
“main” — 2010/10/28 — 18:53 — page 479 — #1

Volume 29, N. 3, pp. 479–491, 2010
Copyright © 2010 SBMAC
ISSN 0101-8205
www.scielo.br/cam

Fast convergences towards Euler-Mascheroni constant

CRISTINEL MORTICI
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1 Introduction

One of the most important constants in mathematics is defined as the limit of

the sequence

γn = 1 +
1

2
+

1

3
+ ∙ ∙ ∙ +

1

n
− ln n,

denoted γ = 0.57721566490153286 . . . . It is now known as the Euler-Masche-

roni constant, in honour of the Swiss mathematician Leonhard Euler (1707-

1783) and of the Italian mathematician Lorenzo Mascheroni (1750-1800).

The sequence (γn)n≥1 and the constant γ have numerous applications in

many areas of mathematics, such as analysis, theory of probability, special func-

tions, and number theory. As a consequence, many authors are preoccupied to

improve the speed of convergence of the sequence (γn)n≥1 , which is very slowly,

if we take into account that it converges toward its limit like n−1.
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More precisely, we mention the following results related to the speed of con-

vergence of the sequence (γn)n≥1 :

1

2 (n + 1)
< γn − γ <

1

2n
(Young)

(see, [14, 15, 28]). We also refer here to the papers [1, 2, 5-12, 20-27], where

important improvements of the speed of convergence of γn were established.

The complete asymptotic expansion of the sequence (γn)n≥1 is

γn ∼ γ +
1

2n
−

∞∑

k=1

B2k

2k

1

n2k
,

where the Bernoulli numbers B2k are defined by

t

et − 1
=

∞∑

k=0

Bk

k!
t k .

As B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, we imply

γn ∼ γ +
1

2n
−

1

12n2
+

1

120n4
−

1

252n6
+

1

240n8
− ∙ ∙ ∙ .

DeTemple [3-4] introduced the sequence

Rn = 1 +
1

2
+

1

3
+ ∙ ∙ ∙ +

1

n
− ln

(
n +

1

2

)

which converges to γ like n−2, since

1

24 (n + 1)2 < Rn − γ <
1

24n2
.

Recently, Mortici [17] introduced the sequences

un = 1 +
1

2
+

1

3
+ ∙ ∙ ∙ +

1

n − 1
+

1
(

6 − 2
√

6
)

n
− ln

(
n +

1
√

6

)
(1)

and

vn = 1 +
1

2
+

1

3
+ ∙ ∙ ∙ +

1

n − 1
+

1
(

6 + 2
√

6
)

n
− ln

(
n −

1
√

6

)
, (2)
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which converges as n−3, since

lim
n→∞

n3 (un − γ ) = −

√
6

108
and lim

n→∞
n3 (vn − γ ) =

√
6

108
.

See [17, Theorem 2.1]. Furthermore, the arithmetic mean of the sequences

(un)n≥1 and (vn)n≥1,

zn = 1 +
1

2
+

1

3
+ ∙ ∙ ∙ +

1

n − 1
+

1

2n
−

1

2
ln

(
n2 −

1

6

)

converges to γ as n−4.

We open here a new direction to accelerate the sequence (γn)n≥1 , that is to

consider an additional term of the form

Mn = γn − γ + ln
P (n)

Q (n)
,

where P , Q are polynomials of the same degree, having the leading coefficient

equal to one. Precisely, we introduce the sequences

νn = γn + ln
n − 1

12

n + 5
12

and μn = γn + ln
n2 + 33

140 n + 37
1680

n2 + 103
140 n + 61

336

whose speeds of convergence increase to n−3, respective n−5, since

lim
n→∞

n3 (νn − γ ) =
−7

288
and lim

n→∞
n5 (μn − γ ) =

3959

806 400
.

Our study is based on the following result, which represents a powerful tool for

constructing some asymptotic expansions, or to accelerate some convergences.

Lemma 1. If (ωn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

nk(ωn − ωn+1) = l ∈ [−∞, ∞] , (3)

with k > 1, then there exists the limit:

lim
n→∞

nk−1ωn =
l

k − 1
.

For proofs and further applications, see [13-19]. The sequences (1)-(2) were

introduced in [17] using Lemma 1. Clearly the sequence (ωn)n≥1 converges more

quickly when the value of k satisfying (3) is larger.
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2 First degree term

In this section we define the sequence

ωn = γn − γ + ln
n + a

n + b

to find the values a, b which provide the fastest sequence (ωn)n≥1 . First

ωn − ωn+1 = −
1

n + 1
− ln

n

n + 1
+ ln

n + a

n + b
− ln

n + 1 + a

n + 1 + b
,

and we are concentrated to compute a limit of the form (3). In this sense, we

used a computer software to obtain the following representation in power series:

ωn − ωn+1 =
(

a − b +
1

2

)
1

n2
+

(
−a2 − a + b2 + b −

2

3

)
1

n3

+
(

a3 +
3

2
a2 + a − b3 −

3

2
b2 − b +

3

4

)
1

n4
+ O

(
1

n5

)
.

(4)

We can state the following

Theorem 2.

i) If a − b + 1
2 6= 0, then the speed of convergence of the sequence (ωn)n≥1

is n−1, since

lim
n→∞

n2 (ωn − ωn+1) = a − b +
1

2
and lim

n→∞
nωn = a − b +

1

2
6= 0.

ii) If a − b + 1
2 = 0 and −a2 − a + b2 + b − 2

3 6= 0, then the speed of

convergence of the sequence (ωn)n≥1 is n−2, since

lim
n→∞

n3 (ωn − ωn+1) = −a2 − a + b2 + b −
2

3
and

lim
n→∞

n2ωn =
1

2

(
−a2 − a + b2 + b −

2

3

)
6= 0.

iii) If a − b + 1
2 = 0 and −a2 − a + b2 + b − 2

3 = 0 (equivalent with a =

−1/12, b = 5/12), then the speed of convergence of the sequence (ωn)n≥1

is n−3, since

lim
n→∞

n4 (ωn − ωn+1) =
−7

96
and lim

n→∞
n3ωn =

−7

288
.
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The proof of Theorem 2 easily follows from Lemma 1 and (4).

For a = −1/12, b = 5/12, the relation (4) becomes

ωn − ωn+1 = −
7

96n4
+ O

(
1

n5

)

and so, iii) is completely proved.

3 Second degree term

Now we define the sequence

λn = γn − γ + ln
n2 + an + b

n2 + cn + d

to find the values a, b, c, d which provide the fastest sequence (λn)n≥1 . First

λn − λn+1 = −
1

n + 1
− ln

n

n + 1
+ ln

n2 + an + b

n2 + cn + d

− ln
(n + 1)2 + a (n + 1) + b

(n + 1)2 + c (n + 1) + d
,

and we are concentrated to compute a limit of the form (3).

In this sense, we used again the computer software to obtain the following

representation in power series:

λn − λn+1 =
(

a − c +
1

2

)
1

n2
−

(
a2 + a − c2 − c − 2b + 2d +

2

3

)
1

n3

+
(

a − 3b − c + 3d − 3ab + 3cd +
3

2
a2 + a3 −

3

2
c2 − c3 +

3

4

)
1

n4

−
(

a4 + 2a3 − 4a2b + 2a2 − 6ab + a + 2b2 − 4b − c4

−2c3 + 4c2d − 2c2 + 6cd − c − 2d2 + 4d +
4

5

)
1

n5

+
(

a − 5b − 5a3b + 5d − c −
5

2
c2 −

10

3
c3 −

5

2
c4 − c5 +

5

2
a4

+10cd − 5d2 + 10c2d + 5c3d − 5cd2 + a5 + 5ab2

−10ab + 5b2 +
10

3
a3 − 10a2b +

5

2
a2 +

5

6

)
1

n6
+ O

(
1

n7

)
.

(1)

We can state the following
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Theorem 3.

i) Let us denote the coefficients of (5) by

α = a − c +
1

2

β = −
(

a2 + a − c2 − c − 2b + 2d +
2

3

)

δ = a − 3b − c + 3d − 3ab + 3cd +
3

2
a2 + a3 −

3

2
c2 − c3 +

3

4

η = −
(

a4 + 2a3 − 4a2b + 2a2 − 6ab + a + 2b2 − 4b − c4

− 2c3 + 4c2d − 2c2 + 6cd − c − 2d2 + 4d +
4

5

)

ii) If α 6= 0, then the speed of convergence of the sequence (λn)n≥1 is

n−1, since

lim
n→∞

n2 (λn − λn+1) = α and lim
n→∞

nλn = α 6= 0.

iii) If α = 0 and β 6= 0, then the speed of convergence of the sequence

(λn)n≥1 is n−2, since

lim
n→∞

n3 (λn − λn+1) = β and lim
n→∞

n2λn =
β

2
6= 0.

iv) If α = β = 0 and δ 6= 0, then the speed of convergence of the se-

quence (λn)n≥1 is n−3, since

lim
n→∞

n4 (λn − λn+1) = δ and lim
n→∞

n3λn =
δ

3
6= 0.

v) If α = β = δ = 0 and η 6= 0, then the speed of convergence of the

sequence (λn)n≥1 is n−4, since

lim
n→∞

n5 (λn − λn+1) = η and lim
n→∞

n4λn =
η

4
6= 0.

vi) If a = β = δ = η = 0 (equivalent with a = 33/140, b = 37/1680,

c = 103/140, d = 61/336), then the speed of convergence of the se-

quence (λn)n≥1 is n−5, since

lim
n→∞

n6 (λn − λn+1) =
3959

161 280
and lim

n→∞
n5λn =

3959

806 400
.
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The proof of Theorem 3 easily follows from Lemma 1 and (5).

For a = 33/140, b = 37/1680, c = 103/140, d = 61/336, the relation (5)

becomes

λn − λn+1 =
3959

161 280n6
+ O

(
1

n7

)
.

and so, vi) is completely proved.

4 Concluding remarks

As least theoretically, further sequences of the form

Mn = γn − γ + ln
P (n)

Q (n)

can be defined, where deg P = deg Q = k ≥ 3. As above,

Mn − Mn+1 = −
1

n + 1
− ln

n

n + 1
+ ln

P (n) Q (n + 1)

Q (n) P (n + 1)
(6)

and if we expand (6) into a power series of n−1, then the 2k coefficients of the

polynomials P and Q are the unique solution of the system obtained by imposing

that the first 2k coefficients of the power series (6) vanish. In this case,

Mn − Mn+1 =
θ

n2k+2
+ O

(
1

n2k+3

)
,

with θ 6= 0. By Lemma 1, (Mn)n≥1 tends to zero as n−(2k+1), since

lim
n→∞

n2k+1 Mn =
θ

2k + 1
.

Finally, we offer some numerical computations to prove the superiority of our

sequences (νn)n≥1 and (μn)n≥1 over the classical sequence (γn)n≥1 and the

DeTemple sequence (Rn)n≥1 . Remark that already μ1 approximates γ with

seven exact decimals.

n γn − γ Rn − γ γ − νn μn − γ

10 4. 916 7 × 10−2 3. 773 3 × 10−4 2. 274 8 × 10−5 4. 323 7 × 10−8

50 9. 966 7 × 10−3 1. 633 7 × 10−5 1. 919 2 × 10−7 1. 533 0 × 10−11

100 4. 991 7 × 10−3 4. 125 2 × 10−6 2. 414 7 × 10−8 4. 849 9 × 10−13

300 1. 665 7 × 10−3 4. 614 2 × 10−7 8. 982 5 × 10−10 2. 012 2 × 10−15
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Our approach works by small degrees k of P (t) and Q (t) , respectively, com-

pared with the obtained order 2k + 1 of the speed of convergence, but for larger

values of k, it becomes quite difficult (even for computer softwares) to compute

the coefficients of the polynomials and the limit θ/ (2k + 1) of the sequences

n2k+1 Mn.

We propose now a refined numerical method to compute the coefficients based

on an explicit formula for the series expansion of Mn − Mn+1 around 1/n.

Starting with formula (6), we have

Mn − Mn+1 = −
1

n + 1
− ln

n

n + 1
+ ln

P (n)

Q (n)
− ln

P (n + 1)

Q (n + 1)
. (7)

As in the cases studied above, we assume that the polynomials P and Q have

rational coefficients. Let us consider the factorizations

P (t) = t k + ak−1t k−1 + ∙ ∙ ∙ + a0 = (t − α1) (t − α2) ∙ ∙ ∙ (t − αk) (8)

Q (t) = t k + bk−1t k−1 + ∙ ∙ ∙ + b0 = (t − β1) (t − β2) ∙ ∙ ∙ (t − βk) , (9)

where the roots αν and βν are complex numbers. Then (7) takes the form

Mn−Mn+1 = −
1

n + 1
−ln

n

n + 1
+

k∑

j=1

(

ln
n − α j

n − β j
− ln

n −
(
α j − 1

)

n −
(
β j − 1

)

)

. (10)

Next, we have for real numbers α, β that

ln
n − α

n − β
= ln

(
1 +

β − α

n − β

)
=

∞∑

ν=1

(−1)ν−1

ν

(
β − α

n − β

)ν

=
∞∑

ν=1

(−1)ν−1

ν

(
β − α

n

)ν 1

(1 − β/n)ν

=
∞∑

ν=1

(−1)ν−1 (β − α)ν

νnν

∞∑

μ=0

(
ν + μ − 1

ν − 1

) (
β

n

)μ

= −
∞∑

d=1

(
d∑

ν=1

(
d − 1

ν − 1

)
(α − β)ν βd−ν

ν

)
1

nd
(with d = ν + μ)

= −
∞∑

d=1

αd − βd

dnd
.
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Replacing α by α − 1 and β by β − 1, we get

ln
n − (α − 1)

n − (β − 1)
= −

∞∑

d=1

(α − 1)d − (β − 1)d

dnd
(11)

and

ln
n

n + 1
=

∞∑

d=1

(−1)d

dnd
. (12)

Finally, using
1

n + 1
=

∞∑

d=1

(−1)d−1

nd
, (13)

it follows from (10)-(13):

Mn − Mn+1 =
∞∑

d=2

×



(−1)d (d − 1) +
k∑

j=1

((
α j − 1

)d
− αd

j

) ((
β j − 1

)d
− βd

j

)


 1

dnd
.

(14)

For every d the corresponding term in brackets on the right-hand side of (14)

is a polynomial in 2k variables, which is symmetric in α1, α2, . . . , αk and in

β1, β2, . . . , βk . Therefore, the proof of the main theorem on symmetric poly-

nomials involves an algorithm to express the polynomials (14) in terms of the

elementary symmetric polynomials in α1, α2, . . . , αk and in β1, β2, . . . , βk . So,

one obtains equations in terms of the coefficients a0, . . . , ak and b0, . . . , bk .

But, a second method to deduce the rational coefficients a0, . . . , ak and

b0, . . . , bk from the (complex) solution of the system

(−1)d (d − 1) +
k∑

j=1

×
((

α j − 1
)d

− αd
j

) ((
β j − 1

)d
− βd

j

)
= 0 (2 ≤ d ≤ 2k + 1)

(15)

is based on the numerical continued fraction algorithm. Provided that the co-

efficients a0, . . . , ak−1 and b0, . . . , bk−1 are rationals, the following pure nu-

merical method works without using any computer algebra software in order

to obtain the coefficients. Here, we first solve the system (15) numerically,
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which for large k is much simpler than to compute the coefficients a0, . . . , ak

and b0, . . . , bk by a computer algebra system. We demonstrate the method by

computing the rationals a0, a1, a2 and b0, b1, b2 for k = 3. The system

0 = 1 +
3∑

j=1

((
α j − 1

)2
− α2

j

) ((
β j − 1

)2
− β2

j

)

0 = −2 +
3∑

j=1

((
α j − 1

)3
− α3

j

) ((
β j − 1

)3
− β3

j

)

0 = 3 +
3∑

j=1

((
α j − 1

)4
− α4

j

) ((
β j − 1

)4
− β4

j

)

0 = −4 +
3∑

j=1

((
α j − 1

)5
− α5

j

) ((
β j − 1

)5
− β5

j

)

0 = 5 +
3∑

j=1

((
α j − 1

)6
− α6

j

) ((
β j − 1

)6
− β6

j

)

0 = −6 +
3∑

j=1

((
α j − 1

)7
− α7

j

) ((
β j − 1

)7
− β7

j

)

has (the unique) solution

α1 = −0.25815871587916770707043092744853466448964330026005...

+i ∙ 0.48397242106377239253881674751055982149144184289297...

α2 = 0.038201465324611971071624393136243082171731381749928...

α3 = −0.25815871587916770707043092744853466448964330026005...

−i ∙ 0.48397242106377239253881674751055982149144184289297...

β1 = −0.38406133637441025553569425604004004944633805438883...

β2 = −0.29702731502965659376677160286039309868060858219067...

−i ∙ ∙ 0.49547669307316290426997439537218740680230881850428...

β3 = −0.29702731502965659376677160286039309868060858219067...

+i ∙ 0.49547669307316290426997439537218740680230881850428...
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It follows that

−a2 = α1 + α2 + α3

= −0.47811596643372344306923746176082624680755521877097...

a1 = α1α2 + α2α3 + α3α1

= 0.28115114446890147824727263979600428198559039680544...

−a0 = α1α2α3

= 0.011493874548781090837165603520743707659595510062767...

−b2 = β1 + β2 + β3

= −0.97811596643372344306923746176082624680755521877081...

b1 = β1β2 + β2β3 + β3β1

= 0.56187579435242986644855803734308407205603467285750...

−b0 = β1β2β3

= −0.12816986295374145841435561061729286028351448912202...

Next, the continued fraction algorithm applied to the above numerical values,
gives

a2 = − <−1, 1, 1, 10, 1, 12, 7, 1, 1, 5, 1, 4> =
68143

142524

a1 = <0, 3, 1, 1, 3, 1, 9, 10, 3, 1, 3, 1, 10> =
186997

665112

a0 = − <0, 87, 349, 4, 1, 5, 3, 2> = −
74381

6471360

b2 = − <−1, 45, 1, 2, 3, 1, 1, 7, 2, 2, 3> =
139405

142524

b1 = <0, 1, 1, 3, 1, 1, 5, 1, 2, 3, 1, 1, 8, 1, 21, 1, 3> =
1121131

1995336

b0 = − <−1, 1, 6, 1, 4, 18, 2, 3, 1, 1, 4, 1, 8, 1, 5, 3, 1, 1, 2, 3> =
30689033

239440320
.

Then we have

lim
n→∞

n7 Mn =
θ

7

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:53 — page 490 — #12

490 FAST CONVERGENCES TOWARDS EULER-MASCHERONI CONSTANT

with

θ =
1

8



7 +
3∑

j=1

((
α j − 1

)8
− α8

j

) ((
β j − 1

)8
− β8

j

)




= −0.01832772866046807884381439244713734156447898226906...

=<−1, 1, 53, 1, 1, 3, 1, 1, 10, 7, 1, 1, 1, 3, 2, 3, 4, 1, 2, 1, 36, 1, 8, 1, 3, 3>

= −
10833071983

591075532800
.

It is to be noticed that these results were rediscovered by us using Lemma 1

presented in the first part of this paper. We omit the proof for sake of simplicity.

Finally, remark that if the polynomials P and Q of k-th degree are already de-

termined, say using the previous numerical method, then the problem of verifiy-

ing the speed of convergence of the corresponding sequence Mn using Lemma 1

becomes a much easier task.
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