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INTRODUCTION

The number of ventilator-free days (VFDs) is one of several organ failure-free outcomes commonly used in critical 
care research, especially in studies focused on respiratory system-directed interventions.(1) Ventilator-free days represents 
a composite outcome that combines both mortality and duration of ventilation into a single variable, thus attenuating 
the effect of the competing risk of mortality. A key rationale behind VFDs is to have a continuous outcome that 
provides greater statistical power to detect a treatment effect than binary outcomes alone. In a recent paper, Yehya et al. 
provided a thorough framework for determining when and how to use VFDs, along with a comprehensive discussion 
of the different methods for analysis and interpretation and the relative statistical power of each test.(1) In this regard, 
recent studies have also explored additional methods of analysis, namely, quantile (median) regression,(2,3) cumulative 
logistic regression,(4,5) generalized pairwise comparisons, including the win ratio method,(6) and conditional and  
truncated approaches.
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ORIGINAL ARTICLE

Objective: To discuss the strengths and limitations of 
ventilator-free days and to provide a comprehensive 
discussion of the different analytic methods for analyzing 
and interpreting this outcome.

Methods: Using simulations, the power of different 
analytical methods was assessed, namely: quantile (median) 
regression, cumulative logistic regression, generalized 
pairwise comparison, conditional approach and truncated 
approach. Overall, 3,000 simulations of a two-arm trial 
with n = 300 per arm were computed using a two-sided 
alternative hypothesis and a type I error rate of α = 0.05. 

Results: When considering power, median regression 
did not perform well in studies where the treatment 
effect was mainly driven by mortality. Median regression 

performed better in situations with a weak effect on 
mortality but a strong effect on duration, duration 
only, and moderate mortality and duration. Cumulative 
logistic regression was found to produce similar power 
to the Wilcoxon rank-sum test across all scenarios, being 
the best strategy for the scenarios of moderate mortality 
and duration, weak mortality and strong duration, and 
duration only.

Conclusion: In this study, we describe the relative power 
of new methods for analyzing ventilator-free days in critical 
care research. Our data provide validation and guidance for 
the use of the cumulative logistic model, median regression, 
generalized pairwise comparisons, and the conditional and 
truncated approach in specific scenarios.
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In this study, we seek to introduce the concept of the 
perception distortion effect, further discuss additional 
aspects of the use of VFDs in critical care research, and 
build on previous work by considering the relative power 
of additional approaches. In addition, power simulations 
based on a previous study and alternative methods for 
analysis were tested and described.

PERCEPTION DISTORTION EFFECT

The perception distortion effect relates to the way 
clinicians perceive and react differently to the findings of 
a given intervention according to the way it is presented. 
For example, we consider an intervention that has not 
affected mortality (identical in both groups) but has 
decreased the duration of ventilation by one day in a 
population of patients with an average duration of 
ventilation of two days. Thus, the mean duration in the 
control group was 3 days, and in the intervention group, 
it was 2 days. Most clinicians would react to this finding 
as a substantial improvement with clinical and practice 
implications. Currently, these patients are followed 
up for 28 days, and the outcome of VFD is expressed 
as the median, which would not be influenced in any 
meaningful way by even 20% mortality. The findings 
would be 25 versus 26 VFDs.

This would be seen as trivial and would likely not 
trigger nearly the same response. In the minds of clinicians, 
the former would be seen as a 33% improvement; the latter 
would be seen as a 3.8% improvement. This distortion is 
even more dramatic if the follow-up is extended to 90 or 
180 days. In this way, VFDs may distort the perception and 
reaction to a major effect on the duration of ventilation, 
resulting in dismissal and neglect of therapies that have 
achieved such effects. This suggests that combining VFDs 
as an outcome with the additional outcome of duration 
of ventilation in survivors may be advantageous in the 
absence of a numerical increase in mortality among patients 
receiving the intervention being assessed.

In medicine, cognitive biases such as perception 
distortion result in diagnostic errors and delays in the 
acceptance of new scientific findings. For example, 
despite good evidence suggesting the impact of 
serum human leukocyte antigen (HLA) antibodies 
on transplant outcomes, routine inclusion of HLA 
antibody testing as part of posttransplant monitoring 
has not been a consensus recommendation for more 
than 30 years.(7) In addition, responses to the detection 
of HLA antibodies in the serum continue to vary, and 

a consensus recommendation for routine treatment has 
not been reached for more than 40 years. This delay 
in the acceptance of the role of HLA antibodies in 
transplant rejection is an example of a cognitive bias 
such as confirmation bias or perception distortion of 
research findings.(7)

ALTERNATIVE APPROACHES TO ANALYSIS

Quantile (median) regression

Since its inception in 1978,(8) quantile or median 
regression has become an important tool in medical 
research for the analysis of nonparametric data and has 
offered a similar advantage of enabling covariate adjustment 
and treatment effect estimates with confidence intervals. 
However, due to the composite and ranking nature of 
VFDs, core differences in outcomes can occur even if the 
median values are identical.(1) In addition, the mortality 
component is critically important but has little effect on 
the median. Thus, the power of median regression is likely 
highly influenced by which component drives the effect of 
VFDs: the duration of ventilation or mortality.

Quantile regression has many advantages, but its major 
disadvantage is that its parameters are more difficult to 
estimate than those of more traditional methods (e.g., 
Gaussian or generalized regression). Inferences from 
such quantile regression can be complicated because the 
estimators for coefficients are not available in closed form.(9) 
The most common way to address this problem is by using 
a linear optimization algorithm with confidence intervals 
based on piecewise linear approximations.(8) Another 
possible way is to use boosting algorithms. However, the 
implementation of p values and confidence intervals of the 
estimated regression parameters is not straightforward.(10) 
Finally, a more recently developed algorithm was based on 
asymmetric Laplace likelihood.(11) Thus, estimation could 
be highly dependent on the method chosen. This method 
of analysis was recently used in two randomized clinical 
trials in the critical care field.(2,3)

Cumulative logistic regression

Cumulative logistic regression considers the ranking 
and ordinal structure of VFDs.(4,5) In this model, the 
cumulative log odds are modeled such that a parameter 
greater than 0 reflects an increase in the cumulative odds 
for the VFD outcome, which implies benefit. A potential 
advantage of this model is that, with multinomial sampling 
of independent subjects, the score test statistic from the 
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model is similar to the Wilcoxon rank-sum test statistic,(12) 
one of the most powerful tests for analyzing VFDs in a 
variety of scenarios.(1) However, with the cumulative logistic 
model, it is possible to further adjust for confounders and 
to extract an effect estimate with a confidence interval. 
The potential disadvantage is that the model assumes 
proportional effects across the ordinal VFD scale. This is 
called the “proportional odds assumption” or the “parallel 
regression assumption”. This method of analysis was 
recently used in two randomized clinical trials in the critical 
care field.(4,5)

Generalized pairwise comparison

The number of VFDs is a composite outcome 
considering the number of deaths and duration of 
ventilation in the calculation. In clinical practice, the 
importance of death is much greater than that of the 
duration of ventilation. When comparing two patients 
undergoing a new treatment or strategy, it is reasonable 
to prioritize the effect on death ahead of the effect on the 
duration of ventilation. Thus, based on this rationale, first, 
it must be determined whether one died before assessing 
the duration of ventilation. If that is not known, then 
one would determine which patient experienced a longer 
duration of ventilation. If both patients survived and had 
the same duration of ventilation, they would be considered 
as tied. This type of analysis is possible in several ways, 
including the comparison of matched pairs (using a win 
ratio approach)(13) or unmatched pairs (using the method 
described by Finkelstein and Schoenfeld).(14) This method 
of analysis was recently used in one randomized clinical 
trial in critical care.(6)

Conditional approach

Based on the rationale described above, which 
prioritizes death over the duration of ventilation, another 
potential strategy is to use a conditional approach. Such 
an approach follows a predefined fixed-testing sequence 
based on clinical information.(15) With this strategy, if 
the intervention studied simply results in a numerically 
greater percentage of deaths than in controls, no further 
assessment is made, and the study is judged as neutral 
or negative depending on the magnitude of the effect on 
mortality. However, if the intervention results in a lower 
mortality rate, the duration of ventilation in survivors 
will then be compared between the studied groups by 
means of traditional tests. This is based on the idea 
that an intervention leading to a numerical increase in 
mortality, even if not statistically significant, is of less 

importance and probably would not be implemented in 
clinical care even if it resulted in a shorter duration of 
ventilation. In the present study, we use a hierarchical 
t test and a hierarchical Wilcoxon rank-sum test as  
conditional approaches.

Truncated approach

Recently, a novel high-power test for continuous 
outcomes truncated by death was reported.(16) This 
approach incorporates the concept that this type of 
outcome is, in fact, a two-dimensional outcome and that 
the constructed combined outcome follows a continuous-
singular mixture distribution. Based on this assumption, 
the authors suggest that this unusual distribution is 
why one cannot resort to nonparametric Wilcoxon 
rank-sum tests. This is because the singular component 
of the distribution of the combined outcome will be 
reduced to simple ties. In this regard, the handling of 
ties in standard statistical software varies and is opaque. 
However, the handling of ties is not the main reason why 
Wilcoxon suffers power loss. The main reason is that the 
null hypothesis in these Wilcoxon-type tests (stochastic 
domination) does not handle the empirical fact that 
treatments might influence mortality and duration of 
ventilation differently.

The authors propose to model the binary component 
(i.e., survival) and the continuous part (i.e., actual 
ventilator-free days) separately but to conduct a single test 
for no treatment effect on either. This approach provides 
a single p value for the hypothesis of no treatment effect 
on the extended ventilator-free days where death is given 
the lowest possible score. To accommodate potential 
nonnormality of the recorded ventilator-free days, we 
describe both the parametric and the semiparametric tests.

METHODS

To maintain consistency and facilitate comparison, we 
adopted the same strategy implemented previously.(1) Overall, 
3,000 simulations of a two-arm trial with n = 300 per arm 
were computed using a two-sided alternative hypothesis 
and a type I error rate of α = 0.05. Mortality was simulated 
according to a Bernoulli distribution, and the duration of 
ventilation among survivors was simulated according to an 
exponential distribution. All deaths were assigned 0 VFDs. 
Patients with a duration of ventilation longer than 28 days 
were assigned 0 VFDs, while for the remaining patients, the 
duration of ventilation was calculated as 28. As previously 
described,(1) we considered a range of scenarios with 
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varying treatment effects for both mortality and ventilator 
duration. For comparison and validity, we replicated the 
power calculations previously performed,(1) including the 
Fine-Gray competing risk model, Gray test, Wilcoxon 
rank-sum test, Student’s t test and Fisher’s exact test. For 
the median regression, we tested three different algorithms: 
asymmetric Laplace distribution, simplex, and interior 
point. For the cumulative logistic regression, the VFDs 
were rounded to one decimal to improve computational 
efficiency. The win ratio approach was calculated with 
death prioritized over VFDs in survivors and using 
the large sample distribution of certain multivariate  
multisample U-statistics.

All simulations were performed in R v.4.0.2, and the 
following packages were used in addition to the base 
program: lqmm,(11) quantreg,(17) cmprsk,(18) ordinal,(19) and 

WinRatio.(20) To illustrate the studied methods for analyzing 
VFDs, two clinical trials were performed: SPICE III(3)  
and TEAM.(21)

RESULTS

When considering power, median regression did not 
perform well in studies where the treatment effect was 
mainly driven by mortality (Table 1). Median regression 
performed better in situations with a weak effect on 
mortality but a strong effect on duration, duration 
only, and moderate mortality and duration. However, 
the median regression did not perform better than the 
Wilcoxon rank-sum test in any of these scenarios. The 
underlying algorithm also plays an important role in 
determining the power of median regression, with the 

Table 1 - Power calculations for different statistical tests with ventilator-free days on Day 28 as the outcome

Effect
Mortality*

(%)

Duration of 
ventilation in 
survivors*

Fine-Gray 
model

(%)

Gray’s 
test
(%)

Wilcoxon 
rank-sum 

test†

(%)

Student’s 
t test
(%)

Fisher’s 
exact test‡

(%)

Median regression§

(%) Cumulative 
logistic 
modelAsymmetric 

Laplace
Simplex

Interior 
point

Mortality only

Treatment 15 7.0 77 78 56 72 84 4 12 20 56 

Control 25 7.0

Strong mortality and 
weak duration

Treatment 15 6.0 94 95 89 94 84 36 52 52 89 

Control 25 7.0

Moderate mortality 
and duration

Treatment 15 5.0 78 80 85 81 32 24 72 80 85 

Control 20 6.5

Weak mortality and 
strong duration

Treatment 15 5.0 83 84 97 90 5 44 88 92 97 

Control 16 8.0

Duration only

Treatment 15 5.0 77 78 96 86 4 36 88 92 96 

Control 15 8.0

Conflicting

Treatment 15 6.5 5 5 14 5 32 64 28 24 14 

Control 20 5.0

The test with the highest power in each scenario is highlighted in bold.
All results based on 3,000 simulated trials with 300 subjects in each of two treatment groups, a two-sided alternative hypothesis, and a type I error rate of α = 0.05.
* Mortality simulated according to a Bernoulli distribution and duration of ventilation in survivors according to an exponential distribution; † normal approximation with continuity 
correction was used for the Wilcoxon rank-sum test;   ‡ outcome is mortality, duration of ventilation is ignored; § all p values extracted via bootstrap with 1,000 samples.
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‘interior point’ algorithm having the greatest power, while 
the asymmetric Laplace algorithm was the least powerful. 
The only scenario in which median regression presented 
the highest power with the asymmetric Laplace algorithm 
was the conflicting scenario.

When considering power, the cumulative logistic 
regression was found to produce similar power to the 
Wilcoxon rank-sum test across all scenarios, being the 
best strategy for the scenarios of moderate mortality 
and duration, weak mortality and strong duration, and  
duration only.

When considering the generalized pairwise comparison 
and the conditional approach (analyzing mortality and 
duration of ventilation in a composite approach), the win 
ratio test performed better than all other tests in all but 
one scenario (Table 2). In the conflicting scenario, the 
hierarchical approach combined with the t test achieved 
the best performance. The truncated approach performed 
better in scenarios with weak mortality and strong duration 
and duration effects only. The best test results for each of 
the scenarios studied are described in table 3. The results of 
the reanalysis of two clinical trials are reported in table 4.

Table 2 - Additional power calculations for different statistical tests with ventilator-free days on Day 28, mortality or duration of ventilation as 
the outcome and considering a composite approach

Effect
Mortality*

(%)

Duration of 
ventilation in 

survivors*

Win ratio
(%)

Conditional approach
(%) Truncated 

parametric§

(%)

Truncated 
semiparametric§

(%)Hierarchical t 
test†

Hierarchical Wilcoxon 
rank-sum test†‡

Mortality only

Treatment 15 7.0 58 5 5 75 75

Control 25 7.0

Strong mortality and weak duration

Treatment 15 6.0 90 39 31 89 89

Control 25 7.0

Moderate mortality and duration

Treatment 15 5.0 85 80 70 83 83

Control 20 6.5

Weak mortality and strong duration

Treatment 15 5.0 96 65 65 99 99

Control 16 8.0

Duration only

Treatment 15 5.0 95 52 52 99 99

Control 15 8.0

Conflicting

Treatment 15 6.5 12 79 67 74 75

Control 20 5.0

The test with the highest power in each scenario is highlighted in bold.
All results based on 3,000 simulated trials with 300 subjects in each of two treatment groups, a two-sided alternative hypothesis, and a type I error rate of α = 0.05.
* Mortality simulated according to a Bernoulli distribution and duration of ventilation in survivors according to an exponential distribution; † if mortality numerically higher in 
treatment group, the trial is considered negative. If not, ventilator-free days on Day 28 for survivors was compared according to the specified test; ‡ normal approximation with 
continuity correction was used for the Wilcoxon rank-sum test; § the binary component and the continuous component are modeled separately, but just one single test for treatment 
effect was performed.
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Table 3 - Best test for each scenario assessed

Effect
Mortality

(%)

Duration of 
ventilation in 

survivors
Best test

Power
(%)

Mortality only

Treatment 15 7.0 Fisher’s exact test*
Gray’s test†

84
78Control 25 7.0

Strongmortalityandweakduration

Treatment 15 6.0 Gray’s test
Fine-Gray model

95
94Control 25 7.0

Moderatemortalityandduration

Treatment 15 5.0 Wilcoxon rank-sum test/Cumulative logistic model
Win ratio

85
85Control 20 6.5

Weakmortalityandstrongduration

Treatment 15 5.0 Truncated parametric or semiparametric
Wilcoxon rank-sum test/Cumulative logistic model

Win ratio

99
97
96Control 16 8.0

Durationonly

Treatment 15 5.0 Truncated parametric or semiparametric
Wilcoxon rank-sum test/Cumulative logistic model

Win ratio

99
96
95Control 15 8.0

Conflicting

Treatment 15 6.5
Hierarchical t test 79

Control 20 5.0

All results based on 3,000 simulated trials with 300 subjects in each of two treatment groups, a two-sided alternative hypothesis, and a type I error rate of α = 0.05.
* Outcome is mortality, duration of ventilation is ignored; † when considering mortality and duration of ventilation.

Table 4 - Alternative methods for ventilator-free days analysis using data from two different trials

TEAM SPICE III

Arms

Intervention Early mobilization Dexmedetomidine

Control Usual care Usual care

Ventilator-free days on Day 28

Intervention 21 (8 - 25) 16.5 ± 9.9 23 (0 - 26) 16.5 ± 11.1

Control 21 (11 - 25) 17.2 ± 9.3 22 (0 - 25) 16.2 ± 11.0

28-day mortality (%)

Intervention 16 24

Control 11 24

Duration of ventilation in survivors, days

Intervention 5 (3 - 11) 8.4 ± 7.5 3 (1 - 7) 6.7 ± 13.2

Control 6 (3 - 11) 8.6 ± 7.5 3 (2 - 8) 7.2 ± 11.6

Tests

Median regression (asymmetric Laplace) MD, 0.60 (-0.77 - 1.99) MD, 1.44 (0.60 - 2.27)

p value 0.392 < 0.001

Continue...
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DISCUSSION

In accordance with a previous paper,(1) we found 
that the relative power of each statistical test was heavily 
dependent upon the magnitude of the treatment effect for 
the individual components of the composite score. While 
cumulative logistic regression, median regression and 
the win ratio displayed good power when the duration 
effect was dominant, none performed well when there 
was a mortality-only effect or when there were conflicting 
findings. These observations highlight the essential need 
to consider the individual components separately when 
analyzing composite scores.

CONCLUSION

In this study, we describe the relative power of new 
methods for analyzing ventilator-free days in critical care 
research. Our data provide validation and guidance for the 
use of the cumulative logistic model, median regression, 
generalized pairwise comparisons, and the conditional and 
truncated approach in specific scenarios.
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