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Abstract. One of the ways that energy transports in fluid is electron thermal conduction. The

aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly

dependent on temperature and the equation of heat condition is a nonlinear equation. In this

article, we analyze the exact solutions of the nonlinear equation of heat conduction problem with

variable transfer coefficients which is the problem of ICF.
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1 Introduction

Inertial confinement fusion is a process where nuclear fusion reactions are ini-

tiated by heating and compressing a target – a pellet that most often contains

deuterium and tritium by the use of intense laser or ion beams. The beams ex-

plosively detonate the outer layers of the target, accelerating the remaining target

layers inward and sending a shock wave into the center. If the shock wave is

powerful enough and if high enough density at the center is achieved some of the

fuel will be heated enough to cause fusion reactions, releasing energy. In a target

which has been heated and compressed to the point of thermonuclear ignition,

energy can then heat surrounding fuel to cause it to fuse as well, creating a chain

reaction that burns the fuel load, potentially releasing tremendous amounts of

energy. Theoretically, if the reaction completes with perfect efficiency (though

this is a practically impossible feat), a small amount of fuel about the size of a
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pinhead, or around 10 milligrams, is capable of releasing the energy equivalent to

burning a barrel of oil (that is, chemically combining its hydrocarbon molecules

with oxygen).

Fusion reactions combine lightweight atoms, such as hydrogen, together to

form larger ones. Generally the reactions take place at such high temperatures

that the atoms have been ionized, their electrons stripped off by the heat; thus,

fusion is typically described in terms of “nuclei” instead of “atoms”.

Fusion reactions on a scale useful for energy production require a very large

amount of energy to initiate in order to overcome the so-called Coulomb barrier or

fusion barrier energy. Since the positively-charged nuclei are naturally repelling

each other, this repulsive force must be overcome by providing some form of

external energy. When this occurs, however, the reaction is a rather energetic

one. Generally less energy will be needed to cause lighter nuclei to fuse, and

when they do, more energy will be released. As the mass of the nuclei increase,

there is a point where the reaction no longer gives off net energy – the energy

needed to overcome the energy barrier is greater than the energy released in the

resulting fusion reaction. This point occurs when iron nuclei are formed and

is the cause of death in some massive stars. This phenomenon plays no role in

laboratory induced fusion however, since the energy and temperature required to

form iron nuclei are very large. Fusion of heavy nuclei is possible using particle

accelerators and is the method used to form very heavy transuranic elements

such as Roentgenium for instance, though the method of achieving this fusion

of heavy elements is far removed from the methods used in large scale fusion

reactions which are desired in tokamak or ICF fusion reactors.

The key to practical fusion power is to select a fuel that requires the minimum

amount of energy to start, that is, the lowest barrier energy. The best fuel from

this standpoint is a one to one mix of deuterium and tritium; both are heavy

isotopes of hydrogen. The D-T (Deuterium and Tritium) mix has a low barrier

because of its high ratio of neutrons to protons. The presence of neutral neutrons

in the nuclei helps pull them together via the strong force; while the presence

of positively charged protons pushes the nuclei apart via Coloumbic forces (the

electromagnetic force). Tritium has one of the highest ratios of neutrons to

protons of any element – two neutrons and one proton. Adding protons or
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removing neutrons increases the energy barrier.

In order to create the required conditions, the fuel must be heated to tens of

millions of degrees, and/or compressed to immense pressures. The temperature

and pressure required for any particular fuel to fuse is known as the Lawson

criterion. These conditions have been known since the 1950s when the first

H-bombs were built.

ICF experiments started in earnest in the mid-1970s, when lasers of the required

power were first designed. This was long after the successful design of magnetic

confinement fusion systems, and even the particularly successful tokamak design

that was introduced in the early 1970s. Nevertheless, high funding for fusion

research stimulated by the multiple energy crises during the 1970’s produced

rapid gains in performance, and inertial designs were soon reaching the same

sort of “below breakeven” conditions of the best magnetic systems.

One of the earliest serious attempts at an ICF design was Shiva, a 20-armed

neodymium laser system built at the Lawrence Livermore National Laboratory

(LLNL) that started operation in 1978. Shiva was a “proof of concept” design,

followed by the NOVA design with 10 times the power. Funding for fusion re-

search was severely constrained in the 80’s, but NOVA nevertheless successfully

gathered enough information for a next generation machine whose goal was ig-

nition. Although net energy can be released even without ignition (the breakeven

point), ignition is considered necessary for a practical power system.

In [1] and [2], we solved some classes of nonlinear Volterra integral equations

and Emden-Fowler equation, by introducing the Discrete Group Transformations

(DGT ) and RF-pair operations, which thus fur, could not be integrated using the

classical method. Also in [3], we analyze relation between the Emden-Fowler

equations and the nonlinear heat conduction problems with variable transfer

coefficients by using the discrete group method. In this article, we analyze

the exact solutions of the nonlinear equation of heat conduction problem with

variable transfer coefficients which is the problem of ICF. The exact solutions

of classical Emden-Fowler equation, by means of appropriate transformations

of discrete group analysis is transformed into the exact solution of nonlinear

applied problem of ICF. This approach is effective to find a new integrable

equations which thus far, could not be integrated using the classical methods.

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 17:38 — page 110 — #4

110 STUDY OF EXACT SOLUTIONS OF NONLINEAR HEAT EQUATIONS

This approach shows that, under the discrete group transformation, the solution

of transformed equations can be converted into the solution of the reference

equation [1,2,5,6].

2 Preliminaries

It is well known that the theory of differential equations takes a central place

among possible instruments for the modeling of different processes and phe-

nomena. Generalized Emden-Fowler equations arise in many different fields of

applied sciences such as fluid mechanics [5], chemical physics [8] and physics

of plasma [9].

In the present paper we consider the set D of ordinary differential equations,

which is referred to as a class of equations, whose members D(x, y, a) ∈ D

are uniquely defined by a vector a of parameters. The Discrete Group Methods

(DG M) based on the new fundamental mathematical theory is fully developed

in [5,6,10].

All the existing methods of exact solution of ordinary differential equations

can be conditionally divided into two groups:

A) a search for transformation of the original ordinary differential equations

in classD to some other class of ordinary differential equationsD1, which

belongs to one of standard classes of O DE having known solutions.

B) a search for transformation leaving original ordinary differential equation

in D invariant, i.e. transformation into “itself”, that gives independent

information about the solution.

The DG M does not operate with a single equation as in applications of Lie

method [5], but operates with a class of equationsD, depending on a vector a of

parameters, containing the investigated equation, but contrary to the approach A

one consider the transformations of the given class D which are closed in itself

on a chosen class of O DE .

Definition 2.1. The class of generalized Emden-Fowler equations is written

as:

y′′
xx = Axn ym(y′

x)
l, a = (n,m, l), (1)
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where the three-dimensional parameter vector a = (n,m, l) ∈ R3, and the

parameter A is insignificant. The parameter subspace (n,m, 0) defines the set

of classical Emden-Fowler equations

y′′
xx = Axn ym .

Let D be a class of O DE and

D(x, y, a) = 0, (2)

be an equation in this class, where a is a vector parameter. We shall seek the

transformations gi that are closed in the class (2), i.e., they change only the

vector a

gi : D(x, y, a) → D(t, u, bi ) (3)

if each gi has an inverse, then the collection {gi } defines a Discrete Transforma-

tion Groups (DGT) on the class (2).

Definition 2.2. An RF-Pair is an operation of consecutive raising and lowering

the order of equation.

Now, we define the following R-operations and F-operations:

i) Termwise m-fold differentiation of the original equation, type RDm .

ii) Termwise one or two-fold differentiation of original equation with respect

to the independent variable, type accordingly RX or R X2.

iii) The equation is an exact derivative of the m th order: termwise integration

m times, type F I m .

iv) The equation is autonomous, i.e., it does not conclude an independent

variable in an explicit form, type F X

F X : y′
x = u(y), y′′

xx = uu′
y .

v) The equation is homogeneous in the extended sense, type FU : the trans-

formation x = et , y = uekt , with an appropriate choice of k, leads to an

autonomous form followed by a transformation F X .

If an R(F)-operating RZm(F Zm) is inverted, it is denoted by RZ−m(F Z−m).
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Definition 2.3. Abel equation of the second kind, which is applied in many

problems of mechanics, physics and other sciences is written as (see [5] for

details):

yy′
x = F1(x)y + F0(y).

In literature, there are two methods for searching discrete group transforma-

tions, namely point transformations and Bäcklund transformations:

2.1 Point transformations

In the class of point transformations:

y = f (t, u), x = g(t, u), J = fugt − gu ft 6= 0, (4)

two methods are effectively applicable: the direct method and the method based

on Lie algorithm [6]. The direct method is based on the substitution of the

transformation (4) into (2). Imposing the condition J 6= 0 leads to a partial

differential equation with unknown functions f and g, which can be split with

respect to some independent variables into the lower order differential equations

in u and t . The application of the direct method for equation (1) allows us to

find two point transformations:

r : (y = t, x = u), r : (n,m, l) → (m, n, 3 − l), r2 = E,

and for l = 0:

s :
(

y =
u

t
, x =

1

t

)
, s : (n,m, 0) → (−n − m − 3,m, 0), s2 = E,

where E is the identity transformation.

2.2 Bäcklund transformations

There are many methods of search for Bäcklund transformations such as direct

method, RF-pair method and support equations method, which of them are fully

discussed in [5]. With application of the Bäcklund transformation for equation
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(1), we obtain the following transformation g:

g : (n,m, l) −→
(

1

1 − l
,−

n

n + 1
,

2m + 1

m

)






y′
x = t

1
1−l ,

y = (u′
t)

−
1
m ,

x = u
1

n+1 ,

−→






u′
t = y−m,

u = xn+1,

t = (y′
x)

1−l,

g3 = E = (gr)2.

Now by changing the indices of the above expressions assuming the trans-

formed equation as the original and conversely, we obtain a transformation g−1:

g−1 : (n,m, l) −→
(

−
m

m + 1
,

1

l − 2
,

n − 1

n

)






y′
x = u

1
2−l ,

y = t
1

m+1 ,

x = (u′
t)

1
n ,

−→






u′
t = xn,

u = (y′
x)

2−l,

t = ym+1.

2.3 Solvable equations

The class of generalized Emden-Fowler equation (1) admits a general group

D3(g, r). (For feather details see [5,6])

The group D3(g, r), is valid for all values n, m and l, except for the singular

point m = −1, 0; n = −1, 0; l = 1, 2. The group D3(g, r) may be extended

smoothly on these points (except for the trivial solvable points m, n = 0) while

retaining the group D3(g, r) structure. The technique for constructing the smooth

extension is described in [2,5].

Now, by extending the classical Emden-Fowler equations associated to the

vector (1 − m,m, 0) described in [2,5] and using the operators g, r and s with

the consideration of equation (1), we obtain the group D6(g, r, s). This group is

valid for every value of m except the singular points 0,±1, 2.

It is necessary to pay attention to the point that using the properties of dis-

crete groups and inevitability of the applied transformations we can reach to the

analytic solution of any equation appearing in group D3(g, r), if we can obtain

the solution of a single equation by using classical methods. We summarize the

selected results from this procedure in Table 1. (see [2])
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Differential equation Analytical solution

y
′′

xx = Ax−4 y5 y(x) = x
(
1 + 1

3 x2
)− 1

2

y
′′

xx = Axy−4(y
′
)3 x = y sin

(
1
y

)

y
′′

xx = Ax−4 y y(x) = x sin
(

1
x

)

y
′′

xx = Axy− 4
3 (y

′
)

11
5 y(x) =

[
3

(
x− 2

3 − 1
)]− 3

2

y
′′

xx = Ax− 5
6 y− 1

2 (y
′
)

5
4 y(x) =

(
1 − 3

3
5 x

1
3

)3

y
′′

xx = Ax− 1
2 y− 5

6 (y
′
)

7
4 y(x) = 3− 9

5 (1 − x3)3

y
′′

xx = Ax− 4
3 y(y

′
)

4
5 y(x) =

[
1
3

(
x− 2

3 + 3
)]− 3

2

y
′′

xx = Ax5 y−4(y
′
)3 y(x) =

(
x−2 − 1

3

)− 1
2

Table 1.

3 Analysis of the method

In this section presents analysis of the relation between the exact solutions of

classical Emden-Fowler equation and nonlinear equations of heat conduction.

3.1 The formulation of the problem

According to [3], we consider the following problem of heat conduction in the

spherical coordinates r , θ , φ:

∇ ∙ (K (T )∇T ) =
∂T

∂t
, (5)

with the following initial and boundary conditions:

T (r, 0) = T0, T (1, t) = g(t).

where T = T (r, t) is the temperature, K the heat transfer coefficient, and t the

time. Assume that

K = k0T
5
2

where k0 is constant.

Equation (5) can be written as

∂K

∂r
r̂ ∙

∂T

∂r
r̂ +

K

r2

∂

∂r

(
r2 ∂T

∂r

)
=
∂T

∂t
. (6)
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By substituting:
∂K

∂r
=

5k0

2
T

3
2
∂T

∂r
,

into (6), we obtain the following equation:

5k0

2
T

3
2

(
∂T

∂r

)2

+
2k0

r
T

5
2
∂T

∂r
+ k0T

5
2
∂2T

∂r2
=
∂T

∂t
. (7)

Application of the separation of variables:

T (r, t) = R(r)P(t), (8)

gives:

∂T

∂t
= R P ′

t ,
∂T

∂r
= P R′

r ,
∂2T

∂r2
= P R′′

rr ,

and hence equation (7) reduces to:

5k0

2
R

1
2 R′2

r + 2k0r−1 R
3
2 R′

r + k0 R
3
2 R′′

rr = P− 7
2 P ′

t = −λ2, (9)

where λ is the separation parameter. As a result of this decomposition, we obtain

the following defining system:






P− 7
2 P ′

t = −λ2,

5k0

2
R

1
2 R′2

r + 2k0r−1 R
3
2 R′

r+ k0 R
3
2 R′′

rr = −λ2.
(10)

Note that the first equation of this system yields the function P(t), in the

following form:

P(t) =
(

5

2
λ2t + c1

)− 2
5

, (11)

where c1 is a constant.

We shall now apply the following RF-pair operations, as a consequence of

which the second equation of the system (10) is transformed to the classical

Emden-Fowler equation. Having applied the operation:

FU : r = es, R = ueks,

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 17:38 — page 116 — #10

116 STUDY OF EXACT SOLUTIONS OF NONLINEAR HEAT EQUATIONS

where

R
′

r = es(k−1)
(
u′

s + ku
)
,

R
′′

rr = es(k−2)
(
u′′

ss + (2k − 1)u′
s + k(k − 1)u

)
,

on the second equation of the system (10), we have the following equation:

e
s
(

5k
2 −2

) (
u′′

ss +
5

2
u−1u′2

s + (7k + 1)u′
s +

(
7k2

2
+ k

)
u +

λ2

k0
u− 3

2

)
= 0, (12)

and if we set k =
4

5
, then equation (12) reduces to the autonomous equation

u′′
ss +

5

2
u−1u′2

s +
33

5
u′

s +
76

25
u +

λ2

k0
u− 3

2 = 0. (13)

Now, by using the raising order operation F X : u′
s = w(u), u′′

ss = ww′
u ,

equation (13) reduces to the general Abel equation to the following form:

ww′
u = −

3

2
u−1w2 −

33

5
w −

76

25
u −

λ2

k0
u− 3

2 , (14)

where the general coefficients of this Abel equation according to the definition

3, is as follows:

φ0(u) = 0, φ1(u) = 1,

ψ0(u) = −
λ2

k0
u− 3

2 −
76

25
u, ψ1(u) = −

33

5
, ψ2(u) = −

5

2
u−1.

In this position, we consider the following transformations:

E = exp
(

−
∫
ψ2(u)

φ1(u)
du

)
= u

5
2 , ν =

(
φ0(u)

φ1(u)
+ w

)
E = u

5
2w, (15)

and define:

F0(u) =
(
ψ0

φ1
−
φ0ψ1

φ2
1

+
φ2

0ψ2

φ3
1

)
E2 −

λ2

k0
u

7
2 −

76

25
u6,

F1(u) =
[

d

du

(
φ0

φ1

)
+
ψ1

φ1
− 2

φ0ψ2

φ2
1

]
E −

33

5
u

5
2 .
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By applying the transformation (15) on the equation (14), we obtain:

νν ′
u = −

33

5
u

5
2 ν −

λ2

k0
u

7
2 −

76

25
u6. (16)

The equation (16) by using the transformations:

τ = τ(u) =
∫

F1(u)du = −
33

5

∫
u

5
2 du = −

66

35
u

7
2 ,

and

ϕ(u) =
F0(u)

F1(u)
=

76

165
u

7
2 +

5λ2

33k0
u,

reduce to

νν ′
τ − ν =

5λ2

33k0
τ +

76

165
τ

7
2 , (17)

where

τ = −
66

35
u

7
2 . (18)

Now, by introducing the new constants n and A in the forms:

5λ2

33k0
= −

(n + 2)
(
n + 9

2

)

(
2(n + 2)+ 5

2

)2 ,
76

165
= A

(
5

4(n + 2)+ 5

)2

, (19)

and using the transformation:

f = Aτ
5
2 , z =

5 + 4(n + 2)

5

ν

τ
−

2(n + 2)

5
, (20)

equation (17) reduced to the equation:

(z − z2 + f ) f ′
z =

(
5

2
z + n + 2

)
f. (21)

(For details see [8]).

Finally, through the substitution:

f = Axn+2 y
5
2 , z =

x

y
y′

x , (22)

the equation (21) is transformed to the classical Emden-Fowler equation:

y′′
xx = Axn y

7
2 , (23)
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where A is an insignificant parameter, A and n depends on λ and λ has been

defined in (9) as a separation parameter. Note that n is also a constant depending

on the initial and boundary conditions. For some values of n, this equation

is integrable as a consequence of which, we have been able to construct some

solution for the nonlinear heat conduction problem.

3.2 Exact solutions of the original equation

In this section, our aim is to obtain the exact solutions of the second equation

of system (10), using the effect of inverse of the RF-pair operators on the exact

solutions of the Emden-Fowler equation (23). For this purpose, in equation (23)

let n = −
13

2
, then this equation is reduced to the following equation:

y′′
xx = Ax− 13

2 y
7
2 ,

with parametric solution as:

x = αC∗l
1 N (θ,C∗

2 ) = αC∗l
1 E−1

7
2
, y = βC∗h

1 M(θ,C∗
2 ) = βC∗h

1 θE−1
7
2
, (24)

where

A = ±
9

4
α

9
4 β− 5

2 , h =
9

2
, l =

5

2
,

E 7
2

=
∫ (

1 ± θ
9
2
)− 1

2 dθ + C∗
2 , N = E−1

7
2
, M = θE−1

7
2
,

and C∗
1 ,C∗

2 , α and β are constants and A = f (α, β) is an insignificant parameter

which is fully discussed in [6], pp. 254–255.

By using the parametric solutions (20), we have

y′
x =

dy

dx
=
β

α
C∗(h−l)

1

(

θ −
E 7

2

d
dθ E 7

2

)

, (25)

and substituting (24) and (251) in the transformation (22), we obtain the exact

solution of equation (21) in the following form:

f = Aα− 9
2β

5
2 C

∗
(

5h−9l
5

)

1 θ
5
2 E2

7
2
, z = 1 −

E 7
2

θ d
dθ

(
E 7

2

) . (26)
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From equation (26) and (20), we obtain τ as:

τ = α− 9
5βC

∗
(

5h−9l
5

)

1 θE
4
5
7
2
, (27)

and also using the relation (19), we reformulate the expression for z in (20) as

follows:

z =
662k0

5λ2

18

65

ν

τ
+

9

5
. (28)

Now, by substituting transformations (26) and (27) into (28), we obtain the

parametric solution of the equation (17) in the following form:

ν = B0α
− 9

5βC
∗
(

5h−9l
5

)

1 λ2θ

(

−
4

5
−

E 7
2

θ d
dθ E 7

2

)

E
4
5
7
2
, (29)

where

B0 =
325

688k0
.

On the other hand, by using (27), we have:

θE
4
5
7
2

= α
9
5β−1C

∗
(

5h−9l
5

)

1 τ, (30)

and substituting (30) in (29), the equation (29) is reduced to the following

equation:

ν(τ) = −B0λ
2τ

(
4

5
+

D2(τ )

τD1(τ )

)
, (31)

where

D1(τ ) =
d E 7

2

dθ
|
θ=α

9
5 β−1C

∗( 5h−9l
5 )

1 E
− 4

5
7
2
τ

,

D2(τ ) = α− 9
5βC

∗
(

5h−9l
5

)

1 E
9
5
7
2
|
θ=α

9
5 β−1C

∗( 5h−9l
5 )

1 E
− 4

5
7
2
τ

.

Now, the solution of (16) by using the relations (18) and (31) can be obtained

as:

ν(u) = −B0λ
2u

(
4

5
+

D2(u)

u D1(u)

)
, (32)
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where

u =
(

−
7

14k + 2

) 2
7

τ
2
7 .

Also, by replacing (15) into (32), we obtain the following solution for equa-

tion (14):

w(u) = −B0λ
2u− 3

2

(
4

5
+

D2(u)

u D1(u)

)
. (33)

Applying the operator

F X−1 : s =
∫

du

w(u)

on the equation (33), yields the exact solution of the equation (13) in the follow-

ing form:

s = −
1

B0λ2

∫
u

3
2

4
5 + D2(u)

u D1(u)

du.

Now, if we assume that this equation is integrable, then we set:

s =
1

B0λ2
F(u), (34)

where

F(u) = −
∫

u
3
2

4
5 + D2(u)

u D1(u)

du.

Hence, by using the inverse operator FU : r = es , R(r) = urk in equation

(34), this equation reduces to the exact solution of the second equation of system

(10), which is as follows:

R(r) = ue
k 1

B0λ
2 F(u)

, (35)

where u is a function of r . Finally, by substituting (11) and (35) in (8), we get

the exact solution of equation (7) in spherical coordinate as follows:

T (r, t) = R(r)P(t) =
(

ue
k 1

B0λ
2 F(u)

)
(
aλ2t + c1

)− 2
5 . (36)

Due to the symmetry of the problem with respect to θ andφ, we may setφ = π
2 ,

θ = 0 and obtain the same initial and boundary condition as T (r, 0) = T0,

T (1, t) = g(t).
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4 Conclusion

By introducing the some RF-pair operation and series of transformations beside

DGT , the nonlinear heat conduction problem with variable transfer coefficient

in applied physics can be transformed into the classical Emden-Fowler equation

which maybe integrated using classical methods. Then, by using the inverse of

this operations and transformations, the exact solution of Emden-Fowler equa-

tion reduced to the exact solution of the nonlinear heat conduction problem. This

approach shows that, under the RF-pair operations and transformations, the so-

lution of transformed equation can be converted into the solution of the reference

equation.
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