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Abstract. The original parametric iteration method (PIM) provides the solution of a nonlinear

second order boundary value problem (BVP) as a sequence of iterations. Since the successive

iterations of the PIM may be very complex so that the resulting integrals in its iterative relation may

not be performed analytically. Also, the implementation of the PIM generally leads to calculation

of unneeded terms, which more time is consumed in repeated calculations for series solutions. In

order to overcome these difficulties, in this paper, a useful improvement of the PIM is proposed.

The implementation of the modified method is demonstrated by solving several nonlinear second

order BVPs. The results reveal that the new developed method is a promising analytical tool

to solve the nonlinear second order BVPs and more promising because it can further be applied

easily to solve nonlinear higher order BVPs with highly accurate.
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1 Introduction

In this paper, we investigate the approximate analytical solution of the nonlinear

second order BVPs of the type (with this assumption that the problem has the
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unique solution on [a, b])





u′′ = F(x, u, u′),

u(a) = α, u(b) = β,
(1)

by a new easy-to-use algorithm proposed in this work, which is based on the

parametric iteration method (PIM) [1, 5]. Here a, b, α and β are the real con-

stants and F is a nonlinear continuous operator with respect to its arguments.

These BVPs arise in engineering, applied mathematics and several branches

of physics, and have attracted much attention. However, it is difficult to ob-

tain closed-form solutions for BVPs, especially for nonlinear problems. In most

cases, only approximate solutions (either numerical solutions or analytical so-

lutions) can be expected. Some numerical methods such as finite difference

method [4], finite element method [2] and shooting method [8] have been de-

veloped for obtaining approximate solutions to BVPs.

Recently, much attention has been focused on the analytic or numeric-ana-

lytic study of BVPs (e.g., see [6, 9] and the references cited therein). Unlike the

discrete solutions obtained by the purely numerical methods like the shooting

methods, approximate analytical solutions can increase our insights into the nat-

ural behavior of complex systems. Analytical techniques do offer some options

in acquiring solutions but they most habitually require some sort of lineariza-

tion techniques for a successful effort. For those reasons, approximate analyt-

ical methods have been a foundation of study. One of the main advantages of

the approximate analytical methods is its ability in providing us a continuous

representation of the approximate solution, which allows better information of

the solution over the time interval. On the other hand, the purely numerical

methods provide solutions in discretized form, only at two ends of the time in-

terval, thereby making it complicated in achieving a continuous representation.

Therefore, the strategy that will be pursued in this work rests mainly on estab-

lishing an effective and simple approximate analytical algorithm, requiring no

tedious computational works, based on the PIM for solving the nonlinear second

order BVPs. To demonstrate the utility of the modified method, in this study,

some examples are given and we solve them using the new modified method

and compare the obtained results with the numerical results. In all cases, the

present technique performed excellently, as will shown later.
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2 The basic idea of the PIM

In this section, we describe the PIM for solving the general second-order BVP

of (1). Then the local convergence is discussed.

2.1 The PIM

The PIM provides the solution of Eq. (1) as a sequence of approximations.

The method gives rapidly convergent successive approximations of the exact

solution if such a solution exists, otherwise approximations can be used for

numerical purposes. The idea of the PIM is very simple and straightforward.

Let X = C2[a, b], and L and N be the linear and nonlinear operators on X ,

respectively. To explain the basic idea of the PIM, we first consider Eq. (1) as

below:

L[u(x)] +N [u(x)] = f (x), (2)

where L with the property L[g] ≡ 0 when g ≡ 0 denotes the so-called aux-

iliary linear operator with respect to u, N is a nonlinear continuous operator

with respect to u and f (x) is the source term (here u belongs to the intersection

of domains L and N , i.e. u ∈ X ). Then we construct a family of iterative

processes for Eq. (2) as [1, 5]:

L[un+1(x) − un(x)] = h H(x)A[un(x)], (3)

with the boundary conditions

un+1(a) = α and un+1(b) = β, (4)

where

A[un(x)] = L[un(x)] +N [un(x)] − f (x)

≡ u′′
n(x) − F

(
x, un(x), u′

n(x)
)
, (5)

and u0(x) is the initial guess (which can be freely chosen with possible

unknown constants, or it can also be solved from its corresponding linear

homogeneous equation L[u0(x)] = 0 or linear nonhomogeneous equation

L[u0(x)] = f (x)).
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The subscript n denotes the nth iteration, h 6= 0 and H(x) 6= 0 denote the

so-called auxiliary parameter and auxiliary function, respectively, which can

be identified easily and efficiently by the techniques proposed in this paper.

It should be emphasized that though we have the great freedom to choose the

auxiliary linear operator L, the auxiliary parameter h, the auxiliary function

H(x) and the initial approximation u0(x), which is fundamental to the valid-

ity and flexibility of the PIM, we can also assume that all of them are properly

chosen so that solution of (3) exists, as will be shown in this paper later.

Accordingly, the successive approximations un(x) n ≥ 0 of PIM in the aux-

iliary parameter h will be readily obtained by choosing the zeroth component.

Consequently, the exact solution may be obtained by using

u(x) = lim
n→∞

un(x). (6)

Let V =
{
u : u ∈ C2[a, b]

}
be the solution space and

{
ek(x) | ek(x) ∈

V and k = 0, 1, 2, ∙ ∙ ∙
}

denote the set of base functions. Hence we can repres-

ent the solution in a series u(x) =
∑∞

k=0 ckek(x) where ck is a coefficient. As

long as a set of base functions is determined, the auxiliary linear operator L, the

initial approximation u0(x) and the auxiliary function H(x) must be chosen in

such a way that all solutions of the corresponding PIM equations (3) exist and

can be expressed by this set of base functions. Now, in order to avoid expensive

computational works for solving (1) via the PIM, it is straightforward to use

the set of base functions

{(x − a)m | m = 0, 1, 2, ∙ ∙ ∙ }, (7)

to represent u(x), i.e.,

u(x) =
∞∑

m=0

γm(x − a)m, (8)

where γm ∈ R (m = 0, 1, 2, ∙ ∙ ∙ ) are coefficients to be determined. In view of

the solution expression (7) and according to the boundary conditions (4), it is

straightforward to choose

L[u(x)] = u′′(x), (9)

with the property (since we are dealing with the solution of the nonlinear sec-

ond order BVPs, thus the property on L is determined from combining the first
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two terms of the set of base functions, that is, 1 and (x − a))

L[c1(x − a) + c2] = 0, (10)

as the auxiliary linear operator where c1 and c2 are integral constants, and to

choose an initial approximation of u(x), which is the solution of the correspond-

ing linear homogeneous equation L[u0(x)] = 0,

u0(x) = α +
α − β

a − b
(x − a). (11)

For simplicity, the auxiliary function H(x) can be chosen in the form

H(x) = 1. According to (10), the solution of the PIM equation (3) becomes

un+1(x) = un(x) + h
∫ x

a
(x − t)A[un(t)]dt + c1(x − a) + c2, (12)

where A[un(t)] is defined as in (5) and the integral constants c1 and c2 are

determined by imposing the boundary conditions (4).

We, therefore, obtain

un+1(x) = un(x) + h
∫ x

a
(x − t)A[un(t)]dt

− h
x − a

b − a

∫ b

a
(b − t)A[un(t)]dt,

(13)

where A[un(t)] = u′′
n(t) − F

(
t, un(t), u′

n(t)
)
. Therefore, the successive ap-

proximations un(x) (n ≥ 1) of the PIM iterative relationship of (13) in the

auxiliary parameter h will be readily obtained, especially by means of symbolic

computation software such as Maple, Mathematica, Matlab and others.

2.2 Convergence theorem

The parametric iteration formula, (3), makes a recurrence sequence {un(x)}.

Obviously, the limit of the sequence will be the solution of (1) if the sequence is

convergent. In general cases, we can prove that, as long as the solution sequence

(6) given by the PIM is convergent, it must be a solution of the problem (1). In

the following, we give a new proof of convergence of the PIM, which details

can be found in [5]. Here, C2[a, b] denotes the class of all real valued functions

defined on [a, b] which have continuous second-order derivative.
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Theorem 2.1. Let F be a nonlinear continuous operator and for any positive

integer n, un ∈ C2[a, b]. Provided that the sequence (6) uniformly converges,

where un(x) is produced by the parametric iteration formulation of (3), it must

be the exact solution of the problem (1).

Proof. If the sequence un(x) converges, we can write

U (x) = lim
n→∞

un(x), (14)

and it holds

U (x) = lim
n→∞

un+1(x). (15)

Using (14), (15) and the definition of L, we can easily gain

lim
n→∞

L
[
un+1(x) − un(x)

]
= L lim

n→∞

[
un+1(x) − un(x)

]
= 0. (16)

From (16) and according to (3), we obtain

L lim
n→∞

[
un+1(x) − un(x)

]
= h H(x) lim

n→∞
A

[
un(x)

]
= 0. (17)

Since h 6= 0 and H(x) 6= 0, the relation (17) gives us

lim
n→∞

A
[
un(x)

]
= 0. (18)

From (18) and the continuity of F operator, it holds

lim
n→∞

A[un(x)] = lim
n→∞

[
u′′

n(x) − F
(
x, un(x), u′

n(x)
)
]

= lim
n→∞

u′′
n(x) − F

(
x, lim

n→∞
un(x), lim

n→∞
u′

n(x)

)
(19)

=
(

lim
n→∞

un(x)

)′′

− F
(

x, lim
n→∞

un(x),
(

lim
n→∞

un(x)
)′

)

= U ′′(x) − F
(
x, U (x), U ′(x)

)
.

From the equations (18) and (19), we have

U ′′(x) − F
(
x, U (x), U ′(x)

)
= 0, a ≤ x ≤ b. (20)
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On the other hand, in view of (1), (4) and (15), it holds

U (a) = lim
n→∞

un+1(a) = α, (21)

U (b) = lim
n→∞

un+1(b) = β, (22)

Therefore, according to the above expressions, (20)-(22), U (x) must be the

exact solution of the problem (1) and this ends the proof. �

It is clear that the convergence of the sequence (6) depends upon the initial

guess u0(x), the auxiliary linear operator L, the auxiliary parameter h and the

auxiliary function H(x). Fortunately, the PIM provides us with great freedom

of choosing them. Thus, as long as u0(x), L, h and H(x) are so properly chosen

that the sequence (6) converges in a region a ≤ x ≤ b, it must converge to

the exact solution in this region. Therefore, the combination of the conver-

gence theorem and the freedom of the choice of above factors establishes the

cornerstone of the validity and flexibility of the PIM.

3 A modified PIM

Since the successive iterations of the PIM may be very complex so that the

resulting integrals in the relation (13) may not be performed analytically. Also,

the implementation of the PIM generally leads to calculation of unneeded

terms, which more time is consumed in repeated calculations for series solu-

tions. In order to overcome these difficulties, in this section, a useful modifica-

tion of the PIM is proposed. To completely eliminate these shortcomings in each

step, provided that A[un(t)] in each of iterations is expanded in Taylor series

around a, we suggest the following improvement of the PIM of (13), which is

called the modified PIM (MPIM):

un+1(x) = un(x) + h
∫ x

a
(x − t)Gn(t)dt − h

x − a

b − a

∫ b

a
(b − t)Gn(t)dt, (23)

where

A[un(t)] = Gn(t) + O
(
(t − a)n+1

)
. (24)

It is noteworthy to point out that the MPIM formula (23) is capable of solving

strongly nonlinear BVPs with the complicated variable coefficients in a straight-
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forward way. Furthermore, it can reduce the size of calculations. Most impor-

tantly, however, it is the fact that the MPIM algorithm (23) may solve a BVP

exactly if its solution is an algebraic polynomial up to some degree.

4 Choosing the auxiliary parameter h

It is important to ensure that a solution series obtained using MPIM, which is

always as a family of solution expressions in the auxiliary parameter h, is con-

vergent in a large enough region whereby the convergence region and rate of

solution series are dependent upon the auxiliary parameter h and thus can be

enlarged by choosing a proper value for h. Most important, however, it is how to

choose the value of h to make sure that the solution series converges fast enough

in a large enough region. Since we have a family of solution expressions in the

auxiliary parameter h, hence, regarding h as an independent variable, a simple

and practical way of selecting h is to plot the curve of solution’s derivatives

with respect to in some points [5, 7]. So, if the solution is unique, all of them

converge to the same value and hence there exists a horizontal line segment in

its figure that corresponds to a region of h called the valid region of h. Thus,

if we set h any value in the so-called valid region of h, we are sure that the

corresponding solution series converges. It is found that, for given initial ap-

proximation and the auxiliary function, the valid regions of are often nearly the

same for a given problem. In most cases, we can find a proper value of h to

ensure that the solution series converges in the whole spatial/temporal regions.

Therefore, the curves h provide us with an easy way to show the influence of h

on the convergence region and rate of solution series.

5 Results

In this section, to give a clear overview of the content of this study, several

BVPs will be tested by the proposed MPIM, which will ultimately show the

simplicity, efficiency and accuracy of this method. All the results obtained here

are calculated by using the symbolic calculus software Matlab 7. Moreover,

the numerical method used in this paper to compare the numerical results is the

Matlab bvp4c solver.
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Example 5.1. As the first example, we consider the following nonlinear sec-

ond order BVP [3]:

u′′ =
1

2
exp

(
1

2
(x + 1) cos(u − 3x + 7)

)
, (25)

subject to the boundary conditions

u(−1) = −10 and u(1) = −4. (26)

In order to solve the equation (25) using the MPIM algorithm, according

to (2), we choose

X = C2[−1, 1],

L[u(x)] = u′′,

N [u(x)] = −
1

2
exp

(
1

2
(x + 1) cos(u − 3x + 7)

)

and f (x) ≡ 0 which D(L) = D(N ) = X . So for this problem u belongs

to the intersection of these domains, i.e. u ∈ X .

Therefore, according to (23) and (24), we have the following MPIM iter-

ative formula:

un+1(x) = un(x) + h
∫ x

−1
(x − t)Gn(t)dt − h

x + 1

2

∫ 1

−1
(1 − t)Gn(t)dt,

where

u′′
n(t) −

1

2
exp

(
1

2
(t + 1) cos(un(t) − 3t + 7)

)
= Gn(t) + O

(
(t + 1)n+1

)
.

Starting with the initial approximation u0(x) = −10 + 3(x + 1), we get

u1(x) = −10 +
(

3 +
1

2
h
)

(x + 1) −
1

4
h(x + 1)2,

u2(x) = −10 +
(

3 +
7

6
h
)

(x + 1) −
1

4
[h + h (1 + h)]

(x + 1)2 −
1

24
h(x + 1)3,

...
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To investigate the valid region h of the solution obtained via the 10th-order

MPIM, here we plot the curve of u′(−1) with respect to h, as shown in Fig-

ure 1. According to this curve, it is easy to discover the valid region of h. We

point out that the valid region of h becomes more accurate as the number n in-

creases. It is usually convenient to investigate the valid region of h of the MPIM

by means of such kinds of the curves.

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−2

−1

0

1

2

3

4

5

6

7

8

h

u
′ (
−
1
)

Figure 1 – The valid region of the auxiliary parameter h using the 10th-order MPIM

for Example 5.1.

Now, according to (23) and (24), by taking n = 9, we can obtain a 10th-

order MPIM approximation of (25) on [−1, 1]. Figure 2 shows the approx-

imate analytical solution obtained for Eq. (25) by using the 10th-order MPIM

for h = −0.5 versus the numerical solution. It must be emphasized that our

approximate solution applying the modified method is in excellent agreement

with the numerical values.

Example 5.2. As the other example, we consider the following nonlinear

second order BVP [3]:

u′′ = arctan(u) + 2u + cos(x), (27)
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−1 −0.5 0 0.5 1
−10

−9

−8

−7

−6

−5

−4

x

u
(x
)

Figure 2 – Comparing the numerical solution (circle symbols) with the 10th-order

MPIM solution when h = −0.5 (solid line) for Example 5.1.

subject to the boundary conditions

u(0) = 0 and u(1) = 0. (28)

In order to solve the equation (27) using the MPIM algorithm, according to

(2), we choose X = C2[0, 1], L[u(x)] = u′′, N [u(x)] = − arctan(u) − 2u and

f (x) = cos(x) which D(L) = D(N ) = X . So for this problem u belongs to

the intersection of these domains, i.e. u ∈ X .

The valid region h and the approximate analytical solution of the 15th-order

MPIM when h = −0.4 for Eq. (27) have been given in Figures 3 and 4, re-

spectively.

Example 5.3. As the other example, we consider the following nonlinear

second order BVP [9]:

u′′ − s2u − Fsu2 +
1

M
= 0, (29)

subject to the boundary conditions

u(−1) = 0 and u(1) = 0. (30)
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−1.5 −1 −0.5 0
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0

h

u
′ (
0
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Figure 3 – The valid region of the auxiliary parameter h using the 15th-order MPIM

for Example 5.2.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

x

u
(x
)

Figure 4 – Comparing the numerical solution (circle symbols) with the 15th-order

MPIM solution when h = −0.4 (solid line) for Example 5.2.
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where the parameters are selected as in [9], that is, s = F = M = 1.

In order to solve the equation (29) using the MPIM algorithm, according to

(2), we choose X = C2[−1, 1], L[u(x)] = u′′, N [u(x)] = −s2u − Fsu2 and

f (x) = − 1
M which D(L) = D(N ) = X . So for this problem u belongs to the

intersection of these domains, i.e. u ∈ X .

The valid region h and the approximate analytical solution of the 25th-order

MPIM when h = −0.25 for Eq. (29) have been given in Figures 5 and 6,

respectively.

−0.4 −0.3 −0.2 −0.1 0
−15

−10

−5

0

5

10

15

h

u
′ (
−
1
)

Figure 5 – The valid region of the auxiliary parameter h using the 25th-order MPIM

for Example 5.3.

It is interesting to point out that the MPIM algorithm proposed in this work

is capable of solving the nonlinear second order BVPs of the general form

F
(
x, u, u′, u′′

)
= 0 subject to the boundary conditions u(a) = α and u(b) = β.

For instance see the following example (Example 5.4).

Example 5.4. As the final example, we consider the following nonlinear sec-

ond order BVP:

u′′5 + 2uu′′ − 2xu′ = 32, (31)
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−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

x

u
(x
)

Figure 6 – Comparing the numerical solution (circle symbols) with the 25th-order

MPIM solution when h = −0.25 (solid line) for Example 5.3.

subject to the boundary conditions

u(−1) = 1 and u(4) = 16. (32)

with the exact solution u(x) = x2.

In order to solve the equation (31) using the MPIM algorithm, according

to (2), we choose

X = C2[−1, 4], L[u(x)] = u′′, N [u(x)] = 5
√

32 + 2xu′ − 2uu′′

and f (x) ≡ 0 which D(L) = D(N ) = X . So for this problem u belongs to

the intersection of these domains, i.e. u ∈ X .

The valid region h and the approximate analytical solution of the 10th-order

MPIM when h = −1 for Eq. (31) have been given in Figures 7 and 8, respec-

tively.

In order to show the efficacy of the proposed MPIM, the results obtained using

the MPIM for u′(a) and u′(b) are compared versus the numerical results in

Tables 1 and 2. From the results Tables 1 and 2, it is easy to conclude that the

MPIM is an effective analytic tool for solving the nonlinear second order BVPs.
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h

u
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Figure 7 – The valid region of the auxiliary parameter h using the 10th-order MPIM

for Example 5.4.

−1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

x

u
(x
)

Figure 8 – Comparing the numerical solution (circle symbols) with the 10th-order

MPIM solution when h = −1 (solid line) for Example 5.4.
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Examples Orders h u′(a) of MPIM u′(a) of numeric

5.1 10 –0.50 2.2979739 2.2975254

5.2 15 –0.40 –0.3755131 –0.3755699

5.3 25 –0.25 0.7212678 0.7212354

5.4 10 –1.00 –1.9999998 –2.0000000

Table 1 – Comparison of the values of the MPIM approximate solution for u′(a) with the

numerical solution.

Examples Orders h u′(b) of MPIM u′(b) of numeric

5.1 10 –0.50 3.9834993 3.9741175

5.2 15 –0.40 0.3011200 0.3013059

5.3 25 –0.25 –0.721417 –0.721235

5.4 10 –1.00 7.9999991 8.0000000

Table 2 – Comparison of the values of the MPIM approximate solution for u′(b) with the

numerical solution.

6 Conclusions

In this study we have proposed an effective modification of the parametric iter-

ation method called the modified PIM (MPIM) to solve nonlinear second order

boundary value problems. The obtained results demonstrate that the MPIM is

easy to implement, accurate when applied to the nonlinear second order BVPs

and avoid tedious computational works. Moreover, it can further be employed

easily to solve nonlinear higher order BVPs with highly accurate.
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