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Abstract. LetC(H) denote the class of closed convex cones in a Hilbert sHad@ne possible

way of measuring the degree of pointedness of a ¢oneby evaluating the distance frokh to

the set of all nonpointed cones. This approach has been explored in detail in a previous work of
ours. We now go beyond this particular choice and set up an axiomatic background for addressing
thisissue. We define an index of pointedness ¢Vas being a functiori : ¢(H) — R satisfying

a certain number of axioms. The numbie(K) is intended, of course, to measure the degree of
pointedness of the cone. Although several important examples are discussed to illustrate the
theory in action, the emphasis of this work lies in the general properties that can be derived directly
from the axiomatic model.
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1 Introduction

Let H be a real Hilbert space with inner prodyet-) and associated norf||.
For the sake of clarity in the exposition, we always assume that

2<dm H < .
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246 INDEX OF POINTEDNESS FOR CLOSED CONVEX CONES

Some of our results can be extended to an infinite dimensional setting, but at the
price of a more obscure presentation. The leading role in our discussion is not
played by the linear spadd, but rather by the metric space

C(H) = {K c H: K isanonempty closed convex cgne
The metric considered ii(H) is the usual one, namely

53(K1, K2) = sup |dist[z, K] — dist[z, K5]|, (2)
lzll <1
where the notation digt, K] refers to the distance fromto K.

The purpose of thiswork is to elaborate an axiomatic model for dealing with the
conceptof pointedness. Recalltiate C(H) is calledpointedf KN—K = {0}.

In other words, a cone is pointed if, and only if, it contains no line. Pointedness is
a “qualitative” property that has far-reaching consequences. There is no shortage
of beautiful theorems in which pointedness plays a prominent role.

Imagine that you have a pointed cone defined in terms of a certain parameter.
What happens with the pointedness of the cone if the parameter changes slightly?
How much you need to perturb the cone in order to destroy its pointedness?
Robustness of a given property is one of the commonest issues addressed by
scientists and engineers alike. In the present work we wish to “quantify” the
degree of pointedness of a cone. This topic was already addressed in our previous
paper [5], but now the orientation is entirely different. Instead of working with
a particular measure of pointedness, we set up an axiomatic model from which
a more general theory can be developed.

Enough has been said about our motivation. As far as notation is concerned,
everything is more or less standard:

By ={xeH: x| <1} (closed unit ball inH)
S ={eH: x| =1} (unit sphere inH)
Kt={yeH:(y,x)>0 VxeK (dual cone oK)
diam(2) = suf|ju — v| : u, v € 2} (diameter ofQ2)

co(2), cl(2) (convex hull of2, closure ofQ2)
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ALFREDO IUSEM and ALBERTO SEEGER 247

2 The index of pointedness: an axiomatic formulation

If f(K) isintended to measure the degree of pointedness of akon€(H),
which are the properties thdtshould satisfy?

* Primo, it is natural to require thaf discriminate between the pointed
case and the nonpointed one, for instanfod) > 0 if K is pointed, and
f(K) = 0if K is not pointed.

» Secundpthere is no doubtthat a r&, e = {ue: u € R, } (e #0)isan
extremely pointed object, so it should have the highest possible degree of
pointedness. As far as the zero-cdhg = {0} is concerned, there are two
acceptable strategies: either we take it away from the discussion, or we
treatit as a “degenerate” ray (corresponding te 0). If the latter strategy
is adopted, the degree of pointednes©gf should also be maximal.

« Tertio, changing the orientation of a ray, or, more generally, changing the
orientation of a cone, should not affect its degree of pointedness.

This is the bare minimum. To this one could add an extra condition: the degree
of pointedness of a cone should diminish if the cone gets bigger. And last, but not
the least, if two cones are close to each other, then their corresponding degrees
of pointedness should not be too different.

We are now ready to state a formal definition The notation Iddirefers to
the space of linear isometries &h(i.e., linear operatordd : H — H such that
IUXI = [IX]l ¥V x € H).

Definition 2.1. An index of pointednes®n H is a continuous function
f: C(H) — R satisfying the following axioms:

(A1) minimal pointedness:f (K) = 0 if and only if K is not pointed;

(Az) maximal pointedness:f (K) = 1 if and only if K is either a ray or the
Zero-cone;

(Ag) invariance property:f (U(K)) = f(K) VK € C(H), YU € Isom(H);
(A4) downward monotonicity:K; C K, implies f(Kq) > f(Ky).

Comp. Appl. Math., Vol. 24, N. 2, 2005



248 INDEX OF POINTEDNESS FOR CLOSED CONVEX CONES

By convention, the minimal degree of pointedness has been fixed at level 0,
and the maximal one at level 1. We could work with any other scale and the
whole theory would remain essentially the same.

Proposition 2.2. Let f be an index of pointedness on H. Then,

{f(K): KeCH)} = [0,1]. (2)

Proof. The monotonicity axiom allows us to write
OhcKcH = fMH) =< f(K)=< fOn).

Sincef(H) = 0andf(Oy) = 1,0neobtainf (K): K € C(H)} C [0, 1]. To
prove the reverse inclusion, consider an arbitrary unit veztorH and define

Rt)={xeH:t|x]| <(ex) Vtelo 1] (3)

A matter of computation yields the estimate
§(R(1), R(s)) = |[tv1—s2 —sy/1—1t2 vVt,sel0,1].

Hence,R: [0, 1] — C(H) is a continuous path joining the half-space
RO) ={x € H: (e, x) > 0}

to the rayR(1) = R, e. As a consequence, the continuous function [0, 1]
— f(R(t))takes all the intermediate values betwd&R(0)) = 0 andf (R(1))
= 1. O

Remark. If the monotonicity requirementA,) in Definition 2.1 is replaced

by
(As)' 0<f(K)=<1 vV K e C(H),

then one gets a weakened set of axioms. A continuous funétidt(H) — R
satisfying this weakened set of axioms is callguiexindex of pointedness H.
The surjectivity result (2) is true also for pre-indices. In fact, the theory of pre-
indices is almost as rich as the theory emerging from the original Definition 2.1.
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The monotonicity requiremen#\;) adds some substance to the discussion, but
it is not really the fundamental ingredient.

Definition 2.1 is now going to be scrutinized in detail. As often happens, a
good set of axioms leads eventually to a powerful theory which allows people to
go far beyond their original expectations. To start with, observe that the class

x(H)={f:C(H) — R: f isan index of pointedness dth}

is stable with respect to a number of averaging operations:

Proposition 2.3. If fy,..., f are indices of pointedness dth, then any of
the following choices corresponds to a new index of pointednesst. on

(a) lower envelope: f(K) =min{fy(K),---, fn(K)};

(b) upper envelope: f(K) = max{fi(K),---, fn(K)};
. . ) f ot (K

(c) arithmetic average:  f(K) = 2+tind,

(d) geometric average:  f(K) =[f1(K)--- fn(K)]¥™;

. ~1, -1)1
(e) harmonic average:  f(K) = {[“(K’] L in(K)] } ;

() log-sigma average: f(K) = log [efl«”—nf‘efm(K)]

Proof. Everything can be checked quite easily, so the details are omitted.

One might also think of more sophisticate ways of forming averages, but such
a discussion is only of marginal interest. What is perhaps more important to
clarify is whether two given members @f{H) can be linked together through a
simple scaling operation:

fp~f, <= 3y el suchthatf, =y o fy, 4
where the family™ of “scaling functions” is given by

y el < y:[0,1] — [0, 1] is nondecreasing and surjective
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250 INDEX OF POINTEDNESS FOR CLOSED CONVEX CONES

Of course, eacly € T is necessarily continuous and satisfig®) = 0 and
y (1) = 1. Onecaneasily checkthat (4) is an equivalence relatiomnaitéj (i.e.,
itis reflexive, symmetric, and transitive). Observe that the indices of pointedness

L[ log[1+ f()]
VTO, 0P, sin[Z10], R0,
are all equivalent to the index of pointednefsg the sense that they belong to
the same equivalence class, hamely, the clads of
Most of the interesting indices of pointedness are not just continuous in the
ordinary sense, butalso Lipschitz continuous. Recallthata funétid®iH) —
R is said to be Lipschitz continuous if the number

. | f(Kp) — F(Kp)]
lip(f) =
pCh) K?;L:Ez 3(Ky, K2)

is finite. The functionf : G(H) — R is declarechonexpansivé

| f(Ky) — f(Ky)| < 8(Kg, Ky) VK1, Kz € C(H).

3 Three fundamental examples

Among the different members gf(H), some deserve a special mention due to
their additional topological properties, or simply because they have an interesting
geometric interpretation.

3.1 The basic approach

The term “basic” must be understood in a literal sense. Recall thatta seH
is called abasefor the coneK € C(H) if

0¢Q and K=R,Q. (5)

The last condition in (5) is expressed by saying faaenerates the con€. As

an example of base fd # Oy, one may think of the compact sKtN S .

By taking the convex hull oK N S, one gets a convex compact set generating
K. The trouble with the convexification procedure is that the vector 0 may be

Comp. Appl. Math., Vol. 24, N. 2, 2005



ALFREDO IUSEM and ALBERTO SEEGER 251

caughtin coK N'Sy). As part of the folklore of the theory of convex cones, one
knows that
K is pointed <= 0¢coKNSy). (6)

This observation leads us to introduce the number
f.(K) = dist[0, co(K N Sy)] (7)

as a candidate for measuring the degree of pointedness:6fOy. As far as
the zero-cone is concerned, we adopt the conventjo®y) = 1. The lemma
stated below provides a “dual”’ characterization of (7). The notation

X € H > Wi (X) = supu, x)
ueQ2

refers to the support function 6 ¢ H. We assume that the reader is familiar
with the main properties of support functions (see, for instance, [4] or [8]). For
the sake of convenience, we introduce also the notation

Co(H) = C(H)\{On}.

Lemma 3.1. ForanyK e Co(H), one can write

f(K) = sup =Wy g, (X). (8)

Ixl<1

Proof. Formula (8) is obtained by applying a standard minimax argument.
Observe that

f.(K) = inf (K N Sy) sup(u, x).

XeBy
Since cgK N S4) and By are convex compact sets, von Neumann’s minimax
theorem allows us to exchange the order of inf and sup. This produces

f.(K) = su inf u, X
) XGBE ueco(KﬁSH)< >
N ||§|l\J<p1 ~Weakns (7X)
= ||§|l\J<I31 —‘I’Eko(me(X)-

The convex hull operation can be dropped from the last term, getting in this way
the announced result. O
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Before proving thatf, is an index of pointedness, it is helpful to recall some
known properties of the Pompeiu-Hausdorff metric

hau$C,, C,] = max{supdist[a, C,], supdist{b, C,]}.

aeCq beCy
Lemma 3.2. If C; andC, are two nonempty compact setsHh then

haug$Cy, Cz] > haugco(Cy), co(Cz)] = sup |V (x) — Vg, ()] (9)

Ixl=<1

Proof. The support function characterization of hpngC,), co(C,)] is well
known in the convex analysis community (cf. Theorem 2.18 in Castaing and
Valadier [3], or Corollary 3.2.8 in Beer [1]). The inequality in (9) can be found,
forinstance, in the book by Kisielewicz [7]. Such inequality is almost trivial due
to inclusion. O

We now are ready to state:
Proposition 3.3. The functionf, is a nonexpansive index of pointednesston

Proof. Axiom (A) is a consequence of (6). Since the functief is strictly
convex, the equality difd, co(KNSy)] = 1 occursifandonlyifthe séd NSy
is a singleton. This takes care @&;). To check the invariance properts),
just notice that

coUK)YN&l=coU (KNS =Ulco(K N Sy)] YU e lsom(H).

Monotonicity of f, is obvious. For proving nonexpansiveness, we rely on Lem-
mas 3.1 and 3.2. First of all, it must be observed the&n be characterized in
terms of the Pompeiu-Hausdorff metric, to wit

8(K1, Kp) = haugK; N By, KaN Byl V Kyq, Ko € C(H).

To avoid trivialities, suppose that both coni€sg, K, are inCq(H). In such a
case, one can write

8(K1, K2) = haugKy N Sy, Ko N Sy,
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and, with the help of Lemma 3.2, one gets
—Wi ns, () < =W e () +8(K1, Ko) ¥ x € By.
By taking the supremum oveé8y and applying Lemma 3.1, one obtains
f.(Kp) = f.(K2) +8(Ky, Kp).

It suffices now to exchange the roleskf andK, to complete the proof. O

3.2 The hemi-diametral approach

It is based on the evaluation of the number
1
r(K) = > diam(K N &),

which corresponds to half the diameterkfn Sy. Observe that the mapping
K +— r(K) ranges from 0 (wheK is aray) to 1 (wherK is nonpointed). Since
r has not the right monotonicity, we suggest considering instead

f[]_](K) =1-— r(K)
In fact, one can also consider the more general expression
fip(K) = [1—1r (K)1P]"", (10)

with p € [1, oo[ being chosen arbitrarily. The cape= 2 is of special relevance
as we shall see in due course. The term (10) makes sense 8nk¢iDy, so, by
convention, one setg,(Oy) = 1. As shown in the next lemma, the function
has a fairly good continuity behavior.

Lemma 3.4. ForanyKi, K, € Co(H), one has the Lipschitz estimate

| diam(Ky N S4) — diam(K2 N Sy)| < 28(Ky, Ka). (11)
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Proof. This result is probably known. In order to prove (11), we start by ob-
taining an alternative characterization of the diameter function. For a nonempty
bounded se2 C H, one can write

diam(2) = sup sup(x,u—uv) = sup sup{(x, u) + (X, —v)},

u,ve xeBy XeBH U,veQR

producing in this way

diam(2) = sup{¥s(x) + ¥, (X)}.

XeBH
We will apply this general formula to the particular choiges= K; N S and
Q =KyNSy. By Lemma 3.2, we know already that

Wiyns, (0 < Wiyns, 00 +8(Ke, K2) VX € By,
as well as,
U insn X)) < V2 kons) (X)) + (=K, —Kp) V X € By.
Summing up and observing that— K, —K7) = §(K3, K5), one gets
Wins 00 + V7 gy 0 < Wiong, (0 + W7 ng,) (X0
+ 2 6(Ky, Kp) V X € By.

To complete the proof, we just need to take the supremum with respect
to X € By. O

Without further ado, we state:

Proposition 3.5. For eachp € [1, oo, the functionf;y, is an index of poin-
tedness orH.

Proof. The diameter oK NS, equals 2 if and only iK contains two opposite
unit vectors. The sek N Sy is a singleton if and only iK is a ray. These
statements take care of Axionggy) and (Ay), respectively. The invariance
property(Agz) follows from

diamU (K)NSy] = diamU(K NSy)] = diamKNSy] Y U e Isom(H).

Monotonicity of f; is obvious. Lemma 3.4 yields the continuity & —
diam(K N S,) as function defined over metric subspé#l¢H). This fact gua-
rantees, in turn, the continuity df,; over the whole metric spad&H). O

Comp. Appl. Math., Vol. 24, N. 2, 2005



ALFREDO IUSEM and ALBERTO SEEGER 255

Proposition 3.6. For any p, q € [1, oo, the indicesf;y and fq are equiva-
lent.

Proof. For passing fromf;,; to fig;, consider the scaling function
te[0 1 yt) =[1— (1_tp)q/p]1/q'

It is a mere routine to check thate T'. O

As mentioned before, the choiqe = 2 is of special relevance. A simple
computation shows that

fi2(K) = v1—[r(K)J? (12)

admits the equivalent characterization

i (K) :\/l+coszemax(K) :Cos(emaxz(K)) (13)

wherebdnax(K) denotes the largest angle that can be formed by picking up two
unit vectors inK, that is to say

Omax(K) = sup arccos(u, v) .
u,veKNSy

Due to the formula (13), we refer th (K ) as theangular index of pointedness
of K (we reserve the term “angular” for the inde,;, but is is clear from
Proposition 3.6 that any hemi-diametral indgy; can be expressed in terms of
the functionfmay).

The equivalence between (12) and (13) can be proven in a rather easy way by
exploiting the general identity

lu—v|?=21-(u,v)) Vu,veSy.

Below we provide two additional characterizations of the functign Recall
that thegapbetween two nonempty sefs B C H is defined as the number

gafdA, B] = aemeB la—Db|.

General ingredients on the theory of gaps can be found, for instance, in the book
of Beer [1].
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Lemma 3.7. ForanyK e Cy(H), one has

1
fla(K) = > gagdK NSy, =K N &1, (14)

and also
fiz(K) = ”iml max {distz, K], dist{—z, K]}, (15)

Proof. Formula (14) is easier to prove. By definition of a gap, one has

gaHK NSy, —K NSl = ueKﬂS.ql,rr.lufe—Kﬂ&q lu—wi = u,uérllfﬂSH lu vl
By working out the last expression, one arrives at
1+ (u,
gagK NSy, —KNnSil= inf 2 /2EUY o k).

u,veK NSy 2

Formula (15) is proven in our work [6]. The proof, which is quite long and
technical, doesn’t deserve to be reproduced here. Observe, incidentally, that
(15) applies also to the zero cone, the conventigiiOy) = 1 being in forceld

Remark. As done in [6], it is interesting to observe that

VY K € Cg(H), thereis aunitvector € H
such that fjz(K) = dist{z, K] = dist{—z, K].

When K is not a ray, such a vectocan be constructed, for instance, by norma-
lizing u — v, withu, v € K N S satisfying|lu — v|| = diam(K N &).

We now return to the analysis of the famifyf;;;: p € [1, oo[} of hemi-
diametral indices. As shown in the next theorem, nonexpansiveness can be
obtained only for special choices pf Before stating such a result, a preliminary
lemma is in order. Observe thét,) admits the representation

fip(K) = ¢p(r(K)) ¥V K € Co(H), (16)

with ¢p: [0, 1] — [0, 1] being defined by,(r) = [1 — tP]¥/P. Formula (16)
applies also t&K = Oy if one adopts the conventiafOy) = 0. According to
Lemma 3.4, the function is nonexpansive. As far as, is concerned, one has:

Comp. Appl. Math., Vol. 24, N. 2, 2005



ALFREDO IUSEM and ALBERTO SEEGER 257
Lemma 3.8. Let p €]1,2[. Then, there existr, €]0, 1] and a positive
constantlL , such that

(@) lppt) —@p(S)| < Lp |t —s| Vi, sel0,p];

(0) lppt) —@p(S)| < l@a(t) —pa(s)| Vt,se[1p, 1];

(©) lept) — @p(9)] < lg2(t) —@2(S)| + Lt —s| Vi ,se[01]

Proof. For proving the part (a), observe that the derivative

l T P
0=~ =)
is well defined ovefO, ], and

Lp= sup |g,(7)| < oo.
7€[0,7p]

The above remark applies to any choicerpfe]0, 1[. For proving the part (b),
we taker, so that
Pp(1) = @o(r) VT et 1 17)

To check that such &, exists, we write (17) in the form

T p-1 - T
A—tPlP] = T—¢2’
or, what is equivalent,

1-1°

420 > A= ery e (18)
Obviously, the left-hand side of (18) goes to 1ras> 1, while an application
of 'Héspital's rule establishes that the right-hand side goesto 0 as 1-.
Thus the inequality in (18) is valid fot close enough to 1. Once (17) has
been established for a suitallg, one completes the proof of (b) by using an
integration argument. The details are omitted because the integration mechanism
is illustrated in the proof of (c). For proving the part (c), we consider only the
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difficult case in whicht ands are not on the same side with respect o Take
forinstance O< s < 7, <t < 1. Observe that

l[@p(t) — @p(9)] — [@pt) — @p(s)]

t
= — / (p;)('t)d‘[

Tp t
= / —<p;0(r)dr+/ —pp(r)dr.
s -

But -
/ —pp(0)dt < Lp(tp =) < Lp |t — 5],
S

and
t t
f —pp(r)dr < / —o()dT < —[@2(t) — @2(Tp)] < |@2(t) — 2(9)].
Tp Tp

The proof of the lemma is thus complete. O

Theorem 3.9. The following statements are true:
(a) the indicesf(y; and fj2; are nonexpansive;
(b) for any p €]1, 2[, the indexfy is Lipschitz continuous;

(c) foranyp > 2, the indexfp is not Lipschitz continuous.

Proof.

* Part (a). Nonexpansiveness dfy; is a direct consequence of Lemma 3.4.
Nonexpansiveness df; follows from the characterization (15) and the
general inequality

dist{z, K{] < dist{z, K] 4+ §(K1, K3) Vze Sy, VK, Ky e C(H).

 Part(b). To handle the case €]1, 2[, we exploit Lemma 3.8 and the repre-
sentation formula (16). Consider two arbitrary coigs K, € Co(H). If
r (Ky) andr (K») fall both in the intervalO, ], then Lemma 3.7(a) yields

| fim(K2) = fip(K)l = Lp [r(Kz) —r(Kyl = Lp §(Ka, Ky).
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If r (Ky) andr (K>) fall both in the intervaly, 1], then we use Lemma
3.8(b) to obtain

[ fio1(K2) — fio (KD < [ fi2(K2) — fiz(Kp)| < 8(Kz, Ky).

If r (K1) andr (K») are not in the same side with respect jpthen Lemma
3.8(c) does the job. One gets in this case

IA

| f21(K2) — fiz1(KD)[ + Lp [r (K2) — 1 (Ky)]
(14 Lp) 6(Kz, Ky).

[ o1 (K2) — fip(Ky)]

IA

 Part (c). To handle the casp > 2, consider the conB(t) given by (3).
As a matter of computation, one gets

o) (R(1)) = [1 _ (\/1 - tZ) p]l/p Vielo 1],

and, therefore,

[ fip(R(1) — fip(R(0))]
S(R(), R(0)) (19)

- (e

t
foranyt €]0, 1[. Observe that the term on the right-hand side of (19) goes
tooco ast — 0. O

lip(frp) >

3.3 The metric approach
We cannot avoid mentioning the functidg: C(H) — [0, 1] defined by
fs(Ky= inf § K). 20
s(K) = inf - 8(Q. K) (20)
The numberfs(K) represents the distance frafnto the set
M(H) ={Q € C(H): Qis not pointed.

SinceM(H) is a compact set in the metric spa&¥H), ), the infimum in (20)
is actually attained. In our work [5], we refer to the numbigiK ) as theradius
of pointednessf K. The reason for this name is that

fs(K) = supr € [0, 1]: U, (K) C P(H)}
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corresponds to the radius of the largest ball
Ur(K) ={Q € C(H): 6(Q,K) <r}

centered aK and contained in the s&(H) = C(H)\M(H) of pointed cones.

Proposition 3.10. The functionf; is a nonexpansive pre-index of pointedness
onH.

Proof. See the reference [5]. O

Proposition 3.11. Among all the nonexpansive pre-indices of pointedness on
H, fs is the largest one (in the pointwise sense).

Proof. Take an arbitrar) € C(H). For any nonexpansive functioi: C(H)
— R, one can write

f(K) < f(Q) +4(Q, K) vV Qe C(H),
and, in particular,
f(K)y< inf {f(Q)+4(Q,K)}.
QeM(H)

If f vanishes oveM(H), the above inequality reduces fdK) < fs(K). O

It is not clear whetheff; satisfies the monotonicity requiremea,). Partial
evidence leads us to conjecture thiats indeed monotone, but we are not yet in
a position of giving a definite answer to this delicate issue.

4 Basic index versus angular index

Both indices share many properties in common, but they do behave differently
with respect to dimensional issues. To start with, we state:

Proposition 4.1. For anyK < C(H), one hasf,(K) < fi2(K).
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Proof. TakeK # {0} and write

f.(K) = XECJ(an&) 11l

u—+v
2
1
e U]
u,veKNSy 2

< inf
u,veKNSy

= f(K).

This proves the announced inequality. O

The above proof hides, in fact, a general result:

Lemma 4.2. If K € CG(H) containsm mutually obtuse unit vectors, then
f.(K) < 1/y/m.

Proof. According to the hypothesis, one can fimdunit vectorsa,, - - - , an in
K such thata;,a;) <0 Vi # j. Hence,

g+ +am |’

2 H 2
[f.(K)]® = inf Ix]|© < p

xeco(KNSy)

1 m
= S lal?+2) (@ a)
i=1

i<j

Since thea;’s have unit length and are mutually obtuse, one gét$K)]?
<1/m. O

With the help of Lemma 4.2 one can easily show tha fjz), that is to say,
f.(K) < fi2(K) for someK € C(H).

Example 4.3. TakeH = R" with n > 3. Clearly,Onax(R") = 7/2 and
fiz1(R7) = 1/4/2. Onthe other hand, the positive orth&ft is a closed convex
cone containingn mutually orthogonal unit vectors. So,

f,(RY) < 1//n < 1/v/3 < fu(RY).

The exact value off,(R"}) will be given in Proposition 4.9. As suggested by
Example 4.3, the indeX, is ill-conditioned if one works in a space of large
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dimension: the degree of pointedness of the corresponding positive orthant is
almost zero. This “strange” behavior &f becomes even worse in an infinite-
dimensional settingf, is no longer an index of pointedness!

Example 4.4. Inthe Hilbertspacé! = ¢2 of square summable real sequences,
consider the pointed cone

€3 ={xef’: x>0 VkeN}

and the canonical vectoas = (1,0,0,---), aa=(0,1,0,--.), ... Since the
first n canonical vectors lie 62 and are mutually orthogonal, it follows that

f.(63) <1/

But this argument applies to an arbitraryso f*(ei) = 0. In other words;f,
does not satisfy the axiorfA;). This fact should not be too surprising after
all: one knows that the characterization (6) of pointedness holds only if the
underlying space is finite dimensional.

The next proposition has to do with the particular case of a finitely generated
cone, that is to say, a cone expressible as

K={ui01+- -+ pumdm: n € RT} (21)

Without loss of generality one may assume that the genergiors. , g, € R"
are vectors of unit length. An upper bound f&r(K) is obtained easily by
minimizing a convex quadratic form over the elementary simplex

23m={,u€]RTZ//«1-|-"~—1—,U«|~n=1}.

Proposition 4.5. Let K c R" be the finitely generated cone given (&1).
Denote byG then x m matrix whose columns are the generatgys- - - , gm €
Srn. Then,

[f.(K)]? < (1, GTGL).

inf
HEZm
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Proof. Itis enough to observe thdf(K) < ||Gu| for everyu € Xn. O

One of the reasons for introducing the indgxis that its computational cost
is not too high. As indicated in the proof of Lemma 3.1, one has

f.(K) = ”shuc; Pk (X), (22)
with
pr(X) = uel?rsz (U, x). (23)

Solving the inner minimization problem (23) amounts to finding a unit vector in
K which forms the largest angle with respect to the gixeihe best choice for
X is obtained by solving the outer maximization problem (22).

Definition 4.6. A centroidof K € Cp(H) is a maximizer ofox over By, that
is to say, a vector in

ctr(K) = {X € By : pk (X) = f.(K)}.

Sincepk : H — R is a concave function, the set @tr) is nonempty compact
and convex. This set turns out to be a singleton if the déng pointed:

Proposition 4.7. A pointed coneK € Co(H) admits exactly one centroid.
Moreover, the centroid lies iK N S;.

Proof. Consider first the case of an arbitrdfye Co(H), be it pointed or not.
We claim that

there is a vectoy € N[Xg, B4] such that

(24)
yecoKNSy) and (y, Xo) = pk (Xo),

Xo € Ctr(K) <= [

where
{0} if %ol <1,

N[Xo, B = .
o Bl [Rm i %ol = 1

corresponds to the normal coneBg, at Xg. Observe thak, € ctr(K) if and
only if Xo minimizes— px overBy. Since we are dealing with a convex minimi-
zation problem, the standard first-order optimality condition is both necessary
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and sufficient (cf. Theorem 27.4in [8]). So,
ctr(K) = {Xo € H: 0 € 3(—pk) (%) + N[Xo, Bul},

with 3 denoting the subdifferential operator in the sense of convex analysis. For
obtaining (24), it is enough to observe that

—3(—=pk)(X0) = Wgng, (—X0)
= {yeH:yecoKNSy) and(y, Xo) = pk (X0)},

the last equality being a consequence of a general calculus rule for computing
the subdifferential of a support function (cf. Corollary 23.5.3 in [8]). Consider
now the particular case in whidk is pointed. According to (24), the inequality
IXoll < 1 must be ruled out becausefOco(K N S4). Hence, the centroids of

K lie necessarily irby. By writing

y = BXo with g €]0,1],

one sees thaty = g~y € K. Summarizing, we have proven that@ is a
nonempty convex set containedihnN S;. This implies, of course, that ¢tK)
contains exactly one element. O

As shown by the proof of Proposition 4.7, the centroid of a honzero pointed
coneK can be characterized as follows:

%l =1, pk (%) €]0, 1],
Xo is the centroid oK < and (25)

Pk (Xo) Xo € CO(K N Sy).

For a revolution cone, for instance, the centroid corresponds to the so-called
axis of revolution. In fact, one has:

Proposition 4.8. Consider a revolution con& = {x € H: ||x| cosy <
(e, X)} with axis of revolutiore € Sy and angle of revolution? < [0, /2.
Then,

f,(K) = pk(e) = cos ¥.
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Proof. Pick up an arbitrarp € Sy such thatb, e) = 0. Since
u=(cos®)e+(sin®)b and v=(cos)e—(sin)b
belong toK N Sy, one has
f.(K) < [[(u+v)/2| = |I(cos?) e|| = cosv.
On the other hand,
f.(K) > pk(e) = Xeipg&(e, X) = cos?. O

Another instance where the centroid can be easily computed is that of a positive
orthant:

Proposition 4.9. The centroid of the positive orthanR] is xp =
n-%2(1,1,---,1), and

LR} = prr(X0) = 1/v/n. (26)

Proof. Clearly|xo|l = 1. Itis geometrically clear that the infimal-value

, Up+ -+ Uy
n(Xp) = _inf —m——
PRy (%0) ueR", fuj=1 J/n
is attained at any of the generatordif. This allows us to check the right-hand
side of (25), and obtain the formula (26). O

We end this section by showing that the basic index is essentially different
from the angular index.

Proposition 4.10. Whendim H > 3, the indicesf, and f[»; are not equivalent.

Proof. LetH = R", withn > 3. The positive orthanR, and the ice-cream
cone
An={XeR": D&+ -+ X2 ;1% < %}

have both a maximal angle equalitg2. Thus,
fla1(An) = fizRY) = l/«/é.
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On the other hand,
f.(An) =1/v/2 but f,(R}) =1/v/n < 1/v2.

This rules out the possibility of finding a scaling functipne TI' such that
f* =Y o f[z]. |

5 Normalization

Starting with an arbitrary index of pointedness, one can construct a new one
by using a simple scaling procedure. If we are lucky enough, we could find a
suitable scaling function bringing our initial index to a sort of “normal” form.
This raises the question of what must be understood by a normal index. There
are different ways of answering this question, everything depending on what we
have in mind when we speak about normalizing an index.

Recall that the index of a nonpointed cone has been fixed at the minimum level
0, whereas the index of a ray has been fixed at the maximum level 1. So, what
about an intermediate situation? What kind a cone could be considered as a good
compromise between a nonpointed cone and a ray? Which one should be the
corresponding index of such a cone?

To answer to these questions, we arrange the cones according to their maximal
angle. On the one hand side, the casg(K) = 0 occurs wherK is a ray, and,
on the other hand, the conditigh.(K) = 7 indicates thaK is not pointed.

An interesting intermediate situationfg.x(K) = /2. One can easily check

that
T

Omax(K) = — <<= K is acute and contains a pair of
2 (27)
orthogonal unit vectors

ThatK € CG(H) is acutesimply means thatu, v) > 0, V u,v € K. A cone
K € C(H) asin (27) is said to bperpendicular We are now ready to introduce
the concept of normality.

Definition 5.1. One says that € x (H) is normalif

f(K) =+/2/2 for every perpendiculak € C(H). (28)
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If there is a scaling functiop € I' such thaty o f is normal, then fis declared
normalizable

In other words, an index of pointedness is normalizable if and only if it is
constant over the class of perpendicular cones. By way of example, we mention
that the basic indexX, is not normalizable: as shown in the proof of Proposition
4.10, f, takes different values over the class of self-dual cones (which is contained
in the class of perpendicular cones). The angular inggihehaves much better
in this respect:

Proposition 5.2. ForanyK e C(H), one has:
(@) fiz(K) > +/2/2if and only ifK is acute;
(b) fzy(K) < +/2/2ifand onlyifK contains a pair of orthogonal unit vectors.

Hence, the index(y is normal.

Proof. It follows directly from the characterization (13). O

Corollary 5.3. The pre-indexfs is normal

Proof. As shown in [6], the functiond; and fjz; coincide over the class of
perpendicular cones. It suffices then to apply Proposition 5.2. We observe,
incidentally, thatfs; and fj, coincide over a larger class of cones, namely,those
having a maximal angle less than or equal to 120 degrees. O

Proposition 5.2 can be extended in the following way:

Proposition 5.4. Suppose that the indek € x(H) is of the angular-type,
meaning that

Omax(K1) = Omax(K2) implies  f(Kp) = f(Ky).

Then, f is normalizable.
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Proof. Consider any € [0, z]. If f is of the angular-type, theh is constant
over the level set

{Omax =0} = {K € C(H): Onax(K) = 6}.

In particular, f is constant over{fn.x = 7/2}, the class of perpendicular
cones. 0

Remark. Anyindex f;, from the hemi-diametral family is of the angular-type,
so it is normalizable.
6 Dualization

Recall that a con&K € C(H) is said to besolid if its topological interior is
nonempty. In a finite dimensional setting, solidity is a dual concept with respect
to pointedness:

K is pointed < K™ issolid (29)

A simple proof of this equivalence can be found, for instance, in the book by
Berman [2]. Inspired by (29), we dualize the concept of pointedness index in
the following manner:

Definition 6.1. An index of solidityon H is a continuous functiog: C(H) —
R satisfying the following axioms:

(A1) minimal solidity: g(K) = 0if and only ifK is not solid;

(Az) maximal solidity: g(K) = 1 if and only if K contains a halfspace;
(A3) invariance property:g(U(K)) = g(K) V K € €(H), VU € Isom(H);
(A4) upward monotonicity: Ky c K, implies g(K1) < g(K»y).

There is no need to explore Definition 6.1 in detail because measuring the
degree of solidity of a conk is essentially the same job as measuring the degree
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of pointedness of its polak ™. This idea is stated properly in the following
proposition, where we use the notation

®: C(H) — C(H)
Ki> &(K)=K™

to indicate the polarity mapping. A celebrated theorem by Walkup and Wets [9]
asserts tha® is an isometry over the metric spa@H), §), i.e.

S(KI, K = 8(Ky, Ka) vV K1, Kz € C(H).

Proposition6.2. The polarity mapping: C(H) — C(H) relatesthe concepts
introduced in Definition®.1 and6.1 as follows:

(a) if f is an index of pointedness, thdrn @ is an index of solidity;

(b) if g is an index of solidity, theg o ® is an index of pointedness.

Proof. Everything is straightforward. It is a matter of exploiting the well
known properties of the mappind. O

As pointed out to us by Adrian Lewis (personal communication), a possible
way of measuring the degree of solidity of a cdfiés in terms of the expression

0.(K) =sup{r: X =1r >0,x+rBy C K}. (30)

This corresponds to the radius of the largest ball containédamd centered at

a unit vector. One assumes, of course, thag H, otherwise the convention
0.(H) = lisin order. It turns out that (30) defines an index of solidity in the
sense of Definition 6.1:

Proposition 6.3. The functiong, given by(30) is a nonexpansive index of
solidity. In fact,
9.(K) = f,(K") VK € C(H), (31)

with f, denoting the basic index of pointedness.
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Proof. Suppose thaK € C(H) is not the whole space. Write (30) in the form

0.(K)y=sup sup r
Ix|=1  r=0
X+rBy cK

and observe that

X+rBy CK < rlyl<(x.y) VyeK" rfnir”wf1<x,y>-
y:
yeK+

This proves that
0.(K) = sup inf (x,y).
Ixl=1 ”y{‘};l
The above expression remains unchangediénges over the unit baBy (and
not just over the unit sphei®y). Also, no change occurs if the infimum is taken
over convex hull oK * N Sy (and not just oveK+ N Sy). As we did in Lemma
3.1, we apply von Neumann’s minimax theorem to conclude that
— i — i — +
0.(K) = s yecaing Y = yecaiein S epy ¥ = D
The proof of (31) is thus complete. Propositions 3.3 and 6.2 do the rest of
the job. O

Observe that the formula (31) can be written in the equivalent form
f.(K) = g.(K*) VK e C(H), (32)

that is to say, the basic index of pointedness of a dénean be computed by
evaluating the index of solidity, at K*. For illustrating this general principle,
we examine next the particular case of a nondegenerate elliptic ctiexrR.
Such term refers to a set of the form

E(A) ={(u,s) e R" x R: VUutAu < s},

with A being a positive definite symmetric matrix of ordex n. The symbol
u' denotes, of course, the transpose of the column vector
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Proposition 6.4. Let A be a positive definite symmetric matrix of oraex n.
Then,

Amin A 1
f.(E(A) = \/ ZL—I—)\—(()A) and g.(E(A) = \ 15 A

with Amin(A) and Amax(A) denoting, respectively, the smallest and largest
eigenvalue ofA.

Proof. Due to the formula (32) and the general idenfi§(A)]* = E(A™),

we need to evaluate only the teign(E(A)). To do this, we look at the largest
ball centered ak = (0,---,0,1) € R" x R and contained i€ (A). For this

it suffices to find the closest point foin the boundary oE(A): the distance
from such point tax will be the radius of such largest ball. Since the boundary
of E(A) is given by

bdlE(A)] = {(u,s) € R" x R: VUtAu =},
we must solve the minimization problem
min u'u+ (s—1? with (u,s) e R" xR st u'Au—s>=0. (33)
If (u, s) is a solution to (33), then there is a Lagrange multiplier R such that
u—ArAu=0, s—1+4+i1s=0.

Notice thati is an eigenvalue oA™%, u is a corresponding eigenvector, and
s= (14 1)L Clearly

1L+2)?=s=u'Au= 1"y,
1 2 A2
s—1i=(—"-1) =(—+) .
( ) <l+k ) (1+k>
from where one obtains

ulu+ (s—1)?% = * + a N .
L+12 A+r2 14271
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We conclude that the optimal valué of (33) is of the form(1 + A~1)~2, with

A > 0 being an eigenvalue @&~1. One can easily see that the smallest value of
r=@+rhH1?

is obtained by choosing = Amin(A™Y). One gets in this way the estimate

]—1/2

g*(E(A)) > [1 + [)Mmin(A_l)]_l =[1+ )»max(A)]_l/Z-

But, on the other hand, one can also write
0.(E(A) < g (E(A) = [14 Amax(A)] Y2 (34)

The inequality in (34) follows from Propositions 4.1 and 6.3, while the equality
in (34) is a result established in [5]. O

In the next proposition we provide an expression for the index of solidity
O;p) Which is obtained by dualizing the index of pointednégs.

Proposition 6.5. Letgp: C(H) — Rbe the function defined by the expression
Gipr(K) = [ — [m(K)1P]YP, (35)
with
m(K) = ||§||u=q min {dist[z, K], distf[—z, K]}.
Then,gp; is an index of solidity. In fact,
Op(K) = f[p](K+) VYK € C(H). (36)
Proof. We need to prove the equality (36). The cd&se= H is trivial and

therefore it is left aside. Consider then an arbitréryz H. Proving (36) is, of
course, the same as checking the equality

m(K) =r(K™). (37)
To do this, we exploit Lemma 3.7 and the well-known Pithagorean rule
disf(z, K]+ dist[z, K 1= ||z|?> VzeH,
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with K~ = —K™ standing for the negative polar conelof Indeed, one has
r2(K% = 1-— f5(K"
= 1- f5(K")

lzll=1

2
= 1— [ inf  max{dist{z, K], dist{—z, K‘]}]

= 1-— ”iz?fl max {1 — dist’[z, K], 1 — dist[—z, K]}.

A simple algebraic manipulation shows that the last term correspomd& ).
The proof is then complete. O

As far as the dualization of the pre-index of pointednésis concerned, we
have shown in [5] the formula

9(K) = f5(K™) VK e C(H),
with g; being the distance function to the set of non-solid cones, that is to say,

gs(K) = inf{8(Q, K): Q € €(H) non-solid.

7 Interlude: a tale of maximal angles

Recall thabmax(K) denotes the maximal angle that can be formed by picking up
two unit vectors inK. The symbobax«(K ) is defined, of course, in a similar
way. The question we would like to answer in this section has a very strong
geometric flavour:

{ is there any relationship between the (38)

maximal anglestnax(K) and Omax(K) ?

It would be very surprising if nobody has thought about this question before.
Anyway, we have been unable to find a trace of this issue in the existing literature.
Anwering (38) would enable us to establish a link between the angular index of
a cone and the angular index of its dual. For convenience, we reformulate (38)
in a seemingly different manner:

is there any relationship between the diameter
of KNSy andthe diameteroK™ NSy ?

No extra comments are needed. Here is what we get:
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Lemma 7.1. Assume thaK € CG(H) is neither the zero-cone, nor the whole
spaceH. Then,

[diam(K N Sy)1? + [diam(K* N Sy)1 > 4. (39)

Proof. If both K NS, andK* N S, have a diameter greater than or equal to
V2, then the result holds trivially. We assume from now that this is not the case.
Suppose, for instance, that diakhN S4) < +/2. Due to (12) and (13), this
assumption entails

(u,v) >0 Yu,veK. (40)

If K is aray, then diafK N Sy) = 0, diamK* N Sy) = 2, and (39) holds.
Assume thaK is not a ray, and take, v € K N S, such that diantK N &) =
lu—v| > 0. LetM = spariu, v} be the two-dimensional linear subspace
spanned by andv. Consider the vectors

u— (u,v)v _ v— (U, v)u

y = , =
1— (u,v)2 1-(u,v)?
By constructiony € M andz € M enjoy the following properties:

(yyuy=0, (zv) =0,
(z,u) =(y,v) =0,
<Y» Z) = —(U, U>’

Iyl =zl = 1.

Everything can be checked in arather easy way. We will provettabelong to
K*. To do this, it suffices to show th&g, x) > 0, (z, x) > Oforallx e KNS,.
So, takex € K N Sy. We find the projectiorPy (x) of x onto M by solving a
simple minimization problem in two variables. We get

Puv(X) = AU+ uo,

with coefficientsk, © € R given by

(u, X

) ( )(u’ U> _ <U, X) — (Xa U)(u, U)
-z 7 2
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We claimthat., u > 0. By (40) we know thatx, u), (X, v) €]0, 1]and(u, v) €
10, 1[. Since|lu — v|] = diam(K N &), we have thatu, v) < {(u, x) and
{(u, v) < (v, x). Thus,

0 < (X, v){(u,v) <{(u,v) < {u,x),

0 < (X, u)(u, v) <(u,v) < (v, X).
This establishes our claim. We now use the orthogonality property
(w, X —PyX))=0 YweM
of the projectionPy, (x), to obtain finally

(¥, x) =y, Pu(¥)) = Ay, u) + uly.v) = 0,
(z,X) = (z, Pu(X)) = A(z, u) + u(z,v) = 0.

Sincex was an arbitrary vector i N S, we have indeed established tlyatz
belong toK *. It follows that diamiK ™ N S) > ||y — z||, and therefore

[diam(K N Sy)]1% + [diam(K* N S)]

v

Ju—vll®+ly —z||?
= 4-2u,v) + (Y, 2)) =4,

completing the proof in this way. O

Everything is now ready for answering the question stated at the beginning of
the section.

Theorem 7.2 [First law of maximal angles]. Assume thaK € C(H) is
neither the zero-cone, nor the whole spateThen,

T < Omax(K) + Omax(K ).

Proof. Proving this inequality is a matter of exploiting Lemma 7.1 and the
general identity

[diam(K N S9)1% = 2[1 — coSOmax(K)]. O
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Theorem 7.3 [Second law of maximal angles]. Assume thatimH > 3.
Then, for any pain6,, 62) € [0, 7] x [0, 7] such thatr < 61 + 65, there is a
coneK e C(H) satisfying

emax(K) = 91 and emax(K+) = 92~ (41)

Proof. SinceK +— 6Omhax(K) is continuous over the compact metric space
(C(H), §), it suffices to consider the cagé,, ;) €]0, 7[x]0, =[. For con-
venience, we work in the spatt¢ = R" x R. The integen is taken, of course,
greater than or equal to 2. As candidate for achieving (41), we consider a non-
degenerate elliptic con&(A) in R" x R. As shown in our previous work [5],

one has

Amin(A) -1
Omax(E(A)) = arcco —— | ,
max(€(A)) {Amm(A)qu}
1— Amax(A)
Omax([E(A)]T) = arccod ———" 7|
max([E(A)TT) s[l A
For proving the theorem, it is enough to construct a matrsuch that
1+ coso, 1 — cosb;,
Amin(A) = ——— | Amax(A) = ——.
min(A) 1 — cosb, max(A) 1+ cosbs

Such a construction is possible provided the inequality

1+ cos6q - 1— coséb,

42
1—cosf#; — 1+ cosbH, (42)

holds. Observe that (42) is equivalent to
Cc0s61 + cosb, < 0,

the later inequality holding trivially because the péii, 62) €]0, 7[x]0, [
satisfiest < 0, + 6-. O

8 Sub-unitarian indices

Theorems 7.2 and 7.3 could be merged into a single one that provides an estimate
for the range of the function

K (emax(K)’Qmax(K+))-
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In the same way aénax(K) andfnax(K ) are related to each other, we expect
there alink between the degree of pointednes¢ ahd the degree of pointedness
of K*. The question addressed in this section is that of estimating the region

Q(f) = {(f(K), f(K"): K € (H)}

of all “configurations” that can be produced with a given index x (H). It
must be observed th&t( f) does not fill the whole squafé, 1] x [0, 1] because
the configuration

(F(K), f(K") =11

can never occur. In principle, it is possible to have bbtiK) and f (K ™) very

close to 1 for a giverK € C(H), but this would mean that is somehow badly
conditioned. A scaling procedure may be necessary to correct such an anomaly.
A favourable class of indices is singled out in the next definition.

Definition 8.1. One says thaf € x (H) is sub-unitarianif
[FKP+[F(KDP<1 VK eCH).
The termfully sub-unitarianis reserved for the case
Q(f)y={r,s) e Ry xR, :r2+s%><1}.
Examples of sub-unitarian indices are not difficult to construct. An important

example is displayed next.

Proposition 8.2. The angular indexfj, is sub-unitarian. If the underlying
spaceH has dimension at lea& then fj, is fully sub-unitarian.

Proof. Assume thaK < CG(H) is neither the zero-cone, nor the whole space
H. As a consequence of the first law of maximal angles, one gets

COSOmax(K) + C0SOmax(K™) < 0.

By using the relations

1+ cOSOmax(K™)

T I
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one obtains
[(K)P 4 [ (KD = 14 2 [000men(K) + COSfmacK )] < 1
In this way, we have proven that
Q(f) C{(r,s) eRy xR, :r2 4% <1}

For getting the reverse inclusion, it is enough to work out the example of an
elliptic cone as done in the proof of Theorem 7.3. O

Corollary 8.3. For any p € [1, 2[, the hemi-diametral indeX|p, is sub-
unitarian. By contrastf; is not sub-unitarian ifp > 2.
Proof. Foranyp € [1, 2[, one has

f[p](K) < f[z](K) vV K e C(H).

The sub-unitarian character éf; implies that of f;;;. Consider now the case
p > 2. Pick up any self-dual coné in H. Since

diam(K N Sy) = diam(K™ N Sy) = v/2,

the number
2
i (OF + [ (KD = 2[1- 1/2)72] "

is strictly greater than 1. O

Corollary 8.4. The basic indeX, is sub-unitarian. If the underlying spac¢¢
has dimension at lea& then f, is fully sub-unitarian.

Proof. For the first part of the corollary, combine Propositions 4.1 and 8.2. For
the second part, use Proposition 8.2 and the factthepincides withf, over
the class of nondegenerate elliptic cones. An explicit expressiof) (6(A)) is
given in Proposition 6.4. As can be seen from the proof of Theorem 8.3 in [5],
the same expression applies alsdtg(E(A)). O
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9 Rotational invariance

The purpose of this section is to show that the angular index of pointedipess
be characterized in terms of a certain property that we call rotational invariance.
A slightly different version of this property can be used to characterize the angular
index fz;. Some of the results stated in this section were suggested to us by an
anonymous referee to whom we are very grateful.

Before introducing the concept of rotational invariance, recall that a revolution
cone inH is a set of the form

rev(,e) = {Xx € H: ||x| cosv < (e, X)},

with e € S refered to as the axis of revolution, atide [0, /2] refered to as
the angle of revolution. The degree of pointedness of a revolution cone depends
uniquely on the angle of revolution. More precisely,

Lemma 9.1. If f is an index of pointedness dd, then there is a scaling
functiony e I" such that

f(rev(®, €)) = y(cos) Vee Sy, ¢ €[0,7/2]. (43)
Such functiory is unique and given by

y(t) = f(rev(arccost,e)) Vt e][0,1], (44)

with e € Sy being chosen arbitrarily.
Proof. The second part of the lemma follows from the first one. For proving
the representation formula (43), we rely on the axioms defining an index of poin-

tedness. The invariance axias) implies thatf (rev(d, €)) depends uniquely
on the parametet, that is to say, there is a functids: [0, 7/2] — R such that

f(rev(®, €)) = F(9).

The functionF is necessarily continuous because it corresponds to the compo-
sition of the continuous functions and® — rev(#, €). The above equality can
be transformed into (43) by taking

y = F o arccos
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The minimal pointedness axio(#,) implies thaty (0) = 0. The maximal poin-
tedness axiomA,) implies thaty (1) = 1. Finally, the monotonicity axiorgA,)
implies thaty is nondecreasing. In shot,is a scaling function as requiredl

Next we introduce two different revolution cones that can be associated to a
given pointed cone.

Definition 9.2. Let K € Cy(H) be a pointed cone. Thretational envelopef
K, which we denote by rdt, is the pointed revolution cone obtained by rotating
K around its centroid. Theompaniorof K, which we denote by coi, is the
pointed revolution cone that has the same centroid and the same maximal
angle ax.

It is not difficult to see that coid admits the characterization

Omax(K
0.0

comK = rev(

{x € H: |x| cos (Qmaxz(K)) < (eK,x>},

with ex denoting the centroid oK. As far as the characterization of Kotis
concerned, observe that

(45)

arccosp (eK) = Ssup arccos(eK, X)
xeKNSy

corresponds to the largest angle with respeceg tihat can be formed by picking
up a unit vector irkK. RotatingK aroundex produces then the revolution cone

rotk = rev(arccosp(ex), ex) = {x € H: ||X|| p(ex) < {ex, X)}. (46)

As a general rule, col and roK are different objects. Although the following
result is very easy to prove, it deserves to be properly recorded.

Proposition 9.3. For a pointed con&K e Co(H), the following two conditions
are equivalent:

(a) comK androtK coincide;
(b) fz(K) = f.(K).
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Proof. In view of (45) and (46), condition (a) amount to saying that

Omax(K
cos( max( )) = p(ex).
2
This equality is, of course, the same as the one given in (b). O

Recall that from the very definition of the companion of a cone, one has
Omax(COMK) = Omax(K). (47)

Preservation of the maximal angle is a nice property, but it doesn’t imply pre-
servation of the degree of pointedness, unless, of course, one uses an index of
pointedness which is equivalent fg,. This idea is made more precise in the
next theorem.

Theorem 9.4. For an index of pointednesk € x (H), the following two con-
ditions are equivalent:

(a) f is rotationally invariant in the sense thdt(comK) = f(K) for any
pointed coneK € Cy(H);

(b) f is equivalent to the angular indefy,.

Proof. That (b) implies (a) follows directly from (47) and the representation
formula (13) of 3. To prove the reverse implication, suppose that x (H) is

a rotationally invariant index of pointedness. et I' be the scaling function
whose existence and characterization is given by Lemma 9.1. For any pointed
coneK € Cg(H), one has

f (comK) = f(rev(gmLz(K),eK>)
emax K
)4 (COS(%)) = )/(f[z](K))

This proves thaff is equivalent to the angular inde,. O

f(K)

Theorem 9.4 admits an analogous formulation having the basic index of poin-
tednessf, as main protagonist.
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Theorem 9.5. For an index of pointednesk € x (H), the following two con-
ditions are equivalent:

(a) f is rotationally invariant in the sense thdt(rotK) = f(K) for any
pointed coneK € Cy(H);

(b) f is equivalent to the basic indef.

Proof. One clearly has
f.(rotk) = f.(rev(arccosp(ex), ex) = p(ex) = f.(K),

which shows that (b) implies (a). For proving the reverse implication, one ex-
ploits Lemma 9.1 as in the proof of Theorem 9.4. This time one gets

f(K) = f(rotk) = f(rev(arccosp(ex), ex) = v (p(ex)) = y (f.(K)). O

10 Conclusions

In this work we have introduced the concept of index of pointedness by following
an axiomatic approach. Several examples were given to illustrate the general
theory.

Among the different particular examples, the angular index of pointediygss
deserves a special mention because it enjoys a number of convenient properties.
Indeed, f;; is nonexpansive, normal and sub-unitarian.

nonexpansig | normal | normalizable| sub-unitarian
fla yes no yes yes
fio, P €Il 2[ ? no yes yes
fi2) yes yes yes yes
fro, P €12, 0o[ no no yes no
f, yes no no yes
fs yes yes yes ?

Table 1 — Indices and pre-indices of pointedness.

The main drawback of the basic inddxis not being normalizable. Said in
a crude manner, there is no way of scaling this index so as to obtain a measure
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of pointedness that is well conditioned with respect to the dimension of the
underlying space.

Our main purpose was lying down a general theory for quantifying the degree
of pointedness of a convex cone. The subjet under consideration is quite broad
and admits several ramifications. Some questions were left open because it is
impossible to solve in a single work all the difficulties encountered in the road.
For instance, a very challenging question is checking whether or not the function
fs is monotone. Recall that the monotonicity requirement appears in the very
definition of an index of pointedness. A less important question is evaluating the
Lipschitz constant lipf;;) of the hemi-diametral index;,; whenp €]1, 2[.

Acknowledgements. The authors are very grateful to an anonymous referee
whose constructive remarks have improved the presentation of the paper. Sec-
tion 9 is inspired in his report.
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