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Abstract. In this article, we numerically determine the effective stress-strain relation of some

two-dimensional polycrystals. These are aggregates of a few tens of perfectly bonded single-

crystal (hexagonal atomic lattice) grains, with varying orientations. Each grain obeys a given

nonlinear viscoplastic stress-strain relation, which depends on the orientation of the grain. Precise

calculations performed with this microscopic model are compared with calculations done with a

macroscopic approximate model (in which matter has no microstructure) in order to determine the

macroscopic constitutive law. We find an effective behaviour for the stationary response which

appears to be also consistent for the transient response. The influence of the number of grains as

well as that of the distribution of grain orientations are investigated.
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1 Introduction

The theoretical prediction of the effective response of a heterogeneous material

is still an essentially open question. In some few simple cases, an analytic closed

form expression is known. For instance, this is the case for a linear elastic matrix

with linear elastic inclusions, in the dilute limit (that is, inclusions are considered

too far away from one another to have an interaction) [7].
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A more general case is that of a material presenting material nonlinearity

[6,10]. The constitutive law (also named the stress-strain relation) of such a

material reads

ε(x, t) = ∂U

∂σ
(x, σ (x, t)), (1)

where the real-valued function U is the heterogeneous elastic stress potential,

σ(x, t) is the stress tensor, and ε(x, t) is the strain tensor. Throughout this

article, we work under the assumption of small perturbations (small strain, small

displacement). All fields are defined on the reference configuration, and ε(x, t)

is linked to the displacement field u(x, t) by the linearized compatibility equation

ε = 1

2

(∇u + ∇uT
)
. (2)

In this setting, one can derive various bounds and estimates on the effective

behaviour [4,8,11,12,13]. Let us note that, in general, no closed form expression

for the effective elastic stress potential is available.

In this article, we will consider the elasto-viscoplastic materials whose consti-

tutive law reads

ε̇(x, t) = ∂Uvp

∂σ
(x, σ (x, t)) + ∂Ue

∂σ̇
(x, σ̇ (x, t)), (3)

where Uvp is the viscoplastic stress potential (also referred to as the dissipation

potential) and Ue is the elastic stress potential. So the strain rate tensor ε̇(x, t),

which is the time derivative of the strain tensor, depends both on the stress tensorσ

and the stress rate tensor σ̇ . In such a case, when the stress-strain relation cannot

be written with a unique potential, there are no theoretical bounds known.

In the following, we numerically investigate the effective behaviour of a het-

erogeneous polycrystal obeying such an elasto-viscoplastic law [1]. With a view

to studying a more realistic and complex model in the future, we want to check

here whether an effective constitutive law of type (3) can be inferred from the

examination of the material at lower scale.

The article is organized as follows. The polycrystal model is presented in Sec-

tion 2. Let us just mention in this Introduction that a polycrystal is an aggregate

of perfectly bonded single-crystal grains, and that each grain is homogeneous

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



FRÉDÉRIC LEGOLL 311

and obeys a given nonlinear stress-strain relation. This relation depends on pa-

rameters which are not the same from one grain to another one, thus making

the polycrystal heterogeneous. Section 3 is dedicated to the theoretical study of

such a heterogeneous law. We first recall some definitions and classical results

on the derivation of an effective law for heterogeneous materials, by a homog-

enization procedure. As above stated, the classical procedure does not apply

for our model, since the microscopic law cannot be written by using a single

potential. We however decide to make use of the classical procedure separately

on the elastic potential and on the viscoplastic potential, thus obtaining an effec-

tive elastic potential and an effective viscoplastic potential, up to some unknown

parameters. Collecting these two effective potentials, we are able to postulate

some expression for the effective constitutive law (see (17) below).

Our aim is to use, in the future, the effective law in the following way. Com-

puting the response of a structure (composed of a large number of grains) by

using the microscopic law is very expensive. Recall that, if one uses a finite

element method, the mesh size has to be smaller than the grain size. Using an

effective homogeneous law is much cheaper, for it allows for larger mesh sizes.

In this article, as a first step, we look for an effective constitutive law which is

consistent with the microscopic law. This consistency is checked by comparing

the numerical results that are obtained on the basis of the effective law with

the numerical results that are obtained (through a costly calculation) with the

microscopic law. For this purpose, we choose some test problems, and make

two computations, one with the macroscopic model, one with the microscopic

model (by using a very fine finite element mesh). Numerical results are given in

Section 4.

2 The microscopic model

The materials we deal with are metals that have a hexagonal atomic lattice (see

Fig. 1). The orientation of the lattice is not uniform in the material: by definition,

a grain is a domain of the material in which the orientation stays constant, and

a polycrystal is a set of a large number of perfectly-bonded grains [1]. We will

only consider polycrystals made of grains of isotropic shape (there is no special

direction in the grain shape). For the materials we deal with, the characteristic
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size of a grain is 5.10−6 m, which is much larger than the atomic scale (10−10 m):

so it is possible to use a continuum model to describe the constitutive relation

inside a grain. At this scale, the stress tensor is σµ(x, t), the displacement

is uµ(x, t) and the strain tensor εµ(x, t) is linked to the displacement by the

linearized compatibility equation (2). We do not include in our model any grain

interface properties, and we only suppose that the displacement and the stress

vector are continuous at the grain interfaces. The stress-strain relation inside a

grain depends on its orientation, and the heterogeneity in the polycrystal comes

from the fact that this orientation is not the same from one grain to another one.

basal plane

θ

Laboratory coordinates

ex

ey
n2

n1
n3

l3 l1

l2

Figure 1 – Atomic lattice inside a grain: 3D unit cell (left), 2D section along the basal

plane inside a grain (center), the 3 slip systems we take into account (right). The

orientation of the grain is given by the angle θ .

We suppose in the following that for all grains, the basal plane of the atomic

lattice (see Fig. 1) is the same, namely the (ex, ey) plane. So, the grain orientation

is defined by an angle between 0 and π/6. We also assume that the grain ori-

entations occur with equal probability (there are actually very few experimental

data for the metals we deal with, so this assumption is the most sensible one).

Let us now write the stress-strain relation inside a grain. In the metals we

study, there are 12 preferred slip systems, defined by the plane in which the slip

takes place (the normal direction to this plane is denoted by ns), and by the slip

direction ls . Here, the vectors ns(x) and ls(x) depend on the space variable x, as

they change from one grain to another one. In this article, we want to work in

a 2D geometry in the (ex, ey) plane, so we only take into account the 3 systems

for which the vectors ns(x) and ls(x) belong to the (ex, ey) plane (see Fig. 1).

Knowing the slip systems, one can compute the orientation tensors ms(x), which
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are defined by

ms(x) = 1

2
(ns(x) ⊗ ls(x) + ls(x) ⊗ ns(x)) . (4)

The strain rate tensor ε̇µ is the sum of two terms, the elastic strain rate tensor

ε̇e
µ and the viscoplastic strain rate tensor ε̇vp

µ . The elastic term is given by the

linear Hooke law. We do not include in our model any nonlinear elastic effects,

for they are small in comparison to the efforts we account for. We suppose

that the elastic characteristics are homogeneous and isotropic in the polycrystal.

Using the Young modulus E and the Poisson ratio ν, the elastic term reads

εe
µ(x, t) = 1 + ν

E
σµ(x, t) −

( ν

E
tr σµ(x, t)

)
I, (5)

where I is the identity 3×3 tensor. On the other hand, we assume the viscoplastic

term to be of a power-law type

ε̇vp
µ (x, t) =

3∑
s=1

( | σµ(x, t) : ms(x) |
Kµ

)n

sign
(
σµ(x, t) : ms(x)

)
ms(x). (6)

We make the assumption that the parameters n and Kµ of the power-law are the

same for all grains. So, as mentioned above, the heterogeneity from one grain to

another one just comes from the fact that the orientation tensors ms(x) are not

the same.

So, the constitutive relation inside a grain reads

ε̇µ(x, t) = ε̇e
µ(x, t) + ε̇vp

µ (x, t). (7)

Recasting (7) in the form of (3), we see that, in our case, the microscopic stress

potentials (introduced in (3)) read

Ue
µ(σ̇µ) = 1

2
σ̇µ · � · σ̇µ, (8)

Uvp
µ (x, σµ) = 1

n + 1

(
1

Kµ

)n 3∑
s=1

| σµ : ms(x) |n+1, (9)

where the fourth order tensor � only depends on E and ν (see (5)).

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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Let � be the region occupied by the polycrystal in the reference configuration.

Solving the microscopic model consists in searching for the displacement field

uµ(x, t) solution to the equilibrium equation

∀x ∈ �, ∀t ∈ [0, T ], div σµ(x, t) = 0, (10)

along with constitutive laws (5-6-7), compatibility equation (2) and convenient

initial and boundary conditions.

Quantitatively, we use the following numerical values:

E = 105 000 MPa , ν = 0.43 , Kµ = 178 MPa , n = 6.5.

3 The homogenization procedure

In Section 3.1, we first briefly recall the classical homogenization procedure [12]

used in the stationary case when the stress-strain relation can be written by using

a single potential. Next, in Section 3.2, we use the procedure to determine the

analytical expression, up to some parameters, of the effective behaviour of the

polycrystal. Henceforth, there are no body forces.

3.1 Classical homogenization procedure

Let us consider an elastic material (see Section 1) in the stationary case, described

by a heterogeneous microscopic stress potential Uµ(x, σµ). The constitutive law

is given by (1) with U ≡ Uµ. We suppose that Uµ is strictly convex with

respect to σµ. The microscopic deformation potential Wµ(x, εµ) is defined as

the Legendre transform of Uµ with respect to σµ.

We can first work with the displacement as the unknown and define the so-

called effective deformation potential WM . For a given symmetric constant tensor

εM , WM(εM) is defined by

WM(εM) = inf
{〈 Wµ(x, εµ(x)) 〉, εµ(x) ∈ K(εM)

}
, (11)

where 〈 · 〉 is the average over � and the minimization space is defined by

K(εM) = {
εµ(x); ∃ uµ(x) satisfying (2) in �, uµ(x) = εM · x on ∂�

}
.
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Note that, as a consequence of (2), all strain tensors εµ in K(εM) satisfy

〈 εµ(x) 〉 = εM . Let εµ(x) be the minimizer of problem (11), and let σµ(x) be

the microscopic stress field at equilibrium. The effective strain and stress tensors

are defined as the averages over � of the microscopic tensors. We have already

noticed that the effective strain tensor is εM . We set σM = 〈 σµ(x) 〉. One can

show that effective tensors and potential are linked by

σM = ∂WM

∂εM

(εM). (12)

For completeness, let us mention that there are other ways to define an effective

potential. We have so far worked with the deformation potential Wµ(x, εµ), we

may alternatively work with the stress potential Uµ(x, σµ), the stress field being

the unknown. The so-called effective stress potential UM is defined by

UM(σM) = inf
{〈 Uµ(x, σµ(x)) 〉, σµ(x) ∈ S(σM)

}
, (13)

where σM is a given symmetric constant tensor, and where the minimization

space is defined by

S(σM) = {
σµ(x); σµ(x) · n(x) = σM · n(x) on ∂�, div σµ = 0 in �

}
.

Let σµ(x) be the minimizer of problem (13), and let εµ(x) be the microscopic

strain field at equilibrium, which is related to σµ(x) by (1) where U is replaced

by Uµ. Again, effective tensors are defined as averages over � of microscopic

tensors. All stress tensors σµ(x) in S(σM) satisfy 〈 σµ(x) 〉 = σM , so the effective

stress tensor is σM . We set εM = 〈 εµ(x) 〉. As in the first case, one can show

that effective tensors and potential are linked by εM = ∂UM

∂σM

(σM).

One says that the material follows an effective stress-strain relation if the

effective stress potential UM defined by (13) is the Legendre transform, with

respect to the macroscopic strain tensor εM , of the effective deformation potential

WM defined by (11).

Remark. The homogenization procedure we have just recalled is based on

calculus of variations, and no quantity depends on time. In the time-dependent

case, under the quasistatic approximation, it is also possible to define an effective

deformation potential and an effective stress potential, by the same procedure as

above.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



316 NONLINEAR VISCOPLASTIC TWO-DIMENSIONAL POLYCRYSTALS

3.2 Homogenization of the polycrystal law

We now proceed to the homogenization of the polycrystal model presented in

Section 2. Constitutive laws are (5-6-7), corresponding potentials are defined by

(8-9), and the equilibrium equation is (10). When writing this equation, we have

neglected the acceleration. As two potentials are involved, and as the constitutive

law is time-dependent, we cannot directly use the theory we have just recalled.

However, we can apply the theory separately on the elastic stress potential and

on the viscoplastic stress potential. Indeed, if we only consider one potential, we

are in the setting detailed in Section 3.1. Actually, the procedure is immediate for

the elastic potential as elastic properties are homogeneous in the polycrystal. We

thus focus on the viscoplastic stress potential. To simplify notation, let dµ = ε̇vp
µ

denote the microscopic viscoplastic strain rate tensor.

3.2.1 The viscoplastic term

We first note that tensors ms are symmetric and satisfy mxx
s = −m

yy
s and mxz

s =
m

yz
s = mzz

s = 0 (see (4)). Hence, for any symmetric microscopic stress tensor

σµ, we have σµ(x) : ms(x) = αµ(x)us(x) + βµ(x)vs(x), where we set

αµ = σxx
µ − σyy

µ , βµ = 2 σxy
µ , us = mxx

s , vs = mxy
s .

With (6), we note that tensors dµ only depend on two scalar variables, dxx
µ and

dxy
µ . So the only variables to consider are dxx

µ , dxy
µ , αµ and βµ. The potential

Uvp
µ (x, σµ) that we introduced in (9) is not strictly convex with respect to σµ,

but if we rewrite it in terms of (αµ, βµ),

Uvp
µ (x, αµ, βµ) = 1

n + 1

(
1

Kµ

)n 3∑
s=1

| αµus(x) + βµvs(x) |n+1,

it turns out to be a strictly convex function of (αµ, βµ), and (6) can be recast into

dxx
µ = ∂Uvp

µ

∂αµ

and dxy
µ = ∂Uvp

µ

∂βµ

.

Let Wvp
µ

(
x, dxx

µ , dxy
µ

)
be the Legendre transform of Uvp

µ with respect to (αµ, βµ).

As Uvp
µ is a homogeneous function of degree n + 1 of the pair (αµ, βµ), the

potential Wvp
µ is a homogeneous function of degree 1+1/n of the pair

(
dxx

µ , dxy
µ

)
.
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We now turn to the derivation of an effective model. Following the general

procedure recalled in Section 3.1, we define the effective potential W
vp

M by

W
vp

M

(
dxx

M , d
xy

M

) = inf
{〈

Wvp
µ

(
x, dxx

µ , dxy
µ

) 〉
,

(
dxx

µ , dxy
µ

) ∈ K
(
dxx

M , d
xy

M

)}
,

where K
(
dxx

M , d
xy

M

)
is defined by

K
(
dxx

M , d
xy

M

) =
{ (

dxx
µ (x), dxy

µ (x)
); ∃ uµ(x) such that uµ(x) = γ

(
dxx
M , d

xy
M

) · x

on ∂� and
1

2

(∇uµ + ∇uT
µ

) = γ
(
dxx
µ (x), dxy

µ (x)
)

in �

}
,

the function γ being defined by

γ : (u, v) ∈ R
2 	→

⎛
⎜⎝ u v 0

v −u 0

0 0 0

⎞
⎟⎠ ∈ M3(R).

Just as (12) holds, it holds that

αM = σxx
M − σ

yy

M = ∂W
vp

M

∂dxx
M

, βM = 2 σ
xy

M = ∂W
vp

M

∂d
xy

M

. (14)

The macroscopic potential W
vp

M is a homogeneous function of degree 1 + 1/n

of
(
dxx

M , d
xy

M

)
. To use this fact, we need to change variables: instead of working

with the cartesian variables dxx
M and d

xy

M , let us work with the polar coordinates

associated to them, the radius

RM =
√

(dxx
M )2 + (d

xy

M )2

and the angle θM . These variables present the advantage that RM and θM are

respectively homogeneous functions of degree 1 and 0 of
(
dxx

M , d
xy

M

)
. So W

vp

M

reads

W
vp

M (RM, θM) = R
1+1/n

M C(θM),

where C is an unknown function.

As this point, we introduce the following simplification. Considering that, first,

all grain orientations occur with equal probability, and second, that the geometry

of the grains and of the polycrystal is isotropic, we postulate, without any rigorous
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justification of this fact, that the response of the polycrystal is isotropic, at least

when the number of grains is large enough. We therefore simplify the previous

expression of W
vp

M , setting C(θM) as an (unknown) constant C, for θM is an

anisotropic variable whereas RM is an isotropic variable.

Let us define

J (σM) =
√

3

2

√(
σ̃ xx

M

)2 + (
σ̃

yy

M

)2 − 1

2

(
σ̃ zz

M

)2 + 2
(
σ

xy

M

)2
, (15)

where σ̃M = σM −
(

1

3
tr σM

)
1 is the deviatoric part of σM . Then equations

(14) can be written as

ε̇
vp

M =
(

J (σM)

KM

)n
∂J

∂σM

, (16)

where KM is an unknown parameter (playing the role of the constant C used

above) that we will determine by numerical computations in Section 4.

3.2.2 Postulated macroscopic model for the polycrystal

In the previous part, we have made use of the classical homogenization procedure

to obtain separately an elastic effective potential and a viscoplastic effective

potential. We postulate, again without any rigorous justification of this fact, that

the effective constitutive law for the polycrystal is the sum of the elastic effective

term with the viscoplastic effective term. So the effective constitutive law that

we use is

ε̇M(x, t) = � : σ̇M(x, t) +
(

J (σM(x, t))

KM

)n
∂J

∂σM

, (17)

where J is defined by (15). Solving the effective model consists in searching for

the displacement field uM(x, t) solution to the equilibrium equation

∀x ∈ �, ∀t ∈ [0, T ], div σM(x, t) = 0, (18)

along with constitutive law (17), compatibility equation (2) and convenient initial

and boundary conditions.

The whole microscopic constitutive law involves an ODE, and the procedures

detailed in Section 3.1 do not apply in this case. With the numerical tests de-

scribed in the following, we check whether this approximation may be sensible.
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4 Numerical results

In the previous section, working with the deformation potential, we have found

an effective model for the polycrystal, up to the knowledge of the constant KM

(see (17)). In order to determine a value for KM , we use numerical computations

on different polycrystals [2,5], with several linear displacement boundary con-

ditions. In the following, we check that there exists a single value for KM such

that macroscopic computations agree with microscopic computations for all test

problems (that is, macroscopic tensors are equal to the average of microscopic

tensors over the polycrystal �).

One can also work with the microscopic stress potential to obtain an effective

stress potential. One finds the same result as (16), with a a priori different

constant Ks
M . To numerically determine a value for Ks

M , one would follow the

same procedure as before, except that one would work with linear surface force

boundary conditions. If the value found for Ks
M is the same as the value found

for KM (with linear displacement boundary conditions), then the effective stress

potential is the Legendre transform of the effective deformation potential, and

the polycrystal actually obeys an effective stress-strain relation (see Section 3.1).

We did not make this kind of test, since, when one uses surface force boundary

conditions, the displacement at equilibrium is only determined up to a rigid body

motion.

Finally, a third test is possible: one can use mixed boundary conditions (we

impose displacement on some part on the boundary and surface force elsewhere).

Results of this kind of test are given in the following. The polycrystal actually

obeys an effective stress-strain relation if the value previously found for KM

(using linear displacement boundary conditions) is also valid with these mixed

boundary conditions.

We have performed numerical tests with three different polycrystals, one of

30 grains (first with a coarse mesh: 5 to 15 finite elements per grain; then with a

finer mesh: finite element edges two times smaller), and two of 110 grains (the

same grain geometry, but with two different orientation samples). We work in

generalized plane strain in direction z, that is to say we just simulate a 2D layer of

the polycrystal of side surface S, with 3D displacement, strain and stress tensor

fields. Shears εxz and εyz are equal to zero, and εzz is uniform on the whole layer.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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The value of εzz is obtained by assuming that the resulting force normal to the

layer is zero.

On the side surface S, we choose several different boundary conditions: linear

displacement boundary conditions (tension compression, thus a strain denoted by

a superscript TC; shear, a strain denoted S; tension compression shear, a strain

denoted TCS), and also mixed boundary conditions, letting two opposite faces

force free, imposing zero normal displacement on one face, and imposing a uni-

form tensile displacement rate on the last face (test denoted T). For displacement

boundary conditions, the strain tensors are

εT C
M (t) =

⎛
⎜⎝ α t 0 0

0 −α t 0

0 0 0

⎞
⎟⎠ , εS

M(t) =
⎛
⎜⎝ 0 α t 0

α t 0 0

0 0 0

⎞
⎟⎠

and

εT CS
M (t) =

⎛
⎜⎝ α1 t α2 t 0

α2 t −α1 t 0

0 0 0

⎞
⎟⎠ .

For brevity, we only detail here one test case, namely that of a polycrys-

tal subjected to shear load. The averaged microscopic strain tensor and the

macroscopic strain tensor increase linearly as time increases. One can see on

Fig. 2 the averaged microscopic stress 〈 σµ(x, t) 〉 as a function of time (we have

〈 σyy
µ 〉 = −〈 σxx

µ 〉 and σ zx
µ (x, t) = σ zy

µ (x, t) = σ zz
µ (x, t) = 0), and the macro-

scopic stress σM(t), which is uniform in this case. We make the assumption

that, in the long-time limit, the stress tensors σµ(x, t) and σM(x, t) converge to a

limit, which thus corresponds to the stationary regime of (7) and (17). One can

check that the limit limt→∞ σ
xy

M (t) depends on KM (for this shear load test, an

analytical expression can be found). We choose KM so that

lim
t→∞ σ

xy

M (t) = lim
t→∞〈 σxy

µ (x, t) 〉,

which leads in this case to the numerical value KM = 347 MPa. The previous

equation enforces that, in the long-time limit, the effective law is consistent

with the microscopic law. The macroscopic stress displayed on Fig. 2 has been
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〈σxx
µ 〉

〈σxy
µ 〉

time

543210

60

40
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0
σxx

M

σxy
M

time

543210

60

40

20

0

Figure 2 – Shear load on the 30 grain polycrystal: averaged microscopic stress (left),

macroscopic stress (right).

computed using this value of KM . We also notice that σxx
M = 0, as expected. On

the other hand, 〈 σxx
µ (x, t) 〉 is not zero, however up to a small error.

For the other test problems, the situation is the same as the one we describe

here. It is possible to find of value for KM by adjusting the largest components

of stress and strain tensors (in the limit t → ∞), and there is a small error on

some components (xx and yy in shear load, xy in tension compression load).

The values found for KM are given in Tab. 1. We notice that, up to a 0.4% error,

the value depends neither on the type of boundary conditions, on the number

of grains, on the mesh size nor on the orientation distribution sample. Thus the

polycrystal obeys an effective constitutive law with KM = 346 MPa.

In order to measure the error of the small components of the tensors with

respect to the average value, we define some empiric estimators:

• for mixed boundary conditions, lim
t→∞

(〈 εxy
µ 〉/〈 εyy

µ 〉);

• lim
t→∞

(〈 σxx
µ 〉/〈 σxy

µ 〉) for shear load;

• for tension-compression load, lim
t→∞

(〈 σxy
µ 〉/〈 σyy

µ 〉);

• lim
t→∞

(〈 σxx
µ ± σxy

µ 〉/σ xy

M

)
for tension-compression-shear load, boundary

conditions being so that lim
t→∞ σxx

M ± σ
xy

M = 0;

The values found for these estimators are given in Tab. 2. One can notice that all

errors are small (less than 3%), so the effective law is a good approximation of

the microscopic model in most of the situations studied.
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30 grains 30 grains 110 grains 110 grains

coarse mesh fine mesh sample 1 sample 2

T 345.6 347.1

T C 345.6 345.6 347.1 345.3

S 347.25 347.25 344.6 344.6

TCS 346.1 346.0 346.62 345.4

Table 1 – Values of KM for different polycrystals with different loadings (the indicated

value is the average on different boundary condition values).

30 grains 30 grains 110 grains 110 grains

coarse mesh fine mesh sample 1 sample 2

T 2% 0.9%

T C 2.5% 2.5% 0.8% 1.2%

S 2.9% 2.9% 1.1% 1%

TCS 0.3% 0.3% 1.4% 1.3%

Table 2 – Values of error estimators for different polycrystals with different loadings.

It is also interesting to compute averages on grains of stress or strain tensors,

and not on the whole polycrystal. We want to know whether these averages are

similar from one grain to another one, or very different. Let us focus on the

tension-compression-shear load. At each time step, we compute, for each grain,

the average over the grain of (εvp
µ )yy and of σ̃ yy

µ (σ̃ is the deviatoric part of σ ).

We work with the viscoplastic strain tensor and the deviatoric stress tensor since

these are the natural variables for the viscoplastic term of the constitutive law.

Results are given in Figs. 3 and 4. At the beginning, the averages for all grains

are the same: even without any yield stress, the viscous flow can be neglected,

and due to the uniform elasticity assumption, all grains give the same result. As

the viscoplastic term increases, grain responses become heterogeneous. Accord-

ing to classical results in elasto-plasticity [9], the first set of points on Fig. 4,

corresponding to a very low macroscopic viscoplastic strain (around 0.0002),

are aligned along a line, the slope of which is not far from the shear modulus.
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〈 σ̃yy
µ 〉g

〈 (εvp
µ )yy 〉

0.00180.00140.0010.00060.0002-0.0002

60

50

40

30

20

10

0

Figure 3 – Evolution of 〈 σ̃
yy
µ 〉g as a function of 〈 (ε

vp
µ )yy 〉 for the 30 grain polycrystal,

tension-compression-shear load (〈 · 〉g is the average over the grain).

Like for self-consistent approaches, the slope decreases during the loading (see

the three sets of points for a macroscopic viscoplastic strain of 0.0006, 0.0010

and 0.0014), but one can also observe an additional heterogeneity. This kind of

curves can be used to calibrate phenomenological models with uniform stress

and strain in each phase.

〈 σ̃yy
µ 〉g

〈 (εvp
µ )yy 〉g

0.00180.00140.0010.00060.0002-0.0002

60

50

40

30

20

10

0

Figure 4 – Evolution of 〈 σ̃
yy
µ 〉g as a function of 〈 (ε

vp
µ )yy 〉g for the 30 grain polycrystal,

tension-compression-shear load (〈 · 〉g is the average over the grain).

So far, we have just compared responses in the limit t → ∞ (in this limit, the

elastic part of the constitutive law cancells). We may also compare responses

during the whole load process, to check whether microscopic and effective laws

agree only in the viscoplastic limit or also when elastic and viscoplastic terms are
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of the same order of magnitude. We make such a comparison in Fig. 5. For the

other test problems, the situation is alike: the effective law is in good agreement

with the microscopic law (the difference is smaller than 1%).

〈σxy
µ 〉
σxy

M

time

6543210

60

40

20

0
〈σxy

µ 〉
σxy

M

43.532.5

61.5

61

60.5

60

59.5

Figure 5 – Transient response of the 30 grain polycrystal, shear load. The effective law

is in good agreement with the microscopic law (left). On the right-hand side, a zoom on

the region where there are some differences.

This numerical result is very surprising. Starting from a microscopic consti-

tutive law which is time-dependent and involves two potentials, we split it into

two terms. We apply separately on each of them a procedure which is based on

stationary calculus of variations. We fit KM on the long-time limit of the system,

which corresponds to the viscoplastic regime. The numerical result is that the

effective law is in agreement with the microscopic one both in stationary and

transient regime! We acknowledge the fact that there is no rigorous reason for

this success: we just observe that the two laws are consistent.

5 Conclusions

We have dealt in this article with a simple model of a 2D heterogeneous elasto-

viscoplastic polycrystal, for which no theoretical results on the effective law are

available. We have succeeded in numerically identifying an effective law. We

observe that this effective law is consistent with the microscopic law in both the

stationary and transient regime, although it has been obtained by a homogeniza-

tion procedure designed for stationary problems. We are unfortunately unable to

provide any explanation for this fact but are currently working in that direction.
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