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1 Introduction

Many researchers have studies the moments of order statistics of several distri-

butions. A number of recurrence relalations satisfied by these moments of order

statistics are available in literature. Balakrishnan and Malik [2] derived some

identities involving the density functions of order statistics. These identities are

useful in checking the computation of the moments of order statistics. Bala-

krishnan and Malik [3] established some recurrence relations of order statistics

from the liear-expoential distribution. Balakrishnan et al. [4] reviewed several

recurrence relations and identities for the single and product moments of order

statistics from some specific distributions. Mohie El-Din et al. [9, 10] presented

recurrence relations for the single and product moments of order statistics from

the doubly truncated parabolic and skewed distribution and linear-exponential

distribution. Hendi et al. [1] developed recurrence relations for the single and
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product moments of order statistics from doubly truncated Gompertz distribu-

tion. Khan et al. [7] established general result about recurrence relations between

product moments of order statistics. They used that result to get the recur-

rence relations between product moments of some doubly truncated distribu-

tions (Weibull, expoential, Pareto, power function, and Cauchy). Several recur-

rence relations satisfied by these moments of order statistics are also available in

Khan and Khan [5], [6].

The probability density function (pdf) of the Makeham distribution is given by

fX (x) =
(
1 + θ

(
1 − e−x

))
e−x−θ(x+e−x −1), x ≥ 0, θ ≥ 0

The doubly truncated pdf of continuous rv is given by

f (x) =
fX (x)

P − Q
=

1

P − Q

(
1 + θ

(
1 − e−x

))
e−x−θ(x+e−x −1),

Q1 ≤ x ≤ P1

(1.1)

where

1 − P = e−P1−θ(P1+e−P1−1) and 1−Q=e−Q1−θ(Q1+e−Q1 −1)

The cumulative distribution function c.d.f. is given by

1 − F (x) =
f (x)

1 + θ (1 − e−x)
− P2 (1.2)

where

P2 =
1 − P

P − Q

Let X be a continuous random variable having a c.d.f. (1.2) and p.d.f.. Let

X1, X2, . . . , Xn be a random sample of size n from the Makeham distribution

and X1:n ≤ X2:n ≤ ∙ ∙ ∙ ≤ Xn:n be the corresponding order statistics obtained

from the doubly truncated Makeham distribution (1.1), then

fr :n (x) = Cr :n [F (x)]r−1 [1 − F (x)]n−r f (x) (1.3)

where

Cr :n =
n!

(n − r)! (r − 1)!
.
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The expected value of any measurable function h (x) can be obtained as fol-

lows:

αr :n = E [h (Xr :n)] =

Cr :n

∫ P1

Q1

h (x) [F (x)]r−1 [1 − F (x)]n−r f (x) dx, 1 ≤ r ≤ n
(1.4)

and the expected value of any measurable joint function h (x, y) can be calcu-

lated by
αr,s:n = E [h (Xr :n, Xs:n)] =

∫ P1

Q1

∫ P1

x
h (x, y) fr,s:n (x) dydx, x ≤ y

(1.5)

where the joint density function of Xr :s and Xs:n, (1 ≤ r ≤ s ≤ n) is given by

fr,s:n (x) =

Cr,s:n [F (x)]r−1 [F (y) − F (x)]s−r−1 [1 − F (y)]n−s f (x) f (y) ,

x ≤ y

(1.6)

where

Cr,s:n =
n!

(r − 1)! (s − r − 1)! (n − s)!
.

The rest of this paper is organized as follows: In Section 2 the recurrence rela-

tions for the single moments of order statistics from doubly truncated Makeham

distribution is obtained. In Section 3 the recurrence relations for the product

moments of order statistics from doubly truncated Makeham distribution is de-

veloped. Two results that characterize Maheham distribution are presented in

Section 4. Some numerical results illustrating the developed recurrence rela-

tions are given in Section 5.

2 Recurrence relations for single moments of order statistics

Recurrence relations for the single moments of order statistics from the doubly

truncated Maheham distribution are given by the following theorem.
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Theorem 1. Let Xi :n ≤ Xi+1:n, (1 ≤ i ≤ n) be an order statistics, Q1 ≤

Xr;n ≤ P1, 1 ≤ r ≤ n, n ≥ 1 and for any measurable function h (x) , then

αr;n = −P2αr;n−1 + Q2αr−1;n−1 +
(

1

n

)
E

(
h

′
(Xr :n)

1 + θ
(
1 − e−Xr :n

)

)

(2.1)

where Q2 =
1 − Q

P − Q
.

Proof. From (1.4) , we find

αr :n − αr−1:n−1 =
(n − 1)!

(n − r)! (r − 1)!

∫ P1

Q1

h (x) [F (x)]r−2 [1 − F (x)]n−r

× [nF (x) − (r − 1)] f (x) dx,

By using integration by parts, we get

αr :n − αr−1:n−1 =
(

n − 1

r − 1

) ∫ P1

Q1

h
′
(x) [F (x)]r−1 [1 − F (x)]n−r+1 dx

Using (1.2) in the previous equation, we obtain

αr :n − αr−1:n−1 =
(

n − 1

r − 1

) ∫ P1

Q1

h
′
(x) [F (x)]r−1 [1 − F (x)]n−r

[
f (x)

1 + θ
(
1 − e−x

) − P2

]

dx =

−P2

(
n − 1

r − 1

) ∫ P1

Q1

h
′
(x) [F (x)]r−1 [1 − F (x)]n−r dx

+

(
n − 1

r − 1

) ∫ P1

Q1

h
′
(x) [F (x)]r−1 [1 − F (x)]n−r

(
1

1 + θ
(
1 − e−x

)

)

f (x) dx

(2.2)

Similarily, we can show that,

αr :n−1 − αr−1:n−2 =
(

n − 2

r − 1

) ∫ P1

Q1

h
′
(x) [F (x)]r−1 [1 − F (x)]n−r dx

(2.3)
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From (2.2) and (2.3) , we obtain

αr :n − αr−1:n−1 =

−
(

n − 1

n − r

)
P2 (αr :n−1 − αr−1:n−2) +

(
1

n

)
E

(
h

′
(Xr :n)

1 + θ
(
1 − e−Xr :n

)

)
(2.4)

Since

(n − r) αr−1:n−1 + (r − 1) αr :n−1 = (n − 1) αr−1:n−2

Then

αr−1:n−2 =
(n − r)

(n − 1)
αr−1:n−1 +

(r − 1)

(n − 1)
αr :n−1

By substituting for αr−1:n−2 from the previous equation into Equation (2.4)

we get the relation (2.1) . �

Remark 1. Let h (x) = xk in Equation (2.1) , we obtain the single moments

of the Makeham distribution

μ(k)
r :n = −P2μ

(k)

r :n−1 + Q2μ
(k)

r−1:n−1 +
(

k

n

)
E

(
Xk−1

r :n

1 + θ
(
1 − e−Xr :n

)

)

where μ
(k)
r :n = E

(
Xk

r :n

)
.

Remark 2. For the special case r = 1, n = 1, we can find

μ1:1 = E (X1:1) = −P1 P2 + Q1 Q2 +
1

P − Q

∫ P1

Q1

e−x−θ(x+e−x −1)dx

= −P1 P2 + Q1 Q2 + E

(
1

1 + θ
(
1 − e−Xr :n

)

)

where μ
(k)

0:n = Qk
1, and μ

(k)

n:n−1 = Pk
1

3 Recurrence relations for product moments of order statistics

Recurrence relations for the single moments of order statistics from the doubly

truncated Maheham distribution are given by the following theorem.

Comp. Appl. Math., Vol. 28, N. 3, 2009



“main” — 2009/10/5 — 16:57 — page 282 — #6

282 ORDER STATISTICS FROM DOUBLY TRUNCATED MAKEHAM DISTRIBUTION

Theorem 2. Let Xr :n ≤ Xr+1:n, r = 1, 2, . . . , n − 1 be an order statistics

from a random sample of size n with pdf (1.1) ,

αr,s:n = αr,s−1:n −
n P2

(n − s + 1)

(
αr,s:n−1 − αr,s−1:n−1

)

+
1

(n − s + 1)
E

(
h

′
(Xr :n, Xs:n)

1 + θ
(
1 − e−Xr :n

)

) (3.1)

where h
′
(x, y) =

∂h (x, y)

∂y
.

Proof. From (1.5)

αr,s:n − αr,s−1:n =
n!

(r − 1)! (s − r − 1)! (n − s + 1)!

×
∫ P1

Q1

∫ P1

x
h (x, y) [F (x)]r−1 [F (y) − F (x)]s−r−2 [1 − F (y)]n−s−1

× [(n − r) F (y) − (n + s − 1) F (x) − (s − r − 1)] f (x) f (y) dydx

Suppose that

g (x, y) = − [F (y) − F (x)]s−r−1 [1 − F (y)]n−s+1 ,

then

αr,s:n − αr,s−1:n =
n!

(r − 1)! (s − r − 1)! (n − s + 1)!

∫ P1

Q1

[F (x)]r−1 f (x)

×
{∫ P1

x

∂g (x, y)

∂y
h (x, y) dy

}
dx

By using integration by parts in the following integration
∫ P1

x

∂g (x, y)

∂y
h (x, y) dy = [h (x, y) g (x, y)]P1

x

−
∫ P1

x
h

′
(x, y) g (x, y) dy = −

∫ P1

x
h

′
(x, y) g (x, y) dy

=
∫ P1

x
h

′
(x, y) [F (y) − F (x)]s−r−1 [1 − F (y)]n−s+1 dy
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Hence,

αr,s:n − αr,s−1:n =
n!

(r − 1)! (s − r − 1)! (n − s + 1)!

×
∫ P1

Q1

∫ P1

x
h

′
(x, y) [F (x)]r−1 [F (y) − F (x)]s−r−1 [1 − F (y)]n−s+1

× f (x) dydx, 1 ≤ r ≤ s ≤ n − 1

By using (1.2)

αr,s:n − αr,s−1:n =
n!

(r − 1)! (s − r − 1)! (n − s + 1)!

×
∫ P1

Q1

∫ P1

x
h

′
(x, y) [F (x)]r−1 [F (y) − F (x)]s−r−1 [1 − F (y)]n−s

×
[

f (y)

1 + θ (1 − e−y)
− P2

]
f (x) dydx, 1 ≤ r ≤ s ≤ n − 1

(3.2)

Similarily, we can find that

αr,s:n−1 − αr,s−1:n−1 =
(n − 1)!

(r − 1)! (s − r − 1)! (n − s)!

×
∫ P1

Q1

∫ P1

x
h

′
(x, y) [F (x)]r−1 [F (y) − F (x)]s−r−1 f (x) dydx,

1 ≤ r ≤ s ≤ n − 1

Using the previous result in Equation (3.2)

αr,s;n − αr,s−1;n =
−n P2

(n − s + 1)

[
αr,s;n−1 − αr,s−1;n−1

]

+
n!

(r − 1)! (s − r − 1)! (n − s + 1)!

∫ P1

Q1

∫ P1

x
h

′
(x, y) [F (x)]r−1

× [F (y) − F (x)]s−r−1 [1 − F (y)]n−s

[
f (y)

1 + θ (1 − e−y)

]
f (x) dydx
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then

αr,s;n − αr,s−1;n =
−n P2

(n − s + 1)

[
αr,s;n−1 − αr,s−1;n−1

]

+
1

(n − s + 1)
E

(
h

′ (
Xr;n, Xs;n

)

1 + θ
(
1 − e−Xr;n

)

)

which completes the proof. �

Remark 3. If h (x, y) = x j yk , then (3.1) takes the form

μ( j,k)
r,s:n = μ

( j,k)

r,s−1:n −
n P2

n − s + 1

[
μ

( j,k)

r,s:n−1 − μ
( j,k)

r,s−1:n−1

]

+
k

n − s + 1
E

(
X j

r :n Xk−1
s:n

1 + θ
(
1 − e−Xr :n

)

)

which represents the identities for the product moments for doubly truncated

Makeham distribution.

Khan et al. [7, 8] established the following results

Remark 4. For 1 ≤ r ≤ s ≤ n and j > 0

μ( j,0)
r,s:n = μ

( j,0)

r,s−1:n = ∙ ∙ ∙ = μ
( j,0)

r,r+1:n = μ( j)
r :n

μ( j,k)
r,r :n = μ( j+k)

r :n , 1 ≤ r ≤ n

μ
( j,k)

n−1,n:n−1 = Pk
1 μ

( j)
n−1:n−1

4 Characterization of Makeham distribution

We discuss in this section two theorems that characterize the truncated Makeham

distribution using the properties of the order statistics.

The pdf of (s − r) th order statistics of a sample of size (n − r) is given by

(x ≤ y)

f (Xs:n |Xr :n = x ) =

(n − r)! [F (y) − F (x)]s−r−1 [1 − F (y)]n−s f (y)

(n − s)! (s − r − 1)! [1 − F (x)]n−r

(4.1)
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where, f (Xs:n |Xr :n = x ) is the conditional density of Xs:n given Xr :n = x

and the sample drawn from population with

pdf
f (y)

1 − F (x)
, cdf

F (y) − F (x)

1 − F (x)
and x ≤ y,

which is obtained from the truncated paraent distribution F () at x .

In the case of the left truncation at x , we have

Q1 = x, P1 = ∞, P = 1, Q = F (x) , P2 = 0, Q2 = 1

and by putting s = r + 1, then (4.1) takes the form

f (Xr+1:n |Xr :n = x ) =
(n − r) [1 − F (y)]n−r−1 f (y)

[1 − F (x)]n−r , x ≤ y (4.2)

Similarily, if the parent distribution truncated from the right at y (x ≤ y and

r < s), then

f (Xr :n |Xs:n = y ) =
(s − 1)! [F (x)]r−1 [F (y) − F (x)]s−r−1 f (x)

(r − 1)! (s − r − 1)! [F (y)]s−1 (4.3)

In the case of the right truncation at y, we have

Q1 = 0, P1 = x, P = F (x) , Q = 0,

P2 =
1 − F (x)

F (x)
, Q2 =

1

F (x)

and by putting r = 1, s = 2 then (4.3) takes the form

f (X1:n |X2:n = y ) =
f (y)

F (x)
, x ≤ y .

Theorem 3. If F (x) < 1, (0 < x < ∞) is the cummulative distribution func-

tion of a random variable X and F (0) = 0, then

1 − F (x) = e−x−θ(x+e−x −1)

⇐⇒ E
(
Xr+1,n + θ

(
Xr+1,n + e−Xr+1,n − 1

)
|Xr :n = x

)

= x + θ
(
x + e−x − 1

)
+

1

n − r
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Proof. The proof of the necessity condition starts by subsituting h (x) =

x + θ
(
x + e−x − 1

)
, r = 1 in (2.1)

α1;n = −P2α1;n−1 + Q2α0;n−1 +
1

n
E (1)

= −P2α1:n−1 + Q2α0;n−1 +
1

n

which means that

E
(
X1:n + θ

(
X1:n + e−X1:n − 1

))
=

E
(
X1:n−1 + θ

(
X1:n−1 + e−X1:n−1 − 1

))
E

(
X0:n−1 + θ

(
X0:n−1 + e−X0:n−1 − 1

))
+

1

n

In the case of the left truncation at x , we get

E
(

X1:n−r + θ
(
X1:n−r + e−X1:n−r − 1

))
=

E
(

Xr+1:n + θ
(
Xr+1:n + e−Xr+1:n − 1

)
|Xr :n = x

)
= x + θ

(
x + e−x − 1

)
+

1

n − r

To prove the sufficient condition, we use (4.2) and (1.2)

(n − r)

∫ ∞

x

[
x + θ

(
x + e−x − 1

)]
[1 − F (y)]n−r−1 f (y) dy =

[
x + θ

(
x + e−x − 1

)
+

1

n − r

]

[1 − F (x)]n−r

By differentiating both side w.r.t. x, we get

f (x)

1 − F (x)
= 1 + θ

(
1 − e−x

)
.

�

Theorem 4. If F (x) < 1, (0 < x < ∞) is the cummulative distribution func-

tion of a random variable X and F (0) = 0, then

1 − F (x) = e−x−θ(x+e−x −1) ⇐⇒ E
(
X1,n + θ

(
X1,n + e−X1,n − 1

)
|X2:n = x

)

= −
[1 − F (x)]

F (x)

[
x + θ

(
x + e−x − 1

)]
+

1

F (x)
+ 1
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Proof. To prove the necessity condition, let n = 1, r = 1 in (2.1)

α1;1 = −P2α1;0 + Q2α0;0 + E (1)

= −P2α1:0 + Q2α0;0 + 1

which means that

E
(
X1:1 + θ

(
X1:1 + e−X1:1 − 1

))

= −P2 E
(
X1:0 + θ

(
X1:0 + e−X1:0 − 1

))

+ Q2 E
(
X0:0 + θ

(
X0:0 + e−X0:0 − 1

))
+ 1

= −P2
[
μ1:0 + θ

(
μ1:0 + e−P1 − 1

)]

+ Q2
[
μ0:0 + θ

(
μ0:0 + e−Q1 − 1

)]

To prove the sufficient condition, by using (4.2) and (1.2)
∫ x

0

[
y + θ

(
y + e−y − 1

)]
f (y) dy =

− [1 − F (x)]
[
x + θ

(
x + e−x − 1

)]
+ 1 + F (x)

Differentiating both sides w.r.t. x
[
x + θ

(
x + e−x − 1

)]
f (x) = − [1 − F (x)]

[
1 + θ

(
1 − e−x

)]

+ f (x)
[
x + θ

(
x + e−x − 1

)]
+ f (x)

Then

[1 − F (x)] = f (x)

[1+θ(1−e−x)] = e−x−θ(x+e−x −1)

�

5 Some numerical results

According to Khan et al. [7, 8], we have the following special cases of the

moments of order statistics for any distribution

μ
(k)

0:n = Qk
1

μ
(k)

n:n−1 = Pk
1 , n ≥ 1

μ( j,k)
r,r :n = μ( j+k)

r :n , 1 ≤ r ≤ n

μ
( j,k)

n−1,n:n−1 = Pk
1 μ

( j)
n−1:n−1
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n r μ
(1)
r :n n r μ

(1)
r :n n r μ

(1)
r :n n r μ

(1)
r :n

1 1 2.6851 5 3.5551 8 1 2.0869 7 2.9118

2 1 2.3449 6 1 2.1158 2 2.1859 8 3.2500

2 3.0252 2 2.2540 3 2.3009 9 3.9225

3 1 2.2307 3 2.4259 4 2.4384 10 1 2.0696

2 2.5734 4 2.6538 5 2.6094 2 2.1467

3 3.2511 5 2.9934 6 2.8363 3 2.2332

4 1 2.1733 6 3.6675 7 3.1749 4 2.3316

2 2.4027 7 1 2.0993 8 3.8478 5 2.4461

3 2.7440 2 2.2147 9 1 2.0773 6 2.5830

4 3.4201 3 2.3525 2 2.1640 7 2.7534

5 1 2.1388 4 2.5239 3 2.2627 8 2.9797

2 2.3113 5 2.7512 4 2.3774 9 3.3176

3 2.5399 6 3.0902 5 2.5145 10 3.9897

4 2.8802 7 3.7637 6 2.6852

Table 1 – Some numerical values generated by the recurrence relations of order statistics from

doubly truncated Makeham distribution.

These special cases are used as initial conditions for generating numerical values

for the moments.

We implemented the two recurrence relations (2.1) and (3.1) using Matlab.

The first table gives the numerical results for the single moments of order statis-

tics for a random sample of size n = 10 from the doubly truncated Makeham

distribution.
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