-1} : H \to \mathcal{P}(H)$) is δ -hypomonotone with $\delta \in (0, 1/2)$, then T is 2δ -semimonotone. Moreover, if both T and T^{-1} are δ -hypomonotone with $\delta \in (0, 1)$ then T is δ -semimonotone.

Proof. Elementary.

Remark 1. We mention that a δ -hypomonotone operator T with $\delta \geq 1/2$, may fail to be ρ -semimonotone for all ρ , but the operator $A = \frac{\rho}{2\delta} T$ is ρ -semimonotone for all $\rho \in (0, 1)$.

Comp. Appl. Math., Vol. 30, N. 1, 2011

 \square

 \square

Proposition 5. An operator $T : H \to \mathcal{P}(H)$ is ρ -semimonotone if and only if $||x - y + u - v||^2 \ge (1 - \rho) (||x - y||^2 + ||u - v||^2), \quad \forall (x, u), (y, v) \in G(T).$

Proof. Elementary.

Proposition 6. If $T : H \to \mathcal{P}(H)$ is maximal ρ -semimonotone then its graph is closed (in the strong topology).

Proof. Elementary.

2.1 The one dimensional case

We study in this section ρ -semimonotone real valued functions, providing a simple characterization that helps in the construction of a key example and also suggests the line to follow in order to study the general case.

Lemma 1. Given $\rho \in (0, 1)$ define $\theta(\rho)$ as

$$\theta(\rho) = \rho^{-1} \sqrt{1 - \rho^2}.$$
 (2)

A function $f : X \subset \mathbb{R} \to \mathbb{R}$ is ρ -semimonotone if and only if $g : X \to \mathbb{R}$ defined by $g(x) = f(x) + \rho^{-1}x$ satisfies

$$|g(x) - g(y)| \ge \theta(\rho)|x - y|$$
(3)

for all $x, y \in X$, or equivalently, $g^{-1} = (f + \rho^{-1}I)^{-1}$ is Lipschitz continuous with constant $\theta(\rho)^{-1}$.

Proof. Assume that $f : X \to \mathbb{R}$ is ρ -semimonotone and define $g(x) = f(x) + \rho^{-1}x$. By Definition 2, for all $x, y \in X$

$$(x - y)[f(x) - f(y)] \ge -\frac{\rho}{2} \left((x - y)^2 + [f(x) - f(y)]^2 \right)$$

or, equivalently,

$$\frac{f(x) - f(y)}{x - y} = \frac{(x - y)[f(x) - f(y)]}{(x - y)^2}$$

$$\geq -\frac{\rho}{2} \left(1 + \left[\frac{f(x) - f(y)}{x - y} \right]^2 \right).$$
(4)

Comp. Appl. Math., Vol. 30, N. 1, 2011

11

Take any $x \neq y \in X$ and define $t = \frac{f(x) - f(y)}{x - y}$. Then, (4) is equivalent to $t \ge -\frac{\rho}{2}(1 + t^2)$, i.e.,

$$\frac{\rho}{2}t^2 + t + \frac{\rho}{2} \ge 0 \quad \Longleftrightarrow \quad t \le t_1 = \frac{-1 - \sqrt{1 - \rho^2}}{\rho} \quad \text{or}$$
$$t \ge t_2 = \frac{-1 + \sqrt{1 - \rho^2}}{\rho} \quad \Longleftrightarrow \quad \left| t + \frac{1}{\rho} \right| \ge \frac{\sqrt{1 - \rho^2}}{\rho} = \theta(\rho).$$

Since for any $x \neq y$,

$$\frac{f(x) - f(y)}{x - y} + \frac{1}{\rho} = \frac{f(x) - f(y)}{x - y} + \frac{1}{\rho} \cdot \frac{x - y}{x - y} = \frac{g(x) - g(y)}{x - y},$$

the proof is complete.

Example 1. Fix $\rho \in (0, 1)$, $\delta \ge \rho^{-1}\sqrt{1-\rho^2}$, and define $g : \mathbb{R} \to \mathbb{R}$ as $g(x) = -\delta x - \frac{1}{3}x^3$. Then $g'(x) = -\delta - x^2 \implies |g'(x)| = \delta + x^2 \ge \delta$

for all $x \in \mathbb{R}$. Thus, g verifies (3). Hence, the function $f : \mathbb{R} \to \mathbb{R}$ defined

$$f(x) = g(x) - \frac{1}{\rho}x = -\left(\delta + \frac{1}{\rho}\right)x - \frac{1}{3}x^3$$
(5)

is a ρ -semimonotone function, in view of Lemma 1. On the other hand, the function $h(x) = f(x) + \lambda x$ fails to be non-decreasing for all $\lambda \in \mathbb{R}$, and hence $f + \lambda I$ is not monotone, so that f fails to be λ -hypomonotone for all $\lambda \geq 0$. In connection with premonotonicity, note that, as an easy consequence of Definition 1 (v), if T is point-to-point and pre-monotone, then

$$\langle T(x), \frac{x}{\|x\|} \rangle \ge -\|T(0)\| - \sigma(0)$$
 (6)

for all $x \in \mathbb{R}^n \setminus \{0\}$. In the one-dimensional case, (6) entails that, for a premonotone T, T(x) is bounded from below on the positive half-line and bonded from above in the negative half-line. It follows that f, as defined by (5), is not pre-monotone. Informally speaking, this example shows that one-dimensional semimonotone operators can be "very" decreasing, while hypomonotone or premonotone ones cannot. In a multidimensional setting, the operator $T : \mathbb{R}^n \to \mathbb{R}^n$ defined as $T(x_1, \ldots, x_n) = (f(x_1), \ldots, f(x_n))$, with f as in (5), provides an example of a nonlinear ρ -semimonotone operator which fails to be both premonotone and λ -hypomonotone for all $\lambda \ge 0$.

3 Prox-regularity properties

The surjectivity properties of $T + \lambda I$ for a ρ -semimonotone operator T are related to its connection with the operator $[T + \beta I]^{-1} + \gamma I$, presented in the next theorem.

Theorem 2. Let *I* be the identity operator in *H*. Take $\rho \in (0, 1)$ and $\beta, \gamma, \eta \in \mathbb{R}_{++}$ as

$$\beta = \beta(\rho) = \frac{1 - \sqrt{1 - \rho^2}}{\rho},\tag{7}$$

$$\gamma = \gamma(\rho) = \frac{\rho}{2\sqrt{1-\rho^2}},\tag{8}$$

$$\eta = \eta(\rho) = \frac{1}{\gamma} + \beta = \frac{1 + \sqrt{1 - \rho^2}}{\rho}.$$
(9)

- i) An operator $T : H \to \mathcal{P}(H)$ is ρ -semimonotone if and only if the operator $(T + \beta I)^{-1} + \gamma I$ is monotone.
- ii) An operator $T : H \to \mathcal{P}(H)$ is maximal ρ -semimonotone if and only if the operator $(T + \beta I)^{-1} + \gamma I$ is maximal monotone.

Proof. Consider $A : H \times H \to H \times H$ defined as $A(x, u) = (u - \gamma x, (1 + \beta \gamma)x - \beta u)$. It is elementary that A is invertible, with $A^{-1}(x, u) = (u + \beta x, (1 + \beta \gamma)x + \gamma u)$. Let $(\bar{x}, \bar{u}) = A(x, u)$ and $\bar{T} = (T + \beta I)^{-1} + \gamma I$. We claim that $(x, u) \in G(\bar{T})$ if and only if $(\bar{x}, \bar{u}) \in G(T)$. We proceed to prove the claim: $(x, u) \in G(\bar{T})$ iff $u \in (T + \beta I)^{-1}(x) + \gamma x$ iff $\bar{x} = u - \gamma x \in (T + \beta I)^{-1}(x)$ iff $x \in (T + \beta I)(\bar{x}) = T(\bar{x}) + \beta \bar{x}$ iff $\bar{u} = x - \beta \bar{x} \in T(\bar{x})$ iff $(\bar{x}, \bar{u}) \in G(T)$.

The claim is established and we proceed with the proof of (i). Consider pairs $(x, u), (y, v) \in G(\overline{T})$ and let $(\overline{x}, \overline{u}) = A(x, u)$ as before, and also $(\overline{y}, \overline{v}) =$

A(y, v). Observe that \overline{T} is monotone if and only if, for all $(x, u), (y, v) \in G(\overline{T})$, it holds that

$$0 \le \langle x - y, u - v \rangle$$

= $\langle (\bar{u} + \beta \bar{x}) - (\bar{v} + \beta \bar{y}), [(1 + \gamma \beta) \bar{x} + \gamma \bar{u}] - [(1 + \gamma \beta) \bar{y} + \gamma \bar{v}] \rangle$ (10)
= $(1 + 2\gamma \beta) \langle \bar{x} - \bar{y}, \bar{u} - \bar{v} \rangle + (1 + \gamma \beta) \beta \| \bar{x} - \bar{y} \|^2 + \gamma \| \bar{u} - \bar{v} \|^2$,

using the definition of $(\bar{x}, \bar{u}), (\bar{y}, \bar{v})$ and the formula of A^{-1} in the first equality. Note that the inequality in (10) is equivalent to

$$\langle \bar{x} - \bar{y}, \bar{u} - \bar{v} \rangle \geq -\frac{(1 + \gamma \beta)\beta}{1 + 2\gamma \beta} \| \bar{x} - \bar{y} \|^2 - \frac{\gamma}{1 + 2\gamma \beta} \| \bar{u} - \bar{v} \|^2 = -\frac{\rho}{2} \left(\| \bar{x} - \bar{y} \|^2 + \| \bar{u} - \bar{v} \|^2 \right),$$

$$(11)$$

using (7), (8) in the equality. In view of the claim above and the invertibility of A, (\bar{x}, \bar{u}) , (\bar{y}, \bar{v}) cover G(T) when (x, u), (y, v) run over $G(\bar{T})$. Thus, we conclude from (1) that the inequality in (11) is equivalent to the ρ -semimonotonicity of T.

We proceed now with the proof of (ii): In view of (i), if we can add a pair (x, u) to $G(\overline{T})$ while preserving the monotonicity of \overline{T} , then we can add the pair $(\overline{x}, \overline{u}) = A(x, u)$ to G(T) and preserve the ρ -semimonotonicity of T, and viceversa. It follows that the maximal monotonicity of \overline{T} is equivalent to the maximal ρ -semimonotonicity of T.

Corollary 1. If $T : H \to \mathcal{P}(H)$ is maximal ρ -semimonotone then the operator $(T + \beta I)^{-1} + \mu I$ is onto for all $\mu > \gamma(\rho)$, where $\gamma(\rho)$ is given by (8).

Proof. By Theorem 2(ii), $\overline{T} = (T + \beta I)^{-1} + \gamma I$, with $\beta(\rho)$ as in (7), is maximal monotone. Since

$$(T + \beta I)^{-1} + \mu I = [(T + \beta I)^{-1} + \gamma I] + (\mu - \gamma)I = \overline{T} + (\mu - \gamma)I$$

and $\mu - \gamma > 0$, the result follows from Minty's Theorem.

Corollary 2. If $T : H \to \mathcal{P}(H)$ is maximal ρ -semimonotone then the operator $T + \lambda I$ is onto for all $\lambda \in (\beta(\rho), \eta(\rho))$, where $\beta(\rho)$ and $\eta(\rho)$ are given by (7) and (9) respectively.

Comp. Appl. Math., Vol. 30, N. 1, 2011

Proof. Fix $\beta(\rho)$, $\gamma(\rho)$ and $\eta(\rho)$ as in (7)-(9). Given $\lambda \in (\beta, \eta)$, define $\mu = (\lambda - \beta)^{-1} > 0$. In view of (9), $\lambda < \eta$ implies that $\mu > \gamma$. By Corollary 1, $(T + \beta I)^{-1} + \mu I$ is onto. Fix $y \in H$. We must exhibit some $z \in H$ such that $y \in (T + \lambda I)(z)$. Since $(T + \beta I)^{-1} + \mu I$ is onto, there exists $x \in H$ such that $\mu y \in [(T + \beta I)^{-1} + \mu I](x)$, or equivalently, $\mu(y - x) \in (T + \beta I)^{-1}(x)$, that is to say,

$$x \in (T + \beta I)[\mu(y - x)] \tag{12}$$

Define $z = \mu(y - x)$. In view of (12), $y - \frac{1}{\mu}z = x \in (T + \beta I)(z)$, which is equivalent to

$$y \in \left[T + \left(\beta + \frac{1}{\mu}\right)I\right](z) = (T + \lambda I)(z), \tag{13}$$

in view of the definition of μ . It follows from (13) that the chosen z is an appropriate one, thus establishing the surjectivity of $T + \lambda I$.

We prove next that if *T* is ρ -semimonotone then $[T + \lambda I]^{-1}$ is point-to-point and continuous for an appropriate λ .

Theorem 3. Let $\beta(\rho)$ and $\eta(\rho)$ be given by (7) and (9) respectively. If $T : H \rightarrow \mathcal{P}(H)$ is ρ -semimonotone then the operator $(T + \lambda I)^{-1}$ is Lipschitz continuous for all $\lambda \in (\beta(\rho), \eta(\rho))$, with Lipschitz constant $L(\lambda)$ given by

$$L(\lambda) = \frac{|1 - \rho\lambda| + \sqrt{1 - \rho^2}}{2\lambda - \rho(1 + \lambda^2)},$$
(14)

and henceforth point-to-point.

Proof. Take $u, v \in H$, $x \in (T + \lambda I)^{-1}(u)$ and $y \in (T + \lambda I)^{-1}(v)$. We must prove that

$$\|x - y\| \le L(\lambda) \|u - v\|.$$
(15)

Note that $u - \lambda x \in T(x)$, $v - \lambda y \in T(y)$, so that, applying Definition 2,

$$-\frac{\rho}{2} \left[\|x - y\|^2 + \|u - v - \lambda(x - y)\|^2 \right] \le$$

$$\langle (u - \lambda x) - (v - \lambda y), x - y \rangle = \langle u - v, x - y \rangle - \lambda \|x - y\|^2.$$
(16)

Expanding the last term in the leftmost expression of (16) and rearranging, we get

$$\left[\lambda - \frac{\rho}{2} \left(1 + \lambda^{2}\right)\right] \|x - y\|^{2} - \frac{\rho}{2} \|u - v\|^{2} \leq$$

$$(1-\lambda\rho)\langle u - v, x - y \rangle \leq |1 - \lambda\rho| \|u - v\| \|x - y\|.$$

$$(17)$$

From the fact that $\lambda \in (\beta, \eta)$, it follows easily that $\lambda - \frac{\rho}{2}(1 + \lambda^2) > 0$, so that, taking u = v in (17), we obtain that x = y, and henceforth (15) holds when u = v. Otherwise, define

$$\omega = \frac{\|x - y\|}{\|u - v\|}$$

and observe that the inequality in (17) is equivalent to

$$\left[2\lambda - \rho\left(1 + \lambda^{2}\right)\right]\omega^{2} - 2|1 - \lambda\rho|\omega - \rho \leq 0.$$
(18)

Again, the fact that $\lambda \in (\beta, \eta)$ guarantees that the coefficient of ω^2 in the left hand side of (18) is positive, so that (18) holds iff ω belongs to the interval whose extrems are the two roots of the quadratic in the left hand side of (18), namely

$$\omega_1 = \frac{|1 - \rho\lambda| - \sqrt{1 - \rho^2}}{2\lambda - \rho(1 + \lambda^2)}, \qquad \omega_2 = \frac{|1 - \rho\lambda| + \sqrt{1 - \rho^2}}{2\lambda - \rho(1 + \lambda^2)}.$$

It is not hard to check that $\omega_1 < 0 < \omega_2$; the right inequality is immediate, and the left one follows easily from the fact that λ belongs to $(\beta(\rho), \eta(\rho))$. Since $\omega = ||x - y||/||u - v||$ is positive, we conclude that (18) is equivalent to $\omega \le \omega_2$, which is itself equivalent to (15), in view of the definition of $L(\lambda)$, given in (14). The fact that $(T + \lambda I)^{-1}$ is point-to-point is an immediate consequence of (15).

Corollary 3. If $T : H \to \mathcal{P}(H)$ is ρ -semimonotone then the operator $(T^{-1} + \lambda I)^{-1}$ is Lipschitz continuous for all $\lambda \in (\beta(\rho), \eta(\rho))$, with Lipschitz constant $L(\lambda)$ given by (14). If in addition T is maximal, then $T^{-1} + \lambda I$ is onto for all $\lambda \in (\beta(\rho), \eta(\rho))$.

Proof. The result follows from Proposition 1, Corollary 2 and Theorem 3. \Box

Remark 2. Note that $\lim_{\rho \to 1^-} \beta(\rho) = \lim_{\rho \to 1^-} \eta(\rho) = 1$, and that $\lim_{\rho \to 0^+} \beta(\rho) = 0$, $\lim_{\rho \to 0^+} \eta(\rho) = +\infty$, so that the "regularity window" of a ρ -semimonotone operator T (i.e., the interval of values of λ for which $T + \lambda I$ is onto and its inverse is Lipschitz continuous), approaches the whole positive halfline when ρ approaches 0, i.e., when T approaches plain monotonicity, and reduces to a thin interval around 1 when ρ approaches 1 (remember that when $\rho = 1$ the inequality in (1) holds for any operator T, meaning that no "regularity window" can occur for $\rho = 1$).

Remark 3. Observe that

$$0 < \beta(\rho) < \rho < 1 < \frac{1}{\rho} < \eta(\rho)$$

for all $\rho \in (0, 1)$, so that 1, ρ and ρ^{-1} always belong to the "regularity window" of a ρ -semimonotone operator *T*. We present next the values of the Lipschitz constant $L(\lambda)$ of $(T + \lambda I)^{-1}$ for the case in which λ takes these three special values:

$$L(1) = \frac{1}{2} \left(1 + \sqrt{\frac{1+\rho}{1-\rho}} \right), \qquad L(\rho) = \frac{1}{\rho} \left(1 + \frac{1}{\sqrt{1-\rho^2}} \right),$$
$$L\left(\frac{1}{\rho}\right) = \frac{\rho}{\sqrt{1-\rho^2}}.$$

We state next that the characterization of semimonotonicity presented in Lemma 1 for the one dimensional case is a necessary condition for the general case.

Corollary 4. If $T : H \to \mathcal{P}(H)$ is ρ -semimonotone then the operator $(T + \rho^{-1}I)^{-1}$ is Lipschitz continuous with Lipschitz constant equal to $\theta(\rho)^{-1}$, where $\theta(\rho)$ is given by (2).

Proof. The result follows from Theorem 3 and Remark 3 with $\lambda = \rho^{-1}$.

A sufficient condition can be stated in terms of expansivity of T. We prove next that if T is expansive, with expansivity constant larger than or equal to $\eta(\rho)$ as given by (9) (an assumption stronger than Lipschitz continuity of $(T + \rho^{-1}I)^{-1}$ with Lipschitz constant equal to $\theta(\rho)^{-1}$), then T is ρ -semimonotone.

Proposition 7. Take $\rho \in (0, 1)$. If $T : H \rightarrow \mathcal{P}(H)$ is v-expansive with $\nu \geq \eta(\rho)$, then T is ρ -semimonotone.

Proof. Fix $u \in T(x)$ and $v \in T(y)$, with $x \neq y$. Define $t = \frac{\|u - v\|}{\|x - y\|}$. Then $t \geq v$ because T is v-expansive. Therefore $t \geq t_2 = \frac{1 + \sqrt{1 - \rho^2}}{\rho}$, where t_2 is the largest root of the quadratic $\frac{\rho}{2}t^2 - t + \frac{\rho}{2}$, as in the proof of Lemma 1. Thus,

$$\frac{\rho}{2} (t^2 + 1) \ge t \Longrightarrow \frac{\rho}{2} (\|x - y\|^2 + \|u - v\|^2) \ge \|u - v\|\|x - y\| \ge -\langle x - y, u - v\rangle$$

for all $x \neq y$. Since the inequality in (1) is trivially valid when x = y, the result holds.

REFERENCES

- A.N. Iusem, G. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems. Mathematical Programming, 116 (2009), 259– 273.
- [2] A.N. Iusem, G. Kassay and W. Sosa, An existence result for equilibrium problems with some surjectivity consequences. Journal of Convex Analysis, 16 (2009), 807– 826.
- [3] A.N. Iusem and W. Sosa, New existence results for equilibrium problems. Nonlinear Analysis, 52 (2002), 621–635.
- [4] G. Minty, A theorem on monotone sets in Hilbert spaces. Journal of Mathematical Analysis and Applications, 11 (1967), 434–439.
- [5] T. Pennanen, Local convergence of the proximal point method and multiplier methods without monotonicity. Mathematics of Operations Research, 27 (2002), 170–191.