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Abstract. Calculating an equilibrium point in general equilibrium models in many cases

reduces to solving a nonlinear system of equations. Taking model parameter values as random

variables with a known distribution increases the level of information provided by the model but

makes computation of equilibrium points even more challenging. We propose a computationally

efficient procedure based on application of the fixed Newton method for a sequence of equilib-

rium problems generated by simulation of parameters values. The convergence conditions of the

method are derived. The numerical results presented are obtained using the neoclassic exchange

model and the spatial price equilibrium model. The results show a clear difference in the quality of

information obtained by solving a sequence of problems if compared with the single equilibrium

problem. At the same time the proposed numerical procedure is affordable.
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1 Introduction

The problem we consider in this paper is

F(x, W ) = 0, (1)
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where x ∈ Rn is an unknown vector, W is a m−dimensional vector of parame-

ters and F : Rn → Rn .

The most simple case of this type of problems arises when W ∈ Rm is con-

stant. Many economic models can be written in the form of (1) with W being

a vector of parameters that are estimated. Estimation of the parameter values

based on real data is a nontrivial task given that W is most likely a random vec-

tor. As F is often highly nonlinear and n can be large, solving (1) becomes a

challenging issue so W is often replaced by a constant real valued vector, say by

the expected value. Such modeling simplification makes solving (1) easier but

also introduces additional uncertainty into the model. An important part of the

information available from the real data might be lost with the constant value

parameters approach and hence the model properties might deteriorate. There-

fore the question of finding a computationally affordable procedure for solving

(1) with W being more general than just a constant vector naturally arises.

Let us assume that W in (1) is estimated in such a way that its probability

distribution is known. So W is a random vector on some probability space

(�,F, P). This kind of parameter estimation provides significantly larger

amount of information than constant value and thus implies better properties

of the model. In that case (1) becomes a stochastic problem and its solution can

be a random variable. Analytical solution of (1) is not available in general and

thus an affordable numerical procedure is of great interest.

Solving stochastic nonlinear systems of equations numerically is a difficult

problem. A number of numerical procedures is suggested and analyzed in liter-

ature if the parameter vector W is a constant, [10, 6, 7]. The proposed numerical

procedures are in fact designed for solving the deterministic nonlinear problems

of the form (1) and they are mainly based on the interior-point or homotopy

methods. In this paper we propose a different approach aiming to preserve as

much information about the vector W as possible but keeping the computational

cost at a reasonable level. If W is a random vector with known distribution then

for a given sample {w1, . . . , wN } one could solve the sequence of problems

F(x, wi ) = 0, i = 1, . . . , N (2)

getting a sequence of solutions (x∗1, . . . , x∗N ) ∈ Rn×N . If N is large enough

then (x∗1, . . . , x∗N ) might provide a good idea of the true properties of the
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random vector x∗ which is a solution of (1). However solving the sequence

of nonlinear systems (2) for large values of N might be computationally unaf-

fordable. Therefore we are proposing a numerical procedure based on the fixed

Newton idea that generates a sequence of approximate solutions of (2) at an

affordable cost and thus provides significantly more information that a solution

of (1) for a constant value (i.e. the expected value) of the vector W.

Section 2 of this paper contains the algorithm we are proposing and its con-

vergence analysis. Two equilibrium models of the form (1) are described in

Section 3 and the numerical results are presented in Section 4.

2 The Algorithm

Let us assume that W is a random vector with a known distribution and the

sample (w1, . . . , wN ) is drawn. We are interested in solving the sequence of

problems

F(x, w j ) = 0, j = 1, . . . , N ,

and thus obtaining the sequence of optimal solutions

(x∗1
, . . . , x∗N

) ∈ Rn×N .

The final goal is to obtain an approximation of x∗, which is a random variable

that solves (1). So for N large enough we can use the sequence (x∗1, . . . , x∗N )

to estimate the distribution of each component of x∗.

The problem (1) is considered under a set of standard assumptions. Let

D ⊂ Rn such that the following assumptions are satisfied.

(A1) For all w ∈ � there exists xw∗ ∈ D such that F(xw∗, w) = 0.

(A2) For all w ∈ � the Jacobian matrix F ′(xw∗, w) is nonsingular.

(A3) For all x, y ∈ D and w ∈ � there exists γ > 0 such that

||F ′(x, w) − F ′(y, w)|| ≤ γ ||x − y||

(A4) For all wi , w j ∈ � and x ∈ D there exists γW > 0 such that

||F ′(x, wi ) − F ′(x, w j )|| ≤ γW ||wi − w j ||
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One obvious possibility is to use the Newton method to solve each of the

systems (2). The Newton method is a reliable choice given that it yields quadratic

convergence for a good initial approximation. So given xi,0 the sequence

F ′(xi,k, wi )si,k = −F(xi,k, wi ), xi,k+1 = xi,k + si,k, k = 1, 2, . . . (3)

will converge to the solution xi∗ if F(x, wi ) satisfies the standard assumptions

A1-A3. However such procedure would be quite expensive for large N if the

dimension n of the problems (2) is even a modest number. On the other hand the

Jacobian matrices F ′(xi,k, wi ) could be expected to have very similar structure

for different sample realizations wi . Therefore a numerical procedure should

take advantage of such similarity. A natural way to employ the favorable prop-

erties of the sequence of problems we are solving would be consider the proce-

dure based on the fixed Newton approach. The fixed Newton method calculates

the Jacobian only once and proceeds with iterations using the initial Jacobian

during the whole process. The method is convergent if the initial approxima-

tion is close enough to the solution of the considered nonlinear system. So we

will consider the following algorithm for solving (2).

Algorithm FNM

Step 0: Let x0 ∈ Rn and (w1, . . . , wN ) be given. Calculate the mean value

w̄ =
N∑

i=1

wi/N

and solve F(x, w̄) = 0 by the Newton method. Denote the solution by

x w̄ and define A = F ′(x w̄, w̄).

Step 1: For i = 1, . . . , N

Step 1i: Set xi,0 = x w̄

Step 2i: Repeat until convergence

Asi,k = −F(xi,k, wi ), xi,k+1 = xi,k + si,k, k = k + 1

Step 3i: Set xi∗ = xi,k
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Remark. The suggested matrix A = F ′(x w̄, w̄) is one possible choice for the

constant matrix used in Step 2i. The main computational burden in (3) comes

from the calculation of the Jacobian at each iteration and for each sample re-

alization wi , followed by solving the corresponding linear systems that define

the iteration increments si,k . Therefore the main advantage of the suggested

procedure is that all steps are obtained by solving a system of linear equation

with the same matrix A. Naturally A should be a reasonably good approxima-

tion of the true Jacobians at all iterations. Furthermore A can be factored only

once and used in each Step 2i thus decreasing the linear algebra costs signif-

icantly. So calculating A with the sample mean w̄ appears natural given that

such A should be reasonably close to F ′(x, wi ) for all wi and x close to xi∗.

But there are several other possibilities, for example A = F ′(x0, w j ), with j

being an arbitrary number 1 ≤ j ≤ N . The numerical testing we performed

did not indicate that the algorithm exhibits large differences depending on the

choice of w̄ or any w j when defining A. More details are reported in Section 4.

The algorithm above will generate the sequence (x1∗, . . . , x N∗) if Step 2i is

well defined i.e. if every single iterative procedure for i = 1, . . . , N ends up

with some xi,k that satisfies the convergence conditions and could be taken as

xi∗ in Step 3i. One of the advantages of the above algorithm is that it could

be easily used in parallel environment [2].

We will prove that the standard assumptions (A1)-(A4) imply that Step 2i is

well defined. The convergence theorem presented below is based on the Banach

contraction principle. The convergence condition might be seen as a general-

ization of two neighbourhod theorem as it consists of an inequality connecting

the distance between the initial point and the solution and the variance of the

model parameters W. Such condition might seem rather strong as common in

local convergence statements. But the numerical results given in Section 4 will

demonstrate the effectiveness of the algorithm despite the strong convergence

condition.

Let us denote B = B(x, δ) = {y ∈ Rn : ‖x − y‖ ≤ δ}. Assuming that

Assumptions A1-A3 are satisfied one can easily see that the Newton method

for solving F(x, w̄) = 0 is locally convergent i.e. there exists δ1 > 0 such

that for x0 ∈ B(x w̄∗, δ1) Step 0 is well defined and generates a convergent
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sequence. Let x w̄ be the value obtained after s iterations of the Newton method

in Step 0 and let s be large enough such that x w̄ is close enough to x w̄∗.

Then the matrix F ′(x w̄, w̄) is nonsingular and there exists M > 0 such that

||F ′(x w̄, w̄)−1|| = M. The convergence of FNM Algorithm is stated in the

theorem below.

Theorem 1. Let F satisfy assumptions A1-A4. If for εW = diam(�) and

M = ||F ′(x w̄, w̄)−1|| there exists δ > 0 such that α = M(γ δ + γW εW ) < 1

and ||F ′(x w̄, w̄)−1 F(x w̄, wi )|| ≤ δ(1 − α) then for every wi ∈ � sequence

{xwi ,k}∞k=0, i = 1, 2, . . . , N defined by Step 1 of Algorithm FNM converges

linearly to solution F(x, wi ) = 0.

Proof. Let G(x) = x − F ′(x w̄, w̄)−1 F(x, wi ). Then, for x ∈ B

||G ′(x)|| = ||I − F ′(x w̄, w̄)−1 F ′(x, wi )|| ≤ ||F ′(x w̄, w̄)−1||

× (||F ′(x w̄, w̄) − F ′(x, w̄)|| + ||F ′(x, w̄) − F ′(x, wi )||)

≤ M(γ ||x w̄ − x || + γW ||w̄ − wi ||) ≤ M(γ δ + γW εW )

= α < 1

From the mean-value theorem we obtain

||G(x)−G(y)|| ≤ sup
t∈[0,1]

||G ′(x+t (y−x))||∙||x−y|| ≤ α||x−y||, ∀x, y ∈ B.

Therefore, G is contraction on B. Further more

||G(x) − x w̄|| ≤ ||G(x) − G(x w̄)|| + ||G(x w̄) − x w̄|| ≤ αδ + δ(1 − α) = δ

and G maps B into itself. Therefore the contraction mapping theorem ap-

plies and there exists a unique fixed point in B and that point is the solution

of F(x, wi ) = 0 in B. �

3 Equilibrium models

Neoclassical exchange economy

The model of neoclassical exchange economy is one of the oldest and most

classical economic models. It was developed by Walras, later extended and
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formalized by Arrow and Debreu, [7, 11] and since then extensively analyzed

in the literature, [11, 3, 9]. One survey of the general equilibrium models is

presented in [6]. The most common approaches for solving equilibrium prob-

lems include simplex methods based on the constructive proof of the Brouwer

fixed point theorem, tâtonnement approach, Newton method, Smale’s method,

interior-point method (see [6] and references therein). Homotopy method is

analyzed in [4].

Let Rn
+ be the set of nonnegative real numbers. The model we will consider

assumes that there are n commodities in X ⊂ Rn
+ and m economic agents.

Each agent has a utility function u j , and an initial endowment ω j for j =

1, . . . , m. Therefore each agent has the budget π ∙ ω j where π ∈ Rn
+ is the

price vector of commodities. The choice of utility function is defining the

model. We will consider the following three possibilities.

• Cobb-Douglas: u(x) = xa1
1 ∙ ∙ ∙ xan

n ,

n∑

i=1

ai = 1, ai ≥ 0

• fixed proportional: u(x) = min
{

x1

a1
, ∙ ∙ ∙ ,

xn

an

}
, ai > 0

• CES: u(x) =

(
n∑

i=1

a1/b
i x (b−1)/b

i

)b/(b−1)

, ai > 0, b ≤ 1

In any of these utility functions the set of parameters a1, . . . , an, b has to be

estimated. The models considered in [6] assume that these values are constant,

while we consider a more general case in which these parameters are random

variables with known distribution.

All agents are profit maximizers, the goal is to maximize the chosen utility

function for each agent i.e. to determine

x j (π) = arg max
πx≤πω j

u j (x), j = 1, . . . , m.

For the considered utility functions we have the following maximizers

• Cobb-Douglas demand function: x j
i (π) =

π ∙ ω j

πi
a j

i , i = 1, 2, . . . , n
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• fixed proportions demand function: x j
i (π) =

π ∙ ω j

π ∙ a j
a j

i , i = 1, 2, . . . , n

• CES demand function: x j
i (π) = π ∙ ω j

πb j

i

n∑

k=1

π1−b j

k a j
k

a j
i , i = 1, 2, . . . , n.

If the excess demand function is defined as

ξ(π) =
m∑

j=1

x j (π) −
m∑

j=1

ω j ,

then any strictly positive π∗ such that

ξ(π∗) = 0 (4)

is an equilibrium price.

Spatial price equilibrium model

The class of market equilibrium problems where supply, demand and trans-

portation cost functions are nonlinear and separable is considered in [10] and

the references cited therein. The distinguishing characteristic of spatial price

equilibrium models lies in their recognition of the importance of space and

transportation costs associated with shipping a commodity from a supply market

to a demand market. These models are perfectly competitive partial equilib-

rium models. The model we consider assumes that there are many producers

and consumers involved in the production and consumption, respectively, of

one or more commodities.

We will use the following notation.

• Yi – total supply (output) at origin (market) i ∈ I = {1, . . . , m}

• Zi – total demand (input) at destination (market) j ∈ J = {1, . . . , n}

• xi j – quantity shipped (traded) from origin i ∈ I to destination j ∈ J

• Si (Yi ) – inverse supply function at origin i
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• I j (Z j ) – inverse demand function at destination j

• ci j (xi j ) – transportation (transaction) cost between origin i and destina-

tion j

The equilibrium can be described as a triple {(Yi )i∈I , (Z j ) j∈J , (xi j )i∈I, j∈J } that

solves the system of equalities and inequalities

Si (Yi ) + ci j (xi j )






= I j (Z j ), if xi j > 0

≥ I j (Z j ), if xi j = 0

Yi =
∑

j∈J

xi j , ∀i ∈ I

Z j =
∑

i∈I

xi j , ∀ j ∈ J

xi j ≥ 0, ∀i, j ∈ I × J

(5)

The model is developed assuming that the following assumptions hold.

M1 The supply, demand and transportation cost functions are nonnegative

C1(R+) functions. The supply and transportation functions are nonde-

creasing while the demand price is nonincreasing.

M2

lim
Yi →∞

Si (Yi ) = +∞, lim
Zi →∞

I j (Z j ) = 0

If M1-M2 hold then the equilibrium conditions (5) are the KKT conditions

for the minimization problem

min
x≥0

G(x) =
∑

i∈I

∫ ∑
j∈J xi j

0
S(t)dt +

∑

i∈I

∑

j∈J

∫ xi j

0
ci j (t)dt −

∑

j∈J

∫ ∑
i∈I xi j

0
I (t)dt

Supply, demand and transportation costs are model parameters that need to be

estimated while xi j are the unknowns we want to compute at the equilibrium.

If a shipping quantity xi j is zero, the corresponding inequality in (5) can be

strict. As in ([10]) we can assume the strict complementarity hypothesis:

x∗
i j = 0 ⇔ Si (Y

∗
i ) + ci j (x∗

i j ) − I j (Z∗
j ) 6= 0
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in the solution (x∗, Y ∗, Z∗). Otherwise we have degeneracy. Most common

situation for degeneracy is when the transportation cost functions ci j (xi j ) are

constant. Under the strict complementarity assumption, we can apply some

strategy for determining set of indices P with nonzero shipping quantities. That

gives us system of equations from (5) for (i, j) ∈ P. However, in our com-

putations it was not needed, as the problems we considered had all xi j positive

(P = I × J ).

Denoting by x the components xi j , i ∈ I, j ∈ J and by W all model para-

meters we can write the conditions (5) as F(x, W ) = 0.

4 Numerical results

In a Neoclassical exchange economy we find the equilibrium price by solving

the system (4) for a price vector π∗. As a consequence of the homogeneity of

degree zero of the demand and supply functions in the prices, without loss of

generality, we can define prices and look for the solution on the positive simplex

1+ =

{

π ∈ Rn
+

∣
∣
∣
∣
∣

n∑

i=1

πi = 1

}

.

In numerical calculations we shall substitute the last equation in the system (4)

with the equation
∑n

i=1 πi = 1.

Statistics

In order to see the effects of our Algorithm, we perform several calculations

with different parameter values. In all examples the values of parameters are

generated as pseudo-random numbers having normal or uniform distribution

with given deviation centered about the value that occurs in the standard testing

problems. The first phase of the algorithm yields x w̄ where w̄ is the sample

mean. Given that all mappings are nonlinear that point is just an approximation

to the solution mean. Although this approximation was relatively close to the

sample mean in all tested examples Step 1 of FNM algorithm further improves

the approximate solution x∗i for each sample wi and thus generates a sample

of solution which allow us more detailed statistical analysis.
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For each solution some descriptive statistics are presented. We also perform

a statistical test to verify or reject the hypothesis that the solution sample is

normally distributed as the parameters samples. The test for normality we use is

the Anderson-Darling test ([1]) with significance level α = 5%. The Anderson-

Darling statistics is

A2 = −
1

N

{
N∑

i=1

(2i − 1)
[
ln zi + ln(1 − zN+1−i )

]
}

− N ,

where N is the sample size, and zi is the i-th value in the sorted sample. We use

the modified Anderson-Darling statistics

A2
m = A2

(
1 +

0.75

N
+

2.25

N 2

)
,

whose critical value for significance level α = 0.05 is 0.752, and critical value

for α = 0.01 is 1.035.

The values for kurtosis and skewness of a component of the solution sample

π∗i , i = 1, . . . , N are presented in the Figures. These values describe the shape

of the probability density function of the sample component distribution. The

formulas for skewness and kurtosis are given by

β2
1 = μ2

3/μ
3
2 , β2 = μ4/μ

2
2

respectively, where

μk =
1

N

N∑

i=1

(xi − m1)
k , m1 =

1

N

N∑

i=1

(xi ) .

Kurtosis is 0 and skewness is 3 for normal distribution.

The values of β2
1 , β2, histogram, statistical moments m1 and μk , the Anderson-

Darling statistics and other descriptive statistics data are examples of valuable

information on the behavior of the equilibrium prices under Gaussian noise i.e.

under the assumption of normal distribution of parameter values.

Example 1

We consider a Neoclassical exchange economy with 2 goods and 2 agents with

initial endowments w1 = (3, 1) and w2 = (1, 2). The first agents’ utility
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NM FNM

number of iterations 2954 4553
function evaluations 2954 4553
Jacobian evaluations 2954 6

Table 1 – Solving equilibrium for Neoclassical exchange economy (6), (8) with 2 goods and

2 agents, sample of N = 500 parameter values.

function is the Cobb-Douglas function u1(π) = π
a1

1
1 π

1−a1
1

2 . The second agents’

utility function is the fixed proportions utility function u2(π) = min
{

π1
a2

1
, π2

a2
2

}
.

The excess demand functions in this case are the following

ξ1(π) = a1
1

3π1 + π2

π1
+ a2

1
π1 + 2π2

a2
1π1 + a2

2π2
− 4 (6)

ξ2(π) = (1 − a1
1)

3π1 + π2

π2
+ a2

2
π1 + 2π2

a2
1π1 + a2

1π2
− 3 . (7)

In our calculations we modify the system (4) into ξ̄ (π) = 0 by substituting (7)

with

ξ2(π) = π1 + π2 − 1 . (8)

The initial value for the Newton method (NM) is taken as π0 = (0.1, 0.9) for

all sample values and the exit criterion for both the Newton method and the

fixed Newton method (FNM) ||ξ̄ || < ε = 10−6.

Taking parameters a1
1 = 0.4, a2

1 = 2, a2
2 = 3, we obtain the solution π∗ =

(0.2087, 0.7913) by the Newton method in 6 iterations.

Next, we make samples of N = 500 values for parameters from normal dis-

tribution: a1
1 : N (0.4, 0.05), a2

1 : N (2.0, 0.05), a2
2 : N (3.0, 0.05). Let W

denotes the triple of parameters W = (a1
1, a2

1, a2
2) and wi , i = 1, . . . , N be the

set of the sample values.

We perform both methods (Newton’s and FNM) for the parameter sample

values obtaining the sample of solutions π∗i , i = 1, . . . , N .

In Table 1 we compare the total number of iterations, number of function

evaluations and Jacobian evaluations for both NM and FNM with the Jaco-

bian A = ξ ′(x w̄, w̄) taken at the solution x w̄ of NM in the sample mean w̄.
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The average number of iterations in each of 500 problems is 5.91 for NM and

9.11 for FNM but the CPU time clearly demonstrate the advantage of FNM

approach as it is 0.156 for NM and 0.098 for FNM.

The histogram and descriptive statistics of the solution sample for both com-

ponents π∗
1 and π∗

2 are shown in Figure 1. We get the same values of π∗
1 and π∗

2

as they are not independent (π1 + π2 = 1).

Problem (4) is a continuous mapping from the parameter set into the solution

set. Thus the obtained solution sequence is a sample from a random variable.

If it is a sample from a random variable, from the histogram we could say

that the probability distribution of the underlying distribution is bell shaped,

slightly slanted (β2
1 = 0.1090, should be zero for symmetric random variable

like normal distribution). The kurtosis parameter of the sample is β2 = 2.9419,

near 3, the kurtosis of normal distribution.

However, test for normality of the sample gives the value for adjusted AD

statistics A2
m = 1.3263 that is larger than the critical value. So we reject the null

hypothesis of the normality of the solution sample (P < 0.0019).

This tells us that if one wants to estimate confidence intervals for sample

values, knowing the distribution of parameters, the limiting values of the confi-

dence intervals for normal distribution cannot be used.

Example 2

We consider a Neoclassical exchange economy with n = 3 goods and m = 4

agents with the CES utility function. The Excess demand functions are

ξ j (π) =
4∑

i=1

[ ∑3
k=1 ωi

kπk

πbi

j

∑3
k=1 αi

kπ
1−bi

k

αi
j − ωi

j

]

, for j = 1, 2, 3. (9)

In this Example, parameters and initial endowments are given in the follow-

ing matrices

α := α0 =








0.1 0.7 0.2

0.1 0.4 0.5

0.2 0.3 0.5

0.9 0.05 0.05








, ω := ω0 =








2 1 1

1 2 0

2 0 3

1 1 2








, b := b0 =








0.5

0.5

0.5

0.5








,
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1
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Anderson-Darling statistic: 1.3243
Anderson-Darling adjusted statistic: 1.3263
Probability associated to the Anderson-Darling statistic = 0.0019
With a given significance alpha = 0.050
The sampled population is  not normally distributed.
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Anderson-Darling statistic: 1.3243
Anderson-Darling adjusted statistic: 1.3263
Probability associated to the Anderson-Darling statistic = 0.0019
With a given significance alpha = 0.050
The sampled population is  not normally distributed.

(b)

Figure 1 – Histogram and descriptive statistics of sample of solutions π∗
1 (a) and π∗

2

(b) for sample of N = 500 parameter values for (6), (8).
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and i-th row of a matrix represents i-th agents’ data. In our notation, the elements

in the i-th row and j-th column of matrices α and ω are αi
j and ωi

j . We get ξ̄

by substituting the last equation in (4) with

ξ3(π) = π1 + π2 + π3 − 1 . (10)

Given the initial value π0 = (0.4, 0.2, 0.4), the Newton method with exit

criterion ||ξ̄ || < ε = 10−6 in 7 iterations gives the solution π∗ = (0.2441,

0.5566, 0.1993).

The sample used in this Example is obtained by perturbing components of

parameter b: bi , i = 1, 2, 3, 4 with N = 500 normally distributed values, bi :

N (0.5, 0.1), i = 1, 2, 3, 4.

Like in Example 1, the total number of iterations, number of function evalua-

tions and Jacobian evaluations for both NM and FNM are given in Table 2. The

average numbers of iterations are 6.60 and 9.16 for NM and FNM respectively

but the corresponding CPU times are 1.267 and 0.820.

NM FNM

number of iterations 3301 4581
function evaluations 3301 4581
Jacobian evaluations 3301 7

Table 2 – Solving equilibrium for Neoclassical exchange economy (4) with (9), (10), CES utility

function, with 3 goods and 4 agents, sample of N = 500 parameter values.

Descriptive statistics of the solution sample are given in Figure 2.

We can easily see from the histogram that the sample is asymmetric (β2
1 > 0.6)

and the kurtosis is far from 3, the kurtosis of normal distribution. Even more,

AD test tells us the underlying distribution certainly (P < 10−5) is not normal.

This should be taken in account if confidence intervals for equilibrium prices are

sought.

Example 3

We consider single commodity, nonlinear, separable spatial price equilibrium

model (5) from [10] with two sources and two destinations.
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(b)

Figure 2 – Histogram and descriptive statistics of sample of solutions π∗
1 (a), π∗

2 (b) for

sample of N = 500 parameter values for (4) with (9), (10).
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Anderson-Darling statistic: 4.5708
Anderson-Darling adjusted statistic: 4.5777
Probability associated to the Anderson-Darling statistic = 0.0000
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The sampled population is  not normally distributed.

(c)

Figure 2 (continuation) – Histogram and descriptive statistics of sample of solutions π∗
3

(c) for sample of N = 500 parameter values for (4) with (9), (10).

Numerical tests are performed assuming that the supply and demand func-

tions are

Si (Yi ) = ui +
(

Yi

vi

)2

,

I j (Z j ) =
1

θ j
ln

(
2000

Z j

)
,

and the cost functions is linear,

ci j (xi j ) = γi j xi j .

Parameters ui , v j , θ j and γi j belong to the intervals [3, 5], [15, 20], [0.1, 0.5],

[5, 10] respectively.

The initial value for the Newton method for all sample values is x0 =

[
20 20

20 20

]

and the exit criterion for both methods is ||F || < ε = 10−6.
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For the following values of the parameters

u = [4.00, 4.00]T , v = [17.50, 17.50]T ,

θ = [0.30, 0.30]T , γ =

[
7.50 7.50

7.50 7.50

]

,

the solution by the Newton method is x∗ =

[
2.182 2.182

2.182 2.182

]

, and it is obtained

in 4 iterations.

Using a sample of N = 500 random values for independent components of

v: v1 and v2 , both normally distributed v1,2 : N (17.5, 1) and other parameters

as above, we solved the equilibrium with the Newton method. After that, as in

Example 1 we used the fixed Newton method, with the Jacobian and starting

point obtained from the Newton method computed with the mean of parameter

sample. The number of calculations is given in Table 3.

NM FNM

number of iterations 5465 3227
function evaluations 5465 3227
Jacobian evaluations 5465 4

Table 3 – Solving SPAT equilibrium (5), with 2 origins and 2 destinations, sample of N = 500

parameter values.

The average numbers of iterations are 10.93 and 6.45 for NM and FNM re-

spectively with the corresponding CPU times 1.272 and 0.289. The descriptive

statistics of the solution sample is given in Figure 3.

In two out of four cases for the solution sample the null hypothesis is not re-

jected. In these cases, an even larger sample is needed to reach the real properties

of the solution and in these cases FNM algorithm will be even more efficient.

CPU time and larger dimensions

The results shown in Table 1 and 2 clearly demonstrate the advantage of FNM

method. The reported CPU time is the total time for all sample values in sec-

onds. If the dimensions of problems are larger the advantages of the proposed
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Anderson-Darling adjusted statistic: 1.8734
Probability associated to the Anderson-Darling statistic = 0.0001
With a given significance alpha = 0.050
The sampled population is  not normally distributed.

(b)

Figure 3 – Histogram and descriptive statistics of sample of solutions x∗
1,1 (a), x∗

1,2 (b)

for sample of N = 500 parameter values for (5).
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(d)

Figure 3 (continuation) – Histogram and descriptive statistics of sample of solutions

x∗
2,1 (c) and x∗

2,2 (d) for sample of N = 500 parameter values for (5).
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method are even more evident. To support this claim we tested Example 2 and

Example 3 for different values of m and n. Thus for Example 2 we gener-

ate the matrix α0 using random numbers scaled to row sums equal to 1, with

w0 = 2 + U (0, 1), b = [0.9; 0.9; . . . ; 0.9]. Here U (0, 1) denotes independent

random numbers with uniform distribution on [0, 1]. The tested sample size

is 500 again and the results (the total number of iterations and the total CPU 1

time) are reported in Table 4 for NM and FNM method.

NM iter NM CPU FNM iter FNM CPU

m = 4, n = 3 2134 0.773 3156 0.555

m = 8, n = 6 2893 1.383 3200 0.606

m = 16, n = 12 3072 3.554 3949 0.959

m = 32, n = 24 2514 14.592 4144 1.988

Table 4 – Example 2.

For Example 3 parameters were ui = 4, v j = 17.5 + 0.5 ∙ N (0, 1), θ j = 0.3

and γi j = 7.5 for all i and j . N (0, 1) denotes independent normally distributed

values with mean 0 and standard deviation 1. The initial value was

x0 =







20 ∙ ∙ ∙ 20
...

. . .
...

20 ∙ ∙ ∙ 20





 ,

the exit criterion was ||F || < ε = 10−6. The results are given in Table 5 – the

total number of iteration and the total CPU time in seconds.

NM iter NM CPU FNM iter FNM CPU

m = 2, n = 2 5248 1.212 2989 0.263

m = 4, n = 4 5902 1.892 3719 0.334

m = 6, n = 6 5521 2.496 3988 0.375

m = 8, n = 8 5751 4.034 3997 0.397

m = 10, n = 10 5950 7.408 3996 0.546

Table 5 – Example 3.

1Intel(R) Core(TM)2Duo CPU E8400 @ 3.00GHz
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Conclusion

Equilibrium problems are often formulated as systems of nonlinear equations

that depend on parameters. Significantly more information on equilibrium point

can be obtained by simulation and solving a sequence of nonlinear systems

rather than by solving a single nonlinear system with constant parameter values.

We introduce a perturbation of model parameters taking their values from a

given distribution sample. For each sample value we solve the corresponding

system of nonlinear equations using the same starting point and applying Fixed

Newton method. Thus we obtain the sample of solutions for each problem using

a relatively cheap procedure. The sample of solutions yields better description

of the observed system. For example the presented descriptive statistics show

that the assumption of Gaussian distribution of the solution due to the Gaussian

distribution of parameters is not guaranteed.

The question of confidence interval formulas for equilibrium prices is still

open and it should be investigated from problem to problem. The stochastic

simulations (Monte-Carlo) could give more information. If tests find the under-

lying distribution was normal, one could use well known formulas for confi-

dence intervals for normal distribution. However, the algorithm proposed in this

paper can give easier access to larger solution sample.

Solving many nonlinear systems requires a lot of CPU power which is usually

limited. In our examples we showed that using similarities within sample data,

an affordable procedure can be implemented. In Example 1 and 2 the total

number of function calculations has risen following the rise of the number of

iterations, but the number of expensive Jacobian calculations was almost zeroed.

In Example 3 even the number of iterations lowered. In order to demonstrate

the effectiveness of the proposed algorithm we included some tests with larger

dimension problems. The number of iterations in these case is in line with small

dimensional cases but the CPU time definitely favors the use of FNM method

instead of NM method.
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