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Abstract. In this article, we propose to model the inverse of a given matrix as the state of a

proper first order matrix differential equation. The inverse can correspond to a finite value of the

independent variable or can be reached as a steady state. In both cases we derive corresponding

dynamical systems and establish stability and convergence results. The application of a numerical

time marching scheme is then proposed to compute an approximation of the inverse. The study of

the underlying schemes can be done by using tools of numerical analysis instead of linear algebra

techniques only. With our approach, we recover some known schemes but also introduce new ones.

We derive in addition a masked dynamical system for computing sparse inverse approximations.

Finally we give numerical results that illustrate the validity of our approach.
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1 Introduction

The modern methods we have at our disposal for solving linear systems of equa-

tions such as the preconditioned versions of GMRES [19] or BI-CGSTAB [21],
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are robust and apply to many situations; they are intensively used for the numer-

ical solution of large sparse linear systems coming out from PDE discretisation.

For this reason the preconditioning is still now a central topic in numerical linear

algebra since it is the common universal approach to accelerate the solution of a

linear system by an iterative method. Preconditioning a matrix practically leads

to improve its spectral properties, by, e.g., concentrating the spectrum of the

preconditioned matrix. There is not an efficient general method for building a

preconditioner for a given nonsingular matrix : a large number of approaches

have been developed depending on the properties of the considered matrix,

surveys are presented, e.g., in [4, 19].

Let P be a n × n regular matrix and b ∈ R
n . The preconditioning of the

numerical solution of the linear system

Pu = b, (1.1)

(with a descent method) consists in solving at each step of the iterative process,

an additional linear system

Kv = c, (1.2)

where K is the preconditioning matrix. Of course, the additional computation

carried by the solution of (1.2) is convenient when this system is easy to solve

and when K (respectively K−1) resembles P (resp. P−1).

When the preconditioning of (1.1) is obtained by approaching P, system (1.2)

must be easy to solve. In the other case, the approximation of P−1, which defines

the so-called inverse preconditioner, leads to a trivial solution of (1.2).

Inverse preconditioners can be built in many ways: by minimizing an objec-

tive functional (the Frobenius norm of the residual, [10]), by incomplete sparse

factorization [9], or also by building proper convergent sequences, see [5, 10] in

which the authors have presented sequences generated by descent methods such

as MINRES or Newton-like schemes. The polynomial preconditioning, which

consists in approaching the inverse of a matrix by a proper polynomial, has been

developed and implemented for parallel computers, see [19].

In this paper we propose to model the inverse of a regular matrix as a state

of a first order Matrix Differential Equation (MDE). This state can correspond

to the solution of the MDE for a finite value of the independent variable, but
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also to an equilibrium point, depending on the equation. In such a way, the

implementation of any numerical integration can produce an approximation of

P−1, say an inverse preconditioner of P. The underlying schemes involve at

least one multiplication of two matrices at each iterations so the terms of the

sequence of inverse preconditioners become denser even if the matrix P is sparse.

However, it is possible to derive a masked dynamical system which preserve a

given density pattern making our method suitable for computing sparse inverse

preconditioners. From a technical point of view, the advantage of the dynamical

system approach is to use the classical tools of numerical analysis of differential

equations for studying the processes.

This approach is very flexible since the construction of the numerical scheme

is subjected to the choice of the modelling ODE and of a time marching scheme;

it allows also to study the schemes by using classical mathematical tools of

ODE analysis and of numerical analysis of ODEs [15, 16, 20]. We mention

that the use of differential equation modeling for solving systems of equations,

including linear algebra problems, was considered in other situations: in [14, 17]

for generating flows of matrices that preserve eigenvalues, singular values; in [8]

for generating fixed point methods, the solution being defined as a stable steady

state; in [13] for computing the square root of a matrix, by integrating a Riccati

matrix differential equation (see also R. Bellman’s book [3], chap 10).

The article is organized as follows: in Section 2 we study a Riccati differential

equation whose solution is the inverse at finite time of one of the data; the

derivation, the stability analysis and the study of approximation scheme is given.

In Section 3 we consider Matrix differential equations for which one of the steady

states is the inverse of a datum of the equation. In Section 4 we concentrate on

the construction of sparse inverse preconditioners by considering the numerical

integration of a so-called masked differential equation, when a sparsity pattern

is fixed; error estimates are derived. Finally in Section 5 we give numerical

illustration on the solution of linear systems when using the approximate inverses

built in the previous sections.
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2 Inverse at finite time

2.1 Derivation of the equation

Let P(t) and Q(t) be two square matrices, depending on the scalar variable t

which belongs to an interval I . We assume that the coefficients of both P and

Q are differentiable functions of t . We have

d P(t)Q(t)

dt
= d P(t)

dt
Q(t) + P(t)

d Q(t)

dt
, ∀t ∈ I.

Assume that P(t) is regular, i.e. invertible, for all t in I and consider the particular

situation Q(t) = P−1(t), ∀t ∈ I . Then we have

d P(t)Q(t)

dt
= 0.

So,
d Q(t)

dt
= −Q(t)

d P(t)

dt
Q(t) or, equivalently,

d P(t)

dt
= −P(t)

d Q(t)

dt
P(t),

(2.1)

for all t ∈ I . If P(t) is supposed to be known, then Q(t) can be computed by

integrating the differential matrix equation:


d Q(t)
dt = −Q(x)

d P(t)
dt Q(t), t ∈ I,

Q(0) = P−1(0).

(2.2)

Q is hence the solution of a matrix Riccati differential equation.

Let now P be a regular n × n matrix and I d, the n × n identity matrix. Now,

the basic idea consists in defining P(t) as a simple path function of regular

matrices between P(0) easy to invert (Q(0) = P−1(0)) and P(1) = P. We

consider the function

P(t) = (1 − t)I d + tP, t ∈ [0, 1]. (2.3)

Assume that P(t) is invertible for all t in [0, 1]. The Matrix Q(t) = P−1(t)

satisfies the Cauchy problem


d Q(t)
dt = −Q(t)(P − I d)Q(t) t ∈ I,

Q(0) = I d,

(2.4)
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and P−1 = Q(1); we assume that [0, 1] ⊂ Ī .

We have the following result:

Lemma 1. P(t) is regular for all t in [0, 1] iff S P(P) ⊂ R
2 \ {(t, 0), t ≤ 0}

where S P(P) denotes the spectrum of P.

Proof. The eigenvalues of P(t) are the numbers

S(t) = (1 − t) + tλ �= 0, λ ∈ S P(P).

Taking the real and the imaginary parts of this expression, we have

φ1(t) = (1 − t) + t�(λ), φ2(t) = t�(λ).

Let us look to necessary and sufficient conditions for having φ1(t) = φ2(t) = 0

for same t . By continuity, it is easy to see that φ1(t) = 0 if and only if �(λ) ≤ 0.

φ2(t) vanishes for t = 0 (but P(0) = I d) or for �(λ) = 0.

In conclusion S(t) vanishes if and only if there exists λ ∈ S P(P) such that

�(λ) ≤ 0 and �(λ) = 0. �

Particularly, Lemma 1 applies when P is positive definite, such as, e.g., dis-

cretization matrices of elliptic operators.

Remark 1. We can consider P(t) = (1 − t)P0 + tP with P0 a preconditioner

of P. Of course, in this case, Lemma 1 applies replacing P by P−1
0 P. Same

considerations can be made with a more general path

P(t) = (1 − φ(t))P0 + φ(t)P,

with

φ(t) : [0, 1] → [0, 1], φ ∈ C1([0, 1]), φ′(t) > 0, t ∈]0, 1[.

2.2 Stability results

Let us now give some notations and technical results which will be used along

the article.

Comp. Appl. Math., Vol. 26, N. 1, 2007
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2.2.1 Matrix norms

Let M be a n × n matrix. We denote by ‖M‖ any matrix norm of M and partic-

ularly, ‖M‖2 and ‖M‖F the 2-norm and the Frobenius norm of M , respectively.

We shall use also the notation ‖v‖2 for the 2 norm of a vector of Rn , there will

be no ambiguity in practice.

2.2.2 Hadamard Matrix Product

We denote by R ∗ M the Hadamard product of R and M :

(M ∗ R)i, j = Ri, j Mi, j .

2.2.3 Matrix scalar product

We will use the following scalar product:

� R, M  =
n∑

i, j=1

Ri, j Mi, j ,

which coincide with the sum of the coefficient of the Hadamard product of R

and M . We also use the euclidean scalar product of vector of Rn that we note by

< · , · >.

We begin with the following very simple but useful technical result:

Lemma 2. Let R and S be two n × n matrices. We have the inequalities

(i)
n∑

i, j=1

|(R2 ∗ R2)i, j | ≤ ‖R‖4
F ,

(ii)
n∑

i, j=1

|(R2 ∗ S)i, j | ≤ ‖R‖2
F‖S‖F ,

(iii) ‖S‖2 ≤ ‖S‖F .
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Proof. Assertion (i) follows from a simple application of Cauchy-Schwarz

inequality.

Let us prove (ii). We have

|(R2 ∗ S)i, j | = |
(

n∑
k=1

Ri,k Rk, j

)
Si, j |,

(using Cauchy Schwarz inequality in Rn),

≤
(

n∑
k=1

R2
i,k

)1/2 ( n∑
k=1

R2
k, j

)1/2

|Si, j |.

We now take the sum of these terms for i, j = 1, · · · n. We obtain

n∑
i, j=1

|(R2 ∗ S)i, j | ≤
n∑

i, j=1

|Si, j |
(

n∑
k=1

R2
i,k

)1/2 ( n∑
k=1

R2
k, j

)1/2

,

(using Cauchy Schwarz inequality in Rn2
),

≤

 n∑

i, j=1

S2
i, j




1/2
 n∑

i, j=1

(

n∑
k=1

R2
i,k

n∑
k=1

R2
k, j




1/2

,

≤ ‖R‖2
F‖S‖F .

Assertion (iii) is classical and obtained by applying Cauchy-Schwarz inequality

to ‖Sv‖2
2 =

n∑
i=1


 n∑

j=1

Si, jv j


, for v ∈ Rn , ‖v‖2 = 1. �

At this point, we can establish a stability result:

Proposition 1. Assume that I d − PP−1
0 satisfy the assumptions of Lemma 1.

We set S(t) = (P − P0)Q(t), where Q(t) solves the equation


d Q(t)
dt = −Q(t)(P − P0)Q(t) t ∈ I,

Q(0) = P−1
0 .

(2.5)

Assume that ‖S(0)‖F < 1. Then S(t) exists for all t in [0, 1] and

‖S(t)‖F ≤ 1(
1 − 1

‖I d − PP−1
0 ‖F

)2 .
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Proof. Multiplying on the left each term of (2.7) by P − P0, we obtain

d S(t)

dt
= −S(t)2.

We now take the Hadamard product of each term with S(t), and consider the

sum of all indices i, j = 1, · · · , n. We find

1
2

d‖S(t)‖2
F

dt = −
n∑

i, j=1

(S(t)2)i, j S(t)i, j ,

((ii) of Lemma 2),

≤ ‖S(t)‖3
F .

Hence, ‖S(t)‖2
F ≤ y(t), where y(t) is the solution of the differential equation


dy(t)

dt = 2y(t)3/2

y(0) = ‖S(0)‖2
F

(2.6)

We find

y(t) = 1(
1√
y(0)

− t

)2 = 1(
1‖S(0)‖F

− t
)2 .

Since ‖S(0)‖F < 1, y(t) remains bounded and y(t) ≤ y(1). �

Another stability result can be derived when assuming both P and P0 to be

symmetric, positive definite (SPD). More precisely we have the next result:

Lemma 3. Assume that both P and P0 are SPD. Then Q(t) = P(t)−1 is SPD

for all t ∈ [0, 1].

Proof. It suffices to prove that P(t) is SPD for all t ∈ [0, 1]. The proof is

straightforward starting from the definition of P(t):

P(t) = (1 − t)P0 + tP. �

Comp. Appl. Math., Vol. 26, N. 1, 2007
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2.3 Construction of an inverse preconditioner by numerical integration

Let us subdivide I = [0, 1] into N subintervals of the same length δ = 1/N , the

step-length. The application of any (stable) time marching scheme to equation

(2.4) generates a sequence Qk, k = 1, · · · , N , Qk being an approximation of

Q(k/N ) . In particular, since Q(1) = P−1, QN will be an inverse preconditioner

for the matrix P.

For each time integration scheme, a method for computing a preconditioner is

derived. We consider the following cases.

Forward Euler Scheme
We consider the sequence


Q0 = I d

For k=0,...,N-1

Qk+1 = Qk − 1
N Qk(P − I d)Qk

(2.7)

We have QN � P−1.

Second order Adams Bashforth (AB2)
We consider the sequence




Q0 = I d

Computation of Q1 by RK2

K0 = Q − 1
2N Q0(P − I d)Q0

Q1 = Q0 − 1
N K0(P − I d)K0

For k=1,...,N-1

Qk+1 = Qk − 1
2N (3Qk(P − I d)Qk − Qk−1(P − I d)Qk−1)

(2.8)

We have QN � P−1.

Of course, further methods can be derived by considering, e.g., Runge-Kutta

or more general Adams-Bashforth schemes, but, in practice, it is important to

find a compromise between the accuracy and the cost of the computation, since

each iteration requires (at least) the multiplication of three matrices.

Comp. Appl. Math., Vol. 26, N. 1, 2007
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It is easy to see that the above schemes consist in approaching P−1 with a

polynomial of P, PN (P), whose coefficients are matrix independent. The degree

of PN (P) grows exponentially with N . For instance, we have the following

expressions of PN (P) when it is seen as a one variable function:

Euler’s

N = 1 PN (t) = 2 − t

N = 2 PN (t) = −1
8 (t − 3)(t2 − 4t + 7)

N = 3 PN (t) = − 1
2187 (t − 4)(t2 − 5t + 13)(t4 − 10t3 + 42t2 − 85t + 133)

AB2’s

N = 1 PN (t) = 13
4 − 15

4 t + 7
4 t2 − 1

4 t3

N = 2 PN (t) = 16019
4096 − 25173

4096 t + 20815
4096 t2 − 10217

4096 t3 + 3225
4096 t4

− 639
4096 t5 + 69

4096 t6 − 3
4096 t7

N = 3 PN (t) = 515661916
1088391168 − 3581936773

362797056 t + 1484035553
120932352 t2

−11394203831
1088391168 t3 + 2404253335

362797056 t4 − 391144243
120932352 t5

+1352868157
1088391168 t6 − 46022507

120932352 t7 + 1251827
13436928 t8

− 19757677
1088391168 t9 + 1008073

362797056 t10 − 39389
120932352 t11

+ 30455
1088391168 t12 − 595

362797056 t13 + 7
120932352 t14

− 1
1088391168 t15

These polynomials are approximations of the function t �→ 1
t , as illustrated in

Figure 1.

Remark 2. Both of the numerical integration schemes given above lead to

compute the approximate inverse with a polynomial of P. This is hence a poly-

nomial preconditioning. Several approaches of polynomial preconditioning have

been proposed: they are based on truncated Neumann series [11] or based on

Comp. Appl. Math., Vol. 26, N. 1, 2007
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Figure 1 – The function 1
x and the iteration polynomials a) Euler, N = 4, b) AB2,

N = 4.

orthogonal polynomial [1], see [2, 4] for a review. However, the point of view

here is different and the underlying polynomial are also different.

At this point we give a convergence result for the Euler method (scheme (2.9)).

More precisely, we give a consistency error bound. We have the

Theorem 1. Assume that P − P0 is regular and satisfies the hypothesis of

Lemma 1. Let QN , be the approximation of Q(1) obtained by replacing

d Q(t)

dt

(
k

N

)
by

Q
(

k
N

)− Q
(

k−1
N

)
1
N

.

Assume that the solution of (2.7) is C2. Then

‖Q(1) − QN ‖2 ≤ 1

2N
‖(P − P0)

−1‖2
1(

1 − 1
|I d − PP−1

0 |F

)2 .

Comp. Appl. Math., Vol. 26, N. 1, 2007
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Proof. We have

Q(1) − Q(0) =
∫ 1

0

d Q(t)

dt
dt

=
N∑

k=1

∫ k
N

k − 1
N

d Q(t)

dt
dt

Let k be fixed and let t ∈]k − 1
N , k

N [. There exists t0 ∈]k − 1
N , t[ such that

d Q(t)
dt = d Q

dt

(
k − 1

N

)
+
(

t − k − 1
N

)
d2 Q
dt2 (t0),

(Q(t) being solution of (2.7))

= − Q
(

k − 1
N

)
(P − P0)Q

(
k − 1

N

)
+ 2

(
t − k − 1

N

)
Q(t0)(P − P0)Q(t0)(P − P0)Q(t0),

= − Q
(

k − 1
N

)
(P − P0)Q

(
k − 1

N

)
+ 2

(
t − k − 1

N

)
(P − P0)

−1 ((P − P0)Q(t0))
3 .

Hence,

‖
∫ k

N
k − 1

N

d Q(t)

dt
dt − 1

N

(
−Q

(
k − 1

N

)
(P − P0)Q

(
k − 1

N

))
‖2

≤ 1

N 2 ‖(P − P0)
−1‖2 sup

t∈[0,1]
‖(P − P0)Q(t)‖3

2.

Therefore, we have the estimate:

‖Q(1) − QN ‖2 ≤
N∑

k=1

1

N 2 ‖(P − P0)
−1‖2

2 sup
t∈[0,1]

‖(P − P0)Q(t)‖3,

≤ 1
N ‖(P − P0)

−1‖2 sup
t∈[0,1]

(‖P − P0)Q(t)‖3
F),

≤ 1
N ‖(P − P0)

−1‖2 y(1).

where y(t) is solution of (2.8), and

y(1) = 1(
1 − 1

‖I d − PP−1
0 ‖F

)2 . �
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The Euler scheme preserves the symmetry. In particular we can prove that for

P, P0, P − P0 SPD, and for N large enough, the matrices Qk generated by (2.9)

are SPD for k = 0, · · · , N .

3 Inverse matrix as steady state

3.1 The equations

Another way to reach P−1 is to consider differential equations for which one of

the steady states is Q = P−1. We consider the two following equations:


d Q(t)
dt = Q(t) (I d − PQ(t)) ,

Q(0) = Q0,

(3.11)

which is a Riccati matrix differential equation and its linearized version


d Q(t)
dt = I d − PQ(t), t ≥ 0

Q(0) = Q0.

(3.12)

In both equations P−1 is a steady state.

Remark 3. We can also proceed as in Section 2: we consider equation (2.4)

with the path function P(t):

P(t) = (1 − e−t)P + e−t P0.

It is easy to see that P(t) is invertible for all t ≥ 0 iff PP−1
0 satisfies the as-

sumptions of Lemma 1, see also Remark 1. The differential equation satisfied

by Q(t) is then 


d Q(t)
dt = e−t Q(t)(P − P0)Q(t), t ≥ 0,

Q(0) = Q0.

We now give sufficient conditions for obtaining the convergence lim
t→+∞ Q(t) =

P−1. We propose two approaches. The first one consists in deriving bounds of the

Frobenius norm of the solution, assuming that the initial data is close enough to

the steady state. The second one concentrates on the symmetric definite positive

case.

We begin with the following result:

Comp. Appl. Math., Vol. 26, N. 1, 2007
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Proposition 2. Let Q(t) be the solution of the matrix differential equation

(3.11). Assume that ‖I d − PQ0‖F < 1. Then lim
t→∞ Q(t) = P−1.

Proof. The matrix R(t) = I d − PQ(t) satisfies the equation

d R(t)

dt
= −R(t) + R2(t).

Then, taking the Hadamard product of each terms with R(t) and taking the sum

of all the coefficients, we obtain

1

2

d‖R(t)‖2
F

dt
+ ‖R(t)‖2

F = −
∑
i, j

(R2 ∗ R)i, j .

By the first assertion of Lemma 2 (with S = R), we have

1

2

d‖R(t)‖2
F

dt
+ ‖R(t)‖2

F ≤ ‖R(t)‖3
F .

From the previous inequality, we infer that ‖R(t)‖2
F is bounded from below by

the solution of the scalar differential equation


dy(t)
dt = −2y(t)(1 − √

y(t))

y(0) = ‖I d − PQ0‖2
F

We have

y(t) = 1(
1 +

(
1√
y(0)

− 1

)
et

)2 ,

hence the result. �

This last results insures the existence of solution and the convergence to P−1 for

initial conditions closed enough to the steady state; however no other properties

of P or of Q0 are required. We now give an existence and a convergence result

in the symmetric positive definite case. We have the

Proposition 3. Assume that P and Q(0) are SPD matrices. Then Q(t) is SPD

for all t ≥ 0 and lim
t→∞ Q(t) = P−1.
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Proof. If Q(t) is regular for all t , then U (t) = Q(t)−1 satisfies the differential

equation 


dU (t)
dt = −U (t) + P, x ≥ 0,

U (0) = Q−1(0).

We prove the proposition by studying U (t). We have

U (t) = (1 − e−t)P + e−tU0,

from which we infer that U (t) is SPD for all t ≥ 0. Indeed, U (t) is symmetric

as sum of symmetric matrices, and for every w ∈ Rn , we have

〈U (t)w,w〉 = (1 − e−t)〈Pw,w〉 + e−t〈P0w,w〉 > 0,

since both P and P0 are assumed to be positive definite. Furthermore, we have

immediately lim
t→∞ U (t) = P. Therefore U (t) is SPD for all t ≥ 0. In conclusion

Q(t) exists and is SPD for all t ≥ 0 and lim
x→∞ Q(t) = P−1. �

Proposition 4. Let Q(t) be the solution of (3.12). Assume P is positive definite.

Then lim
x→∞ Q(t) = P−1. Moreover if P and Q0 are SPD and commute with P,

then Q(t) is also SPD for all t ≥ 0.

Proof. As usual, we introduce the residual matrix R(t) = I d − PQ(t) which

here satisfies the equation

d R(t)

dt
= −PR(t),

whose solution is

R(t) = e−tP R(0).

Hence, if P is positive definite, lim
x→∞ R(t) = 0.

From the expression of R(t) we infer

Q(t) = (I d − e−tP)P−1 + e−tP Q0.

Q(t) is thus SPD when Q0 and P are SPD and Q0 and P commute.
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Let us now establish the convergence in the Frobenius norm. If P is positive

definite, there exists a strictly positive real number α such that

α

n∑
i=1

u2
i ≤ 〈Pu, u〉 =

n∑
i=1

(
n∑

k=1

Pi,kuk

)
uk, ∀u ∈ Rn, u = (u1, · · · , un)

t ,

the number α possibly depending on n.

Taking the Hadamard product of each term of the differential equation and

summing on all indices i, j , we get

1

2

d‖R‖2
F

dt
+

n∑
i, j=1

(
n∑

k=1

Pi,k Rk, j

)
Ri, j = 0.

Therefore,
1

2

d‖R‖2
F

dt
+ α‖R‖2

F ≤ 0.

By integration of each side of the last inequality, we obtain

‖R(t)‖F ≤ e−αt‖R(0)‖F . �

3.2 Construction of preconditioners by numerical integration

We introduce the discrete residual Rk = I d − PQk . The numerical integration

of equation (3.11) by forward Euler’s method generates the sequence Rk which

satisfies the recurrence relation:

Rk+1 = (1 − �tk)Rk + �tk R2
k .

We remark that for �tk = 1, the convergence is quadratic whenever ‖R0‖ < 1,

where ‖.‖ is any matrix norm. We recover in this case the Newton method

derived from the equation in one variable 1
t − r = 0, see [10].

Let us study the general case.

Theorem 2. We have the following results:

(i) �k = �t . Assume that

ρ(R0) < 1 and �t <
2

1 − ρ(R0)
.

Then lim
k→∞ Qk = P−1.
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(ii) Assume that ‖R0‖F < 1 and that

0 < �tk <
2

1 + ‖Rk‖F
∀k.

Then, lim
k→∞ ‖Rk‖F = 0. Moreover the convergence is quadratic for

�tk = 1.

(iii) Assume that P and Q0 are symmetric, then Qk is also symmetric for all

k ≥ 0.

Proof. From the relation

Rk+1 = Rk ((1 − �t)I d + �t Rk) ,

we deduce that the convergence is guaranteed if ρ((1 − �t)I d + �t Rk) < 1,

say if

ρ(R0) < 1 and 0 < �t <
2

1 − ρ(R0)
.

The first condition is verified, e.g., when Q0 = γ PT with 0 < γ < 2
ρ(PPT )

.

Notice that if P is positive definite, we can take Q0 = γ I d with 0 < γ < 2
ρ(P)

,

Hence the assertion (i).

Let k be fixed. We have

Rk+1 ∗ Rk+1 = (1 − �tk)
2 Rk ∗ Rk + 2�tk(1 − �tk)Rk ∗ R2

k . + (�tk)
2 R2

k ∗ R2
k .

Taking the sum of all the indices, we obtain

‖Rk+1‖2
F = (1 − �tk)2‖Rk‖2

F

+ 2�tk(1 − �tk)
n∑

i, j=1

(
n∑

m=1

(Rk)i,m(Rk)m, j

)
(Rk)i, j

+ (�tk)2
n∑

i, j=1

(
n∑

m=1

(Rk)i,m(Rk)m, j

)2

,

(applying Lemma 2)

≤ (1 − �tk)2‖Rk‖2
F + 2�tk |1 − �tk |‖Rk‖3

F + (�tk)2‖Rk‖4
F ,

≤ ‖Rk‖2
F (|1 − �tk | + �tk‖Rk‖F)2 .
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Therefore, if Mk = |1 − �tk | + �tk‖Rk‖F < 1, say if ‖Rk‖F < 1 and 0 <

�tk < 2
1 + ‖Rk‖F

, then ‖Rk+1‖F < Mk‖Rk‖F with Mk < 1. The contraction

holds in particular when 0 < �tk ≤ 1 and it is easy to prove by induction that if

‖R0‖F < 1 then ‖Rk+1‖F < M‖Rk‖F , with M < 1. The convergence follows.

The particular case �tk = 1 gives directly the estimate

‖Rk‖F ≤ ‖R0‖2k

F .

The convergence in Frobenius norm is then quadratic in this case if ‖R0‖F < 1.

The point (ii) is proved.

Finally, if Q0 and P are SPD, then using the relation Qk+1 = (1 + �tk)Qk −
�tk QkPQk , we show easily by induction that Qk is symmetric for all k ≥ 0.

This completes the proof. �

Let us now consider the implementation of the Euler scheme to (3.12). The

following sequence of matrices is generated:


Q0 given

For k=0,...

Qk+1 = Qk + �tk(I d − PQk)

(3.13)

We have the

Theorem 3. Assume P is positive definite and, for simplicity, that �k t = �t .

Then

(i) If 0 < �t < 2
ρ(P)

, ∀k ≥ 0. Then, Qk, the sequence generated by the

scheme (3.13) converges to P−1.

(ii) Assume in addition that P is symmetric and Q0 is SPD. Assume that

Q0 and P commute. Then Qk is symmetric for all k ≥ 0. Moreover if

α0 − �t M‖I d − �t P Q0‖2
1 − M > 0 then Qk is SPD for all k ≥ 0, where we

have set M = ‖I d − �t P‖2,

α0 = min
x∈Rn ,‖x‖2=1

〈Q0x, x〉.
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Proof. Assume first that �tk = �t . Using the same notations, we have,

Rk+1 = (I d − �tP)Rk .

Thus, Rk → 0 if and only if 0 < �t < 2
ρ(P)

.

Let us now study the convergence in the Frobenius norm. Since P is positive

definite, we can define

0 < α = min
u∈Rn ,‖u‖2=1

〈Pu, u〉
〈u, u〉 .

We have

Rk+1 ∗ Rk+1 = (I d − �tP)Rk ∗ (I d − �tP)Rk .

Hence, taking the sum of all indices, we obtain after simplifications

‖Rk+1‖2
F + 2�t

∑
i, j

n∑
m=1

Pi,m Rm, j Ri, j = ‖Rk‖2
F + (�t)2

∑
i, j

(
n∑

m=1

Pi,m Rm, j

)2

.

Therefore

‖Rk+1‖2
F + 2α�t‖Rk‖2

F ≤ ‖Rk‖2
F + (�t)2‖P‖2

F‖Rk‖2
F .

Finally

‖Rk+1‖2
F ≤ (

1 − 2α�t + (�t)2‖P‖2
F

) ‖Rk‖2
F ,

which gives the (sufficient) stability condition

0 < �t <
2α

‖P‖2
F

.

Now, one can show by induction that if Q0 and P commute, then Qk and P
commute also for all k ≥ 0. Then, proceeding also by induction, it can be shown

that Qk is symmetric for all k ≥ 0. Notice that the condition PQ0 = Q0P is

simply verified, e.g., with the choice Q0 = I d.

Now we set

αk = min
x∈Rn ,‖x‖2=1

〈Qk x, x〉
〈x, x〉 , ∀k ≥ 0.

Let x ∈ Rn , ‖x‖2 = 1. We have

〈Qk+1x, x〉 = 〈Qk x, x〉 − �t〈Rk x, x〉,
≥ αk − �t‖Rk‖2.
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But ‖Rk‖ ≤ ‖I d − �tP‖k
2‖R0‖2 = Mk‖R0‖2. Thus

αk+1 ≥ αk − �t Mk‖R0‖2,

and therefore

αk ≥ α0 − �t
M(1 − Mk)‖R0‖2

1 − M
≥ α0 − �t

M‖R0‖2

1 − M
.

This completes the proof. �

By analogy between Euler’s method and Richardson’s iterations, it is natural

to compute �tk such as minimizing ‖Rk+1‖F . We have

Rk+1 ∗ Rk+1 = (I d − �tkP)Rk ∗ (I d − �tkP)Rk .

Taking the sum on all indices, we obtain, after the usual simplifications

‖Rk+1‖2
F = ‖Rk‖2

F +(�tk)
2

n∑
i, j=1

((PRk) ∗ (PRk))i, j −2�tk

n∑
i, j=1

((PRk) ∗ Rk)i, j .

It follows that ‖Rk+1‖F is minimized for

�xk =

n∑
i, j=1

((PRk) ∗ Rk)i, j

‖PRk‖2
F

= � PRk, Rk 
� PRk, PRk  ,

and we recover the iterations proposed in [10], see also Section 4.

3.3 Steepest descent-like Schemes

The computation of a steady state by an explicit scheme can be speeded up by

enhancing the stability domain of the scheme since it allows to use larger time

steps; in this situation the accuracy of a time marching scheme is not fundamental.

We can derive more stable methods by using parametrized one step schemes and

to fit the parameters, not for increasing the accuracy such as in the classical

schemes (Heun’s, Runge Kutta’s), but for improving the stability.
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For example, in [8] it was defined a method for computing iteratively fixed

points with larger descent parameter starting from a specific numerical time

scheme. It consists in integrating the differential equation


dU
dt = F(U ),

U (0) = U0,

(3.14)

by the two steps scheme


K1 = F(U k),

K2 = F(U k + �t K1),

U k+1 = U k + �t (αK1 + (1 − α)K2) .

(3.15)

Here α is a parameter to be fixed. This scheme allows a larger stability as

compared to the Forward Euler scheme. More precisely, when F(U ) = b−PU .

Lemma 4. Assume that P is positive definite, then the scheme is convergent iff

α <
7

8
and �t <

1

(1 − α)ρ(P)
.

Of course, one can define iteratively α and �t such as minimizing the euclidean

norm of the residual, exactly as in the steepest descent method. The residual

equation is

rk+1 = (
I − �tk P + (1 − αk)(�tk)

2 P2
)

rk . (3.16)

Hence

‖rk+1‖2 = ‖rk‖2 − 2�tk〈Prk, rk〉 + (�tk)2‖Prk‖2

+ 2(1 − αk)(�tk)2〈P2rk, rk〉 − 2(1 − αk)(�tk)3〈P2rk, Prk〉
+ (1 − αk)

2(�tk)4〈P2rk, P2rk〉.
We set for convenience

a = ‖rk‖2, b = 〈Prk, rk〉, c = ‖Prk‖2,

d = 〈P2rk, rk〉, e = 〈P2rk, Prk〉, f = 〈P2rk, P2rk〉.
‖rk+1‖ is minimized for the following definition of the parameters:

�tk = f b − ed

f c − e2 , αk = ( f c − e2)
eb − cd

( f b − ed)2 .

This gives rise to the steepest descent method derived from (3.15).
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4 Sparse inverse preconditioners

The iterative processes generated by numerical integration of the differential

equations require at least a product of two matrices at each iteration. Hence,

at each iteration, the inverse preconditioner matrix becomes denser, even if the

initial data and the matrix to invert are sparse.

We propose here a simple way to derive a dropping strategy from the numerical

integration of a matrix differential equation. The notations are the same as in the

previous sections. Consider the equation


d Q
dt = I d − PQ,

Q(0) = Q0.

(4.17)

Here P is a positive definite matrix so lim
x→∞ Q(x) = P−1, a shown in section 2.

4.1 Derivation of the equations

Now, let F be a n × n matrix with coefficients 0 or 1. The Hadamard product

F ∗ P returns a matrix whose coefficients are those of P which have the same

indices as the non null coefficients of F , so F is a filter matrix which selects a

sparsity pattern. More precisely, we have

(F ∗ P)i, j =
{

Pi, j if Fi, j = 1,

0 else.

We assume that Fi,i = 1, i = 1, · · · n, so F ∗ I d = I d, where I d is the n × n

identity matrix.

At this point, we consider the Hadamard product of each term of (4.17) with

F . We obtain the system


dF ∗ Q
dt = I d −F ∗ (PQ),

F ∗ Q(0) = F ∗ Q0.

(4.18)

For deriving an autonomous equation with a sparse matrix S as unknown, we

approach F ∗ (PQ) by F ∗ (PFQ) and we obtain the new system


d S
dt = I d −F ∗ (PS),

F ∗ S(0) = F ∗ Q0.

(4.19)
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The matrix S(t) is sparse for all t . Indeed, we have the

Lemma 5. The matrix equation (4.19) has a unique solution S(t) ∈C1(]0, +∞[
and

F ∗ S(t) = S(t), ∀t ≥ 0.

Proof. The existence and the uniqueness of S(t) is established by using stan-

dard arguments.

We have

S(t) = S(0) +
∫ t

0
(I d −F ∗ (PS))ds

Hence, since F ∗ S(0) = S(0), we can write

F ∗ S(t) = S(0) +
∫ t

0
F ∗ (I d −F ∗ (PS)ds

= S(0) +
∫ t

0
(I d −F ∗ (PS)ds.

�

We now will show that S(t) is an approximation of Q(t).

4.2 A priori estimates

We have the following result:

Theorem 4.

‖S − Q‖2
F ≤ 2 ×

{
‖(1 −F) ∗ P−1‖2

F‖e−tP − I d‖2
F‖I d − PQ0‖2

F

+ 1

2α
‖(1 −F) ∗ P−1‖2

F‖I d − PQ0‖2
F

∫ t

0
e−α(t−s)‖e−sP − I d‖2

F ds
}
,

where 1 is the neutral element of the Hadamard product, (1i, j = 1, i, j =
1, · · · n).

Proof. Taking the difference of the equations (4.19) and (4.18), we get

dS −F ∗ Q

dt
= −F ∗ (P(S −F ∗ Q)) +F ∗ (P(F ∗ Q − Q)). (4.20)

Comp. Appl. Math., Vol. 26, N. 1, 2007



118 MATRIX DIFFERENTIAL EQUATIONS AND INVERSE PRECONDITIONERS

The difference between (4.18) and (4.17) gives

dF ∗ Q − Q

dt
= (1 −F) ∗ PQ. (4.21)

From (4.20), we infer

1

2

d‖S −F ∗ Q‖2
F

dt
= − � F ∗ (P(S −F ∗ Q)), S −F ∗ Q 

+ � F ∗ (P(F ∗ Q − Q)), S −F ∗ Q  .

(4.22)

Now, since

� F ∗ (P(S −F ∗ Q)), S −F ∗ Q  = � P(S −F ∗ Q)), S −F ∗ Q  ,

we can write

1

2

d‖S −F ∗ Q‖2
F

dt
+ � P(S −F ∗ Q)), S −F ∗ Q  =
+ � P(F ∗ Q − Q), S −F ∗ Q  .

(4.23)

We let α = min
Q∈Mn(R)

� PQ, Q 
� Q, Q  and we deduce from the previous equation

1

2

d‖S −F ∗ Q‖2
F

dt
+ α‖S −F ∗ Q‖2

F

≤ � P(F ∗ Q − Q), S −F ∗ Q ,

(applying Young’s inequality),

≤ η

2
‖S −F ∗ Q‖2

F + 1

2η
‖F ∗ Q − Q‖2

F .

(4.24)

Here η is a strictly positive real number which will be chosen later on. We

now must derive estimates for ‖F ∗ Q − Q‖F . From the direct integration of

(4.17), we get

PQ = I d − e−tP (I d − PQ0) .

Therefore,

dF ∗ Q − Q

dt
= (1 −F) ∗ (I d − e−tP (I d − PQ0)

)
,
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so

(F ∗ Q − Q)(t) = (F ∗ Q − Q)(0)

+
∫ t

0
(1 −F) ∗ (I d − e−tP (I d − PQ0)

)
ds, (4.25)

=
∫ t

0
(1 −F) ∗ e−sP(I d − PQ0)ds, (4.26)

= (1 −F) ∗
∫ t

0
e−sP (I d − PQ0) ds, (4.27)

= (1 −F) ∗ P−1
(
e−tP − I d

)
(I d − PQ0). (4.28)

We then can write

‖(F ∗ Q − Q)(t)‖F ≤ ‖(1 −F) ∗ P−1‖F‖e−tP − I d‖F‖I d − PQ0‖F .

Substituting this last inequality in (4.24), we get

1

2

d‖S −F ∗ Q‖2
F

dt
+ α‖S −F ∗ Q‖2

F ≤ η

2
‖S −F ∗ Q‖2

F

+ 1

2η
‖(1 −F) ∗ P−1‖2

F‖e−tP − I d‖2
F‖I d − PQ0‖2

F

Now we choose η = α and we integrate this inequality:

‖(S −F ∗ Q)(t)‖2
F ≤ ‖(S −F ∗ Q)(0)‖2

F e−αt

+ 1

2α
‖(1 −F) ∗ P−1‖2

F‖I d − PQ0‖2
F

∫ t

0
e−α(t−s)‖e−sP − I d‖2

F ds.

Finally, summing this last estimate with ‖(F ∗ Q − Q)(t)‖2
F we obtain

‖S − Q‖2
F ≤ 2(‖S − F ∗ Q‖2

F + ‖F ∗ Q − Q‖2
F)

≤ 2 ×
{
‖(1 −F) ∗ P−1‖2

F‖e−tP − I d‖2
F‖I d − PQ0‖2

F

+ 1

2α
‖(1 −F) ∗ P−1‖2

F‖I d − PQ0‖2
F

∫ t

0
e−α(t−s)‖e−sP − I d‖2

F ds
} �

We conclude this section with an important remark. The error bounds that we

derive do not insure that the sparse preconditioner S(t) is invertible for all t and

at least for t ≥ t0. However, in practice, the numerical implementations of time

marching schemes for computing S(t), t large, produce invertible matrices.
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5 Numerical illustrations

5.1 Inverse matrix approximation

Consider the problem

−�u + a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= f in 
 =]0, 1[2 (5.29)

u = 0 on ∂
 (5.30)

We discretize this problem by second order finite differences on a n × n grid and

we define P as the underlying matrix. The numerical results we present were

obtained by using Matlab 6 on a cluster of Bi-processor 800 (Pentium III) at

Université Paris XI, Orsay, France.

5.1.1 Integration of finite time inverse matrix differential equation

We first consider the problem with

a(x, y) = 30ey2−x2
, b(x, y) = 50 sin(72x(1 − x)y) ∗ sin(3πy), n = 30

(the matrix is of size 900 × 900) and a Chebyshev Mesh in both directions.

In Figure 2 we have compared the preconditioners obtained with 2 iterations

of Euler (Euler(2)), of Adams-Bashforth (AB(2)), of Fourth order Runge Kutta

(RK4(2)). We observe that the more accurate is the integration method, the more

concentrated is the spectrum of the preconditioned matrix.

5.1.2 Sparse inverse preconditioner case

We consider here the sparse approximation of the inverse of the finite differences

discretization matrix of the operator

−� + 500∂x + 20∂y

on the domain ]0, 1[2 with homogeneous Dirichlet boundary conditions, on a

regular grid. Here the sparsity pattern is defined by the n2 × n2 symmetric

mask-matrix F as follows

Fi, j = 1 if |i − j | ≤ 2 or if |i − j ± n| ≤ 1Fi, j = 0 in the other cases.
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Figure 2 – Spectrum of P, Euler(2)P, AB2(2)P, RK 4(2)P and I LUP.

In Figure 3 we have represented approximations of the inverse matrix that are

obtained by a tresholding of the coefficient at the level ε, for different values of

ε. This shows that a sparse approximation can be considered in this case.

As we can see in Figure 4, very few iterations are needed to obtain the conver-

gence. Of course the residual do not converge to 0 because the approximation

of the inverse is sparse. This is agree with error estimates of the continuous

equations: a saturation is expected. In Figure 5, we have plotted the spectrum of

the preconditioned matrix. We observe that the inverse preconditioner provides

a concentration of the spectrum.
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Figure 3 – Coefficients of P−1 greater (in modulus) than ε = 0.5 (fig. (a)), ε = 0.4

(fig. (b)), ε = 0.25 (fig. (c)), ε = 0.15 (fig. (d)), norm of the error for the filtered inverse

matrix vs ε, (e).

5.2 Preconditioned descent methods

The reduction of the condition number as well as the concentration of the spec-

trum of the preconditioned matrix allows faster convergence of descent methods.

As an illustration, we apply the explicit preconditioner computed above to the

numerical solution of the convection diffusion problem. To this end, we use the

preconditioned BiCgstab method [21].

The discretization matrix is the same as above. The discrete problem to solve

reads

Px = b

We prepare the system by diagonal preconditioning, and we consider the equiv-
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Figure 4 – Computation of sparse inverse preconditioner: Residual vs iterations (above)

and condition number vs iterations (below).

alent problem

diag(P)−1Px = diag(P)−1b.

The exact solution xe is a random vector and b = Pxe.

In Figure 6 we have represented the residual (respectively the error) versus the

iteration when using Bicgstab and various preconditioned versions; the explicit

preconditioners Q were here generated by, in the one hand, with two iterations

of Euler, of AB2 and of RK4, and, in the other hand, with an ILU factorization

with ε = 10−2 as tolerance. The Euler and the AB2 preconditioners improve

the convergence of the unpreconditioned method, with respective rates 2 and 3.

The RK4 preconditioner is comparable to the ILU one.

In Figure 6, we have illustrated the improvement of the convergence carried

by the sparse inverse preconditioner computed on the previous subsection.
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Figure 5 – Spectrum of the original matrix (top), (the fly) Spectrum the preconditioned

matrix (bottom), in the complex plane.
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Figure 6 – Comparison of the preconditioners : Euler(2), AB(2), RK4(2) and ILU, Size

of the system : 961 × 961, a) Residual vs iterations, b) error vs iterations.

6 Concluding remarks

The approach we have developed here is simple, rather general and seems to

apply to a large class of matrices. The advantage of this technique is to study

the underlying approximations with simple analysis tools; we recover in addi-

tion particular sequences of inverse preconditioners ([4, 10, 9]) and introduce

new ones. The iterative schemes we introduced in this article are all based on

approximation of the inverse by a proper polynomial: they can be considered as

polynomial preconditioners in spite they are not automatically related to the ones

proposed (e.g.) by [1], the point of view being here different. This suggests as

a feature to analyze them by using an approach coming from the approximation

theory.

The masked matrix differential equation approach allows to build simply effi-
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Figure 7 – Sparse inverse preconditionning for convection-diffusion problem. a)

Residual vs iterations; b) Error vs iterations.

cients sparse inverse preconditioners for a fixed sparsity pattern. A natural next

feature would be to develop dropping strategies for improving the method.

We have applied here a dynamical modeling approach to the construction of

inverse preconditioners. A similar approach can be developed for the solution

of linear as well as non linear systems of equations, deriving numerical schemes

from special dynamical systems.

The examples we give are coming out from PDE’s discretization and are rather

academic, but is it a first step to be considered before developing and applying

the schemes to large scales problems.
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