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INTRODUCTION

The preparation of ceramic surfaces by grinding and
polishing inevitably introduces flaws in the form of surface-
breaking cracks. These flaws are likely to influence the strength
of components and the wear behaviour of their surfaces. Flaw
sizes can be measured by Hertzian indentation [1-8], by
measuring the loads required to initiate ring cracks from
surface flaws and the radii of the ring cracks formed.

The resistance to erosion, wear, machining and grinding
of polycrystalline alumina generally shows an inverse
correlation to fracture toughness [9-13]. However, the
toughness relevant to such processes is that probably associated
with relatively short cracks (of the order of a few microns);
fracture toughness values derived from bend or Vickers
indentation tests may overestimate the small-scale toughness
due to the T-curve (R-curve) effect. This effect is strong in
alumina specimens with larger grain sizes and lower contents
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of grain-boundary glassy phase [14-17]. The use of
conventional fracture toughness evaluations to predict
resistance to wear, erosion, and machining may lead to
incorrect choices of materials for such applications.

Fracture toughness may be determined from Hertzian tests
by measuring the minimum load, Pmin, necessary to propagate
cracks in a set of tests [18] on abraded samples (i.e., ones
with a high surface flaw density). The test method uses flaws
a few microns deep, and so gives results relevant to wear and
erosion properties.

Here we present surface flaw sizes of polished
polycrystalline alumina specimens, with G=1.2, 3.8 and 14.1
µm, determined using the Hertzian indentation method [6-8,
18], and fracture toughness values determined by the Hertzian
method. These fracture toughness values are compared to those
derived from Vickers indentation tests. The results are also
compared to the rates of wet erosive wear for the same
materials.

Abstract

Hertzian indentation technique was used to measure surface flaw sizes on polished dense polycrystalline alumina specimens with
grain sizes G = 1.2, 3.8 and 14.1 µm. Two surfaces finishes were studied: well-polished (Syton) and coarse-polished (45 µm
diamond paste). Flaw sizes depended on the surface finish and increased with increasing grain size. Fracture toughness (K

Ic
) for

each material (relating to the propagation of flaws of a few µm depth) was determined from the minimum fracture load in a series
of Hertzian tests. K

Ic
 values were 3.58, 3.45 and 2.96 MPam1/2 for G=1.2, 3.8 and 14.1 µm, respectively. Fracture toughness values

were also determined by Vickers indentation over a range of loads; the K
Ic
 values determined from the Hertzian tests were consistent

with the trends in K
Ic
 with crack size from the Vickers indentation tests.
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Resumo

A técnica de indentação Hertziana foi usada para medir o tamanho das trincas nas superfícies de amostras densas de alumina
policristalina de grão G = 1,2, 3,8 e 14,1 µm. Duas superfícies foram estudas quando ao polimento: uma bem polida (Sayton) e a
outra mal polida (pasta de diamante de 45 µm). O tamanho das trincas dependem de como a superfície foi polida e aumenta com
o aumento do tamanho dos grãos da amostra. A tenacidade (K

Ic
) de cada material (relacionada a propagação de trincas da ordem

de alguns microns de dimensão) foi determinada através da carga mínima de fratura obtidos em uma série de ensaios Hertziana.
Os valores de K

Ic 
 foram 3,58, 3,45 e 2,96 MPam1/2 para G = 1,2, 3,8 e 14,1 µm, respectivamente. Os valores da tenacidade também

foram determinados através da indentação Vickers para várias cargas. Os valores de K
Ic
 determinados pela indentação Hertziana

foram consistentes com o tamanho das trincas associadas aos valores de K
Ic
 por indentação Vickers.

Palavras-chave: superfície, indentação Hertziana, tamanho de trinca, alumina.
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Theoretical background - Hertzian indentation

The Hertzian indentation test is an alternative to the
familiar Vickers indentation test for evaluation of the fracture
properties of brittle materials. A great advantage of the
Hertzian indentation test is that the deformation in the
substrate produced by the indenter is wholly elastic until
fracture occurs. This means that the complications associated
with the residual stresses in Vickers indentation test do not
exist. The stress field is independent of the plasticity
properties of the substrate and varies continuously and
smoothly near to the contact area. The contact stress field is
not substantially affected by minor defects in the indenter
geometry. The stress state induced can be found rigorously
and exactly [19].

On the other hand the Hertzian indentation test has some
drawbacks. The stress fields have steep gradients in depth,
thus it is difficult to accurately estimate the stress intensity
factors for cracks driven by Herztian loads. The principal data
needed are the loads at which small flaws (pre-existing in the
surface) extend immediately to ring or ring/cone cracks and
the diameter of the ring crack. The load is readily detectable
by acoustic emission. The ring cracks produced cannot easily
be observed in opaque materials (but with chemical etching
this problem can be reduced). The results of the analysis are
very sensitive to the value of Poisson’s ratio of the substrate
[8]. If the indenters and the substrates are made of elastically
dissimilar materials there is an elastic mismatch and friction
in the contacts can alter the stress fields, complicating the
analysis. Also the coefficient of friction must be determined.

Below is a summary of the main aspects of the theory of
Hertzian fracture. This includes a method for determing the
fracture toughness, K

Ic
, surface flaw sizes and densities of

brittle materials.
Fig. 1 shows schematically the geometry of Hertzian

indentation. When a hard sphere of radius R, elastic
modulus  E

I 
and Poisson’s ratio, is pressed normally with

a load P into a flat surface of a substrate with elastic
modulus E and Poisson’s ratio ν

Ι
, the radius of the contact

area formed between the sphere and the flat surface is
given by [20]:

(A)

where

(B)

If the sphere and the substrate are made of the same material
(i.e., same elastic constants) the contact is then free of radial
shear traction, so the resulting radial contact pressure distribution

in the surface under the sphere is elliptical and is given by [21]:

(C)

where the peak contact pressure under the sphere, P
o
, is

(D)

and the radial co-ordinate, r, is normalized with respect to the
contact radius, a.

The elastic stress field induced in the substrate by a such
pressure distribution is complex and was first derived by [19]
and in polar co-ordinates is given by:

(Ea)

(Eb)

(Ec)

Figure 1: Schematic diagram of Hertzian indentation.
[Figura 1: Diagrama esquemático da indentação Hertziana.]
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(Ed)

(Ee)

where u is a positive root of the equation

(Ef)

Fig. 2 shows the contours of the most positive principal
stress normalized to the peak Hertzian pressure (equation D)
for elastically similar materials [6]. At the surface, under the
contact area, the stress components are compressive except at
very near to the edge of contact where the radial stress is tensile
and has its maximum. Outside the contact area the surface
stresses are radial tensile and circumferential compressive of
equal magnitude. Note that in true Hertzian contact, where no
surface shearing stress arises, the zone of tension is confined
to a shallow annulus near to the surface.

Fig. 3 shows a schematic diagram of the zones under tensile
and compressive radial stresses in a substrate under a Hertzian
contact.

A typical Hertzian ring/cone crack forms when one pre-
existing surface flaw located outside the contact area is subject
to tensile stresses due to an applied load, P as shown in Fig. 1.
As the applied load is increased the tensile stresses on the

crack increase until at a critical load (P = P
F
) the crack

propagates along the circular principal stress trajectory to form
a ring crack. As the load increases further the nucleated ring
crack propagates downward and extends along the maximum
principal stress trajectory, to form a frustum of a cone.

The ring crack formation is mainly controlled by the
surface radial stress. The point of maximum tension σ

rr
 is at

r = a, but because of the rapid decrease of σ
rr
 with depth this is

not the position of maximum stress intensity factor for surface
cracks of a finite depth. Argon et al. [22] reported cracks being
located at a distance of 1.05 to 1.2 times the contact radius, a.
The determination of K

I
 (stress intensity factor) on surface

cracks is detailed in the next Section.

Stress intensity factor, K
I

In Hertzian contact the stress fields have a steep gradient
in depth, thus it is difficult to accurately estimate the stress
intensity factors for cracks driven by Herztian loads.

Nowell and Hills [23] employed the distributed dislocations
method to develop a reliable, efficient and accurate method
for solving the stress intensity factors for a short surface
breaking crack (i.e., those whose depth is less than a/10) lying
perpendicular to the free surface in steep gradients. This
approach differs from previous work [24-29] where it was
assumed that the crack path initially followed along the
trajectory of the minimum principal stress, σ

3
. However, it is

likely that small surface cracks (produced by polishing and
grinding) lie perpendicular to the free surface, and only when
they start to grow will they follow the minimum principal stress
trajectory, σ

3
, (this path is normal to the maximum principal

stress, σ
1
). This implies that the previous calculations may

have overestimated the stress intensity factors, particularly for
large flaws close to the contact area where the crack tip is far
from the surface and hence experiences a complex state of
stress.

Figure 2: Contours of the most positive principal stress normalized
to the peak Hertzian pressure. Elastically similar contact. Poisson’s
ratio ν = 0.24. After Warren et al. [6].
[Figura 2: Contornos da mais provável do fator de tensão positivo
normalizada em relação ao pico de pressão Hertziana. As superfícies
em contato são elasticamente similares. Constante de Poisson,
ν = 0,24. [6].]

Figure 3. Tensile and compressive, σ
rr
 field in a substrate under a

Hertzian load.
[Figura 3: Região sob tensão radial e compressiva, σ

II
, devido uma

carga Hertziana.]
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The method of distributed dislocations used by Nowell
and Hills [23] for solving the mode I stress intensity factors
relies on the availability of a closed-form solution for the stress
field induced by a dislocation1 near to a free surface. They
considered that a short plane crack of depth c, normal to the
free surface, is placed close to the contact area. The state of
stress in the crack’s absence is found. Thus when the crack is
inserted, unsatisfied tractions appear along the line of the crack.
These may be cancelled by the application of equal and
opposite tractions along the crack faces, which may be
generated by installing a distribution of dislocations. The state
of stress induced by one of these dislocations is known and
the expressions are given by Nowell [23]. Thus, the method
consists of solving an integral equation in the dislocation
density formed, which assumes that a line of the crack remains
traction-free [23]. The integral equation cannot be inverted
directly, but powerful numerical quadratures are available
which is helpful to solve this problem. The integral equation
is effectively represented by a set of linear algebric equations,
typically 20 terms (i.e. inverting 20 simultaneous equations)
which can be solved by using a standard computer library
routine for solution of simultaneous equations. If the radial
stress is expressed in terms of the peak Hertzian pressure, p

o
,

(Equation D), the result of the calculation is a number µ which
is related to the (dimensional) mode I stress intensity factor ,
K

I
, by [8]:

(F)

Re-normalizing the above expression with respect to the
contact radius a, the dependence of K

I
 is now exclusively on

two terms: crack depth c and ν as:

(G)

A comprehensive study of the variation of the stress
intensity factor with ν, c/a and r/a (Equations G and H) was
carried out by Warren et al. [6] and Warren [7]. The results for
the case where the indenter and the substrate are made of
elastically similar materials are summarized as following.

Fig. 4 shows the normalized mode I stress intensity factor
(K

I
) as a function of normalized crack length (c/a) for six

normalized crack positions (r/a), for Poisson’s ratio,ν= 0.24.
K

I
 has a maximum value as a function of c/a for each r/a;

furthermore for large cracks situated close to the contact radius
the implied value of K

I
 is negative because the crack tip is

now deep enough that it lies within the compressive region of
the Hertzian radial stress. For a fixed normalized fracture

toughness, K
I
, value and a fixed normalized crack position, r/a,

there are two possibilities: (1) K
I 
< K

Ic
, which means that the

fracture criterion is not satisfied, thus fracture never occurs.
(2) K

I 
= K

Ic
, which means that the fracture criterion may be

satisfied for two different crack sizes (c
1
/a<c

2
/a). The smaller

one c
1
/a, corresponds to an unstable fracture, thus rapid fracture

will occur. It will grow unstably to size c
2
/a. The larger one,

c
2
/a, corresponds to stable fracture because this crack is already

at or near by a compressive stress zone in which it is difficult
for the crack to grow. Therefore c

1
/a is the most likely crack

to grow unstably into a ring crack system and be detected by
acoustic emission (see later).

Fig. 5 shows the values for the normalized K
I
 as a function

of crack position, r/a for six values of c/a when ν=0.24. For
all crack depths analysed the maximum value of K

I
 occurs at

a value of r/a greater than unity. This explains why the ring
crack is always formed outside the contact area even though
the surface tensile stress has its maximum at the edge of the
contact area. This fact has been observed previously by Warren
[26], Mouginot et al. [29], and Finnie [30]. The explanation

1 Note that, here, dislocation near to a free surface represents a
nucleus of strain and is not related in any way to a real lattice defect.

Figure 4: Normalized mode I stress intensity factor as a function of
normalized crack length (c/a) for six normalized crack positions (r/
a), for Poisson’s ratio, ν = 0.24. After Warren et al. [6].
[Figura 4: Fator de intensidade de tensão normalizado modo I em
função do tamanho normalizado da trinca (c/a) das seis localizações
normalizadas das trincas (r/a), constante de Poisson, ν = 0,24 [6].]

Figure 5: Normalized K
I
 as a function of crack position, r/a for six

values of c/a when ν = 0.24. After Warren et al. [6].
[Figura 5: K

I
 normalizado em função da posição, r/a, da trinca de

seis valores de c/a quando ν = 0,24 [6].]

A. Franco Jr. et al / Cerâmica 50 (2004) 94-108



98

of this effect presented here [26] supersedes that of Argon
[1-2]. Note that for a flaw of finite length, a position slightly
closer results in a lower value of stress intensity because the
flaw extends down into the decreasing (and ultimately
compressive) radial stress field.

Fig. 6 shows a contour plot of the mode I normalized
stress intensity factor, K

I
/(p

o
√πa), as a function of

normalized crack position, r/a, and normalized crack depth,
c/a. For each crack depth c/a, the position of the largest
normalized K

I
 can be marked; this is shown by the filled

circle for c/a = 0.025. At this position, r/a ~1.1, K
I
 is ~

0.0182p
o
(πa)1/2; 0.0182/(0.025)1/2 = 0.1151 (Equation G) is

therefore the maximum value of µ (=µ
max

) for this value of
c/a (c/a =0.025). µ

max
 is just a function of crack depth, c/a

and Poisson’s ratio of the substrate, ν. K
I
 has an absolute

maximum value (marked by the filled square) at c/a ~ 0.046,
r/a ~ 1.18, K

I 
~ 0.0193p

o
(πa)1/2. The existence of the absolute

maximum value in the stress intensity factor at a given load
is very important because it provides a method for
determining the value of the fracture toughness of the
substrate, as proposed by Warren et al. [18]. This is
described in detail in the following section.

Determination of fracture toughness, K
Ic

At the fracture condition K
I 
= K

Ic
 , the expression for

mode I stress intensity factor (Equations F and G) can be
rewritten in terms of loads (P = P

F
) by using Equations B

and D as:

(H)

Define a normalized fracture load, P
FN

 as:

(I)

If the surface of the substrate has a dense flaw distribution,
there will be a flaw (of size c/a) situated close to the position
where the crack-tip stress intensity experienced is a maximum
(µ = µ

max
). This flaw will propagate (to form either a ring or

the complete ring/cone system) when K
 
= K

Ic
  which

corresponds to a fracture load P
F
. Hence, the minimum load

necessary to propagate a ring crack, P
FN

, is:

(J)

These values of normalized fracture loads are therefore
the minimum loads necessary to propagate cracks of size c/a.

In Fig. 7 is shown a plot of the minimum normalized
fracture loads, P

FN
,
 
as function of c/a. For all values of Poisson’s

ratio (for five different values of ν) there is an absolute
minimum in the normalized fracture load for c/a values in the
range 0.02 - 0.06. For a given ν, this absolute minimum in P

FN

corresponds to the absolute maximum in K
I
/(p

o
√πa), in Fig. 4.

The RHS of Equation H can then be determined. For example,
take ν= 0.24 (Poisson’s ratio for polycrystalline alumina). For
ν= 0.24 in Figure 6 the absolute minimum in K

I
/(p

o
√πa) is

0.01937. Then substituting this value in Equation G gives
µ

max
 = 0.01937. Therefore the absolute minimum in normalized

fracture load, Equation J, P
FN,min

 = π/3/(0.01937)2 ~ 2790. Note
that P

FN,min
 is a dimensionless number that depends only on

the Poisson’s ratio of the substrate (in this case ν=0.24), and
therefore is a material constant. Equation J can now be
rewritten in terms of this constant, C, as:

(K)

The values of C for several Poisson’s ratio ranging from
0.10 to 0.35 can be extracted from Table I in Warren [18]. For
alumina, ν = 0.24 and C = 2740, as outlined above.

In summary, this method is based on the concept that when
K

I
 for one small surface flaw, c/a, reaches K

Ic 
(at a load P

 
= P

F
)

it begins to grow to form either a ring crack or the well known
ring/cone system. The method consists of searching for a
minimum value of fracture load (at which K

I 
= K

Ic
) in a series

of Hertzian tests performed by a given sphere of radius R. It
is assumed that the crack propagated in this test (by a minimum
fracture load, P

min
) is of a size within the range where a

Figure 6: Contour plot of mode I normalized stress intensity factor,
K

I
/(p

o
√πa), as a function of normalized crack position, r/a, and

normalized crack depth, c/a. The filled circle shows the maximum
value for c/a = 0.025 (at this position r/a~1.1), K

I 
~ 0.0182 p

o
√πa.

The filled square corresponds the position of the absolute maximum
of K

I 
~  0.01937 p

o
√πa, at c/a ~ 0.046,     r/a ~ 1.18. After Warren et

al. [8].
[Figura 6: Mapas de contornos do fator de intensidade de tensão
normalizado modo I, K

I
/(p

o
√πa), em função da posição normalizada

da trinca, r/a, e do tamanho normalizado da trinca c/a. Os círculos
cheios mostram o máximo valor de c/a = 0,025 ( nesta posição
r/a ~ 1,1), K

I
 ~ 0,0182p

o
√πa. Os quadrados cheios correspondem a

posição de máximo absoluto de K
I
 ~ 0,01937p

o
√πa, em c/a ~ 0,046,

r/a ~ 1,18 [8].]
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normalized fracture load shows a minimum with c/a (within
in 0.02-0.06, Fig. 7). Therefore the fracture toughness, K

Ic
,

can be determined by

(L)

where  P
min

, is the minimum load necessary to propagate pre-
existing surface flaws (to form ring cracks) in a set of Hertzian
tests. C is a material constant whose magnitude depends only
on ν, and R is the radius of the indenter.

However, the Hertzian indentation method for determing
K

Ic
 is not without drawbacks [18]. For instance the crack

extension must be sufficiently rapid to be detected by the
acoustic emission transducer [31]. Of course if an acoustic
emission transducer is not available then the detection of the
minimum load must be done by trial and error. Also the
substrate must crack before the indenter (sphere) does. The
method is limited to the case where the substrate and the
indenter are made of same material (to avoid elastic mismatch

between the sphere and the substrate). However, the method
is comprehensive in that it can be applied to sphere and
substrate made of any material (with any value of Poisson’s
ratio, as in Table I in Warren [18].

EXPERIMENTAL PROCEDURE

Sample fabrication

Polycrystalline alumina materials of grain size G = 1.2, 3.8
and 14.1 µm were fabricated using high purity, 99.9%,
α-Al2O3 powder (Sumitomo AKP-50, Japan) of mean particle
size ca. 180 nm. Alumina specimens of G= 1.2 µm (referred
to later as “F”) were produced by hot-pressing the powder in
a 25 mm diameter graphite die at 20 MPa and 1300 0C for 30
minutes. Specimens of grain size of 3.8 µm (“M”) and
14.1 µm (“C”) were produced by pressureless sintering, in air
of powder discs 37 mm diameter, which had been uniaxially
pressed at 50 MPa in a stainless steel die and then cold
isostatically pressed at 300 MPa. The sintering conditions and
characteristics of the hot-pressed alumina specimens are shown
in Table I.

Surface preparation

Dense polycrystalline alumina discs of 25 mm diameter,
6 mm thickness (material F) and 37 mm diameter, 6 mm
thickness (materials M and C) were cut using a high speed
diamond saw (CAPCO Q35)2. Specimens were ground with
600-grit SiC slurry using a Logitech PM2A polishing
machine3, and polished with 6 µm polycrystalline diamond
powder4 in distilled water. Specimens of two types of surface
finish were prepared for testing:

1) “Well-polished” specimens were finished with Syton
W30 colloidal silica5, (125 nm average particle size, pH 10.2,
on a soft cloth for ~10 hours. Syton is thought to polish Al2O3

by forming a soft thin layer of hydrated material which SiO2

particles remove from the specimen surface. The resulting
surface is of high quality, with very few grain pullouts.

2) “Coarse-polished” specimens finished with a cloth
impregnated with 45 µm diamond paste. The resulting surface
is of poor quality with many grain pullouts.

Material Sintering Condition Bulk density (g/cm3) Mean grain size (µm)

Temp (0C) Time (h)

M 1450 3 3.939 3.8±0.8

C 1600 3 3.947 14.1±1.5

Material Hot pressing condition

Temp (0C) Pressure (MPa) Bulk density (g/cm3) Mean grain size (µm)

F 1300 20 3.89 1.2 ± 0.5

Table I  - Sintering and hot-pressing conditions and characteristics of polycrystalline alumina specimens.
[Tabela I - Condições de sinterização e caracterização das amostras policristalinas de alumina.]

Figure 7: Minimum normalized fracture load necessary to propagate
a crack of normalized size c/a. After Warren [18].
[Figura 7: Carga mínima normalizada necessária para a
propagação de trincas de tamanhos normalizados, c/a [8].]
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Hertzian indentation tests

Hertzian indentation tests were performed using a CK10
testing machine6. The indenter was an alumina sphere of radius
R = 2.5 mm , elastic constants E = 390 MPa and ν = 0.24. A
wide band acoustic emission transducer was mounted in the
loading train to detect the growth of a pre-existing surface
flaw into a ring crack. A series of tests, at a constant loading
speed of 0.14 mm/min were performed on each specimen. For
specimens F, M and C, 67, 84 and 62 indentations were
performed, respectively. The fracture loads were recorded and
the corresponding ring crack diameters were measured using
an optical microscope. The ring cracks formed on the well-
polished specimen F were very well defined and easily visible.
Those on well-polished specimens M and C were less easy to
measure. These specimens were etched in potassium hydroxide
(KOH) at 300 ºC for ca. 3 min, and polished with a cloth
impregnated with 1 mm diamond paste to remove a thin layer
of residual etched material; after this treatment, the ring cracks
were easily visible. The ring cracks formed on coarse-polished
specimens were neither very well defined and nor easily
visible. These specimens were also etched in potassium
hydroxide (KOH) but at 400 ºC for ca. 4 min, and polished
with a cloth impregnated with 1 µm diamond paste to remove
a thin layer of residual etched material; after this treatment,
the ring cracks were visible.

Flaw sizes and flaw densities were determined according
to the methods described by Warren et al. [7, 8].

Fracture toughness, K
Ic
 for each specimen was determined by

          K
Ic

(M)

where P
min

, is the minimum load necessary to propagate pre-
existing surface flaws (to form ring cracks), C is a materials
constant whose magnitude depends only on ν (for alumina,
C=2790 [18]), R is the radius of the indenter (alumina sphere).
E* is given by:

(N)

where E and ν are the elastic constants of the indenter and the
specimen (both made of the same material).

The cumulative probability of failure for each specimen
was determined by:

(O)

where n is the order number of the data (ranked in order of
ascending fracture loads) and N is the total number of test data.

Vickers indentation tests

Vickers indentation tests were performed using a Vickers
pyramid hardness tester. A series of tests with loads ranging
from 4.91 N to 245.3 N was performed on the specimens F,M
and C.

The hardness (H
v
) was calculated by:

(P)

where P is the applied load (N) and 2a is the impression
diagonal (µm) measured using an optical microscope with a
curtain eyepiece.

The fracture toughness was calculated using the equation
of Anstis et al [32]:

K
Ic

(Q)

where E is the Young’s modulus (E= 390 GPa), H
v
 is the

hardness (GPa), P is the applied load (N) and c is the crack
length (µm).

RESULTS AND DISCUSSION

Ring cracks

Typical Hertzian ring cracks formed on polycrystalline
alumina specimens are shown in Fig. 8. The ring cracks on
specimens (a) G= 1.2 µm and (b) G= 3.8 µm were easily
visible. For specimens (d) G= 14.1 µm the ring cracks were
just visible after KOH etching. The thickness of the line of
the ring crack slightly changes (~2-3%) after etching; this does
not affect the accuracy of the measurements of ring cracks
after etching. For example, take specimens G= 3.8 µm,
compare the typical thickness of the line of the ring cracks
after KOH etching (c) to those not etched (b). The fact that for
specimens of G=14.1 µm the line of the ring cracks are not
visible (before KOH etching) in optical microscope may be
attributed to the combined effects of the ring crack line being

2CAPCO, precision cutting machine, manufactured by KAYEX-
CAPCO, Ipswich, UK.
3Logitech,  Erskine Ferry Road, Old Kilpatrick, Glasgow G60 5EU,
UK.
4Polycrystalline diamond, Lot OCON-281, Logitech, Erskine Ferry
Road, Old Kilpatrick, Glasgow G60 5EU, UK.
5Syton colloidal silicas, grade W30, provided by Morrisons
Chemicals, 331-337 Derby Road, Liverpool L20 8LQ,  UK.
6Engineering Systems (Nottm), 1 Loach Court, Radford Bridge Road,
Nottingham NG8 INB, UK.
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totally closed and the less light been reflected from the surface
of the coarse grained specimens.

Flaw sizes

A histogram of flaw size for each specimen is shown in

Fig. 9. In Fig. 9 the left column refers to well-polished
specimens, whereas the right column to coarse-polished
specimens. For well-polished specimens F, flaw sizes range
from 2 to 7.5 µm, while for well-polished specimens M, flaws
range from 2.5 to 9 µm and for specimens C, flaw sizes range
from 2.5 to 9.5 µm. For coarse-polished specimens F (Fig. 9),

Figure 8: Typical Hertzian ring cracks produced on well-polished polycrystalline alumina specimens. Indenter, alumina sphere radius
R=2.5 mm. (a) G=1.2 µm, (b-c) 3.8 µm and (d) 14.1 µm. The ring cracks on (c) and (d) after KOH etching.
[Figura 8: Trincas circulares típicas de indentação Hertziana formadas em superfícies bem polidas de amostras policristalinas de alumina.
Indentor, esfera de alumina de raio R= 2,5 mm. (a) G = 1,2 µm, (b-c) 3,8 µm e (d) 14,1 µm. As trincas circulares em (c) e (d) foram
reveladas após as superfícies serem tratadas com KOH.]

A. Franco Jr. et al / Cerâmica 50 (2004) 94-108
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Figure 9: Frequency of detection of surface flaws of various depths as determined by Hertzian indentation tests on well-polished (left side)
and on coarse-polished (right side) specimens. (a) G= 1.2 µm, (b)G= 3.8 µm and (c) G= 14.1 µm.
[Figura 9: Freqüência de ocorrência das trincas de superfícies de vários tamanhos determinadas pela indentação Hertziana em amostras
bem polidas (lado esquerdo) e mal polidas (lado direito). (a) G = 1,2 µm, (b) G = 3,8 µm e (c) G = 14,1 µm.]

A. Franco Jr. et al / Cerâmica 50 (2004) 94-108
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Figure 10: Grain boundary cracks, cgb and grain cracks, cg near to
the surface of a ceramic  material and limited approximately to a
grain dimension. (Adapted from Davidge [33]). Note the absence of
defects (e.g. pores) on the structure.
[Figura 10: Trincas no contorno do grão, cgb e trincas no grão, cg

próximas da superfície de um material cerâmico cuja a dimensão é
aproximadamente no máximo a dos grãos [33]. Note a ausência de
defeitos (por exemplo, poros) na estrutura do material.]

Figure 11: Grain boundary cracks, cgb and grain cracks, cg near to
the surface of a ceramic material. Note the presence of defects at the
grain boundaries and in the grains. The crack penetration now is not
limited to a grain dimension.
Figura 11: Trincas no contorno do grão, cgb e trincas no grão, cg

próximas da superfície de um material cerâmico. Note a presença
de defeitos no contorno dos grãos e no próprio grão. Neste caso o
tamanho das trincas não é limitado somente a dimensão dos grãos.]

Figure 12: Cumulative probability of fracture versus fracture load
for Hertzian indentation tests.
[Figura 12: Probabilidade cumulativa de ruptura em relação a carga
de ruptura de ensaios de indentação Hertziana.]

flaw sizes range from 2.5 to 10.0 µm. For coarse-polished
specimens M, flaws range from 3.0 to 11.5 µm and for
specimens C, flaw sizes range from 2.5 to 12.0 µm.

Five important aspects to be noticed in the flaw size results are:
(1) The frequency of detection of small flaws is higher for

the fine grained material then for the coarse grained material.
(2) The flaw size distribution is much broader for the coarse

grained material.
(3) For a given grain size material the flaw distribution is

much broader for the coarse-polished material.
(4) The surface flaw sizes in the fine-grained specimens

are, in general, larger than the specimen grain size, while in
coarse-grained specimens they are smaller than the specimen
grain size.

(5) The difference between flaw sizes in well-polished
specimens and coarse-polished specimens is small.

The findings (4) and (5) may be explained based on the
fact that in general all ceramic materials (e.g. Al

2
O

3
) are likely

to contain, apart from pores (open and/or closed), defects near
to the specimen surface such as grain-boundary grooving (due
to exposure to high temperature during fabrication). These
grooves can concentrate stresses along the grain boundaries
which require low energy for fracture [33, 34]. Also during a
machining process (e.g. polishing), two types of defects, in
the form of cracks, can be introduced to the specimen surface

which can propagate along the grain boundaries (referred later
as c

gb
), or inside the grain (referred later as c

g
) as shown

schematically in Fig. 10.
In has been generally assumed in the past that surface

cracks propagate to about one grain dimension because the
crack finds a natural barrier to further propagation. For the
case of c

gb
 cracks the natural barrier is the grain boundary, at a

triple point, where the crack needs to change direction
considerably; whereas in the case of c

g
 cracks, the natural

barrier is another grain which is not coplanar with the original
crack. In this case the crack needs either to nucleate a new
crack (in the next grain), or nucleate a new crack along the
grain boundary, hence limiting crack propagation.

However, if one considers the effect of the defects
mentioned above (mainly closed pores), which are present in
the specimens in this work (see micrographs, Fig. 8 and [35]).
Fig. 10, can be re-adapted by considering defects (e.g. pores)
present at the grain-boundaries (triple points and two grains)
and inside the grains as shown schematically in Fig. 11.
Therefore the propagation of the same type of cracks, c

gb
 and

c
g
, introduced during machining will be enhanced by these

defects following maybe one of the directions suggested by
the arrows in Fig. 11. Thus it is possible for cracks (c

gb
 and c

g
)

to penetrate in the bulk of the material distances more than
one grain dimension.

Furthermore, besides the flaws introduced by polishing
process, the polishing process itself may not remove entirely
all the defects (e.g. pores), but could reduce them to sizes (e.g.
larger than a grain dimension) detectable by Hertzian
indentation method.
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Material

F M C Surface treatment

P
mean

 (N) 644±215 611±192 406±100 Syton

619±199 577±194 417±126 45 µm diamond

a
mean

 (mm) 180±8.12 176±9.24 154±7.86 Syton

176±9.18 172±7.46 151±7.18 45 µm diamond

r
mean

 (mm) 204±8.62 222±14.92 194±11.04 Syton

218±19.26 217±16.22 212±26.78 45 µm diamond

c
mean

 (mm) 2.94±0.93 4.53±1.51 4.78±1.68 Syton

4.20±1.40 4.83±1.54 5.76±2.03 45 µm diamond

P
min

 (N) 454±26 427±8.0 317±11.0 Syton

434±15 411±9.0 298±6.0 45 µm diamond

K
IC

 (MPam1/2) 3.66±0.10 3.55±0.03 3.06±0.05 Syton

3.58±0.06 3.45±0.04 2.96±0.04 45 µm diamond

Erosion Rate  [35] 1.83±0.7 8.36±0.8 11.3±0.6

(nm/s)

Table II - Hertzian indenation results and erosion results.
[Tabela II - Resultados da indentação Hertziana e testes de desgastes erosivos.]

Figure 13: Fracture toughness determined by Hertzian and Vickers indentation versus crack length. Lines indicate the trend. Typical error
bars are shown.
[Figura 13: Tenacidade determinada pelas indentações Vickers e Hertziana em relação a extensão da trinca. As linhas tracejadas indicam
a tendência do tipo da curva. Barras de erros estão indicadas.]
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A similar trend of flaw sizes longer then average grain
size was found by Anya and Roberts [36], who reported flaw
sizes of up to 13 µm for specimens of polycrystalline alumina
of grain sizes of  3.5 ± 1.5 µm with surface finished with 14 µm
diamond. The lack of available data on sizes of flaws
introduced by machining measured by Hertzian indentation
methods or by other means for polycrystalline alumina
materials and others ceramics makes further comparison
difficult, but there is no evidence in the literature that surface
cracks are as has been assumed, limited to the depth of a grain
dimension.

On the other hand, Griffith’s flaws (e.g. flaws measured
by Griffith’s equation by using fracture toughness (e.g.
determined by Vickers indentation) and strength data
(determined by four-point bend [33]) are usually much longer
than grain sizes. For instance Carroll et al. [37] reported flaws
size up to ~30 µm for alumina specimens with grain size of 5 µm.

The fact that there are small differences between flaw sizes
in well-polished specimens and coarse-polished specimens can
be explained on the basis of how a surface flaw is detected in
the Hertzian indentation method. As mentioned before in each
Hertzian test only a flaw with a particular size (e.g. crack depth)
at a particular position relative to the contact area will
propagate to form a ring/cone crack for a given load, P = P

F

(so that K
I = 

K
Ic
). For a coarse-polished surface there are likely

to be many more flaws with a broader flaw size range, but
only those of a size close to that for fracture at the minimum
load, which depends only on elastic constants and test sphere
size (indenter), are likely to be detected (S. G. Roberts, private
communication, University of Oxford, 1996). Therefore the
small difference between well-polished specimens and coarse-
polished specimens in the sizes of flaws detected by the
Hertzian indentation method is to be expected if the same
sphere size (indenter) is used in all tests.

Fracture loads and fracture toughness

Fig. 12 shows the cumulative probability of fracture for
each specimen. The minimum fracture load to propagate into
Hertzian ring cracks , P

min
, is 454 ± 26, 427 ± 8.0 and 317 ±

11.0 N for well-polished specimens F, M and C, respectively
whereas for coarse-polished specimens F, M and C is 434 ±
15, 411 ± 9.0 and 298 ± 6.0 N, respectively. Note that the
minimum fracture load (which is used to determine K

Ic
) is

relatively well defined by the trend in results for tests on the
coarse polished material, where there is a high density of flaws
over a wide size range. For the well-polished specimens, the
relative sparseness of the flaw distribution means that there is

Material Load Diagonal Crack length Hardness Toughness
P, (N) 2a, (µm) c, (µm) H

v
, (GPa) K

Ic
, (MPam1/2)

F 4.91 19.2 ± 0.5 21.3 ± 0.5 24.80 ± 1.5 3.16 ± 0.4
9.81 29.8 ± 0.2 36.5 ± 0.4 19.88 ± 0.5 2.95 ± 0.4
49.1 69.1 ± 0.5 114.5 ± 1.5 19.05 ± 0.3 2.89 ± 0.3
98.1 95.5 ± 1.7 179.2 ± 3.7 19.97 ± 0.1 2.89 ± 0.3
147.2 117.4 ± 0.4 235.7 ± 5. 7 19.81 ± 0.2 2.88 ± 0.2
196.2 137.5 ± 0.7 287.6 ± 19.2 19.24 ± 0.2 2.91 ± 0.3
245.3 152.1 ± 2.4 330.1 ± 20.8 19.66 ± 0.3 2.93 ± 0.2

M 4.91 20.3 ± 0.5 22.5 ± 0.4 22.23 ± 1.3 3.09 ± 0.3
9.81 29.8 ± 0.2 36.6 ± 0.3 18.92 ± 0.3 2.96 ± 0.4
49.1 70.1 ± 0.5 115.3 ± 6.6 18.51 ± 0.2 2.92 ± 0.2
98.1 96.3 ± 0.5 179.6 ± 2.6 19.61 ± 0.1 2.90 ± 0.1
147.2 120.1 ± 2.4 234.7 ± 7.3 18.94 ± 0.2 2.97 ± 0.4
196.2 139.9 ± 1.2 282.2 ± 9.7 18.57 ± 0.3 3.04 ± 0.3
245.3 154.8 ± 3.0 323.9 ± 14.5 18.98 ± 0.2 3.06 ± 0.1

C 4.91 21.89 ± 0.7 24.5 ± 0.3 19.02 ± 1.1 2.95 ± 0.4
9.81 31.2 ± 1.1 38.7 ± 1.6 18.76 ±1.3 2.96 ± 0.4
49.1 70.2 ± 0.5 115.1 ± 2.1 18.51 ± 0.2 2.91 ± 0.2
98.1 98.7 ± 0.5 179.4 ± 4.2 18.67 ± 0.1 2.98 ± 0.1
147.2 121.7 ± 0.6 238.9 ± 16.6 18.43 ± 0.2 3.01 ± 0.2
196.2 140.9 ± 0.8 278.8 ± 18.2 18.31 ± 0.4 3.14 ± 0.2
245.3 156.1 ± 1.2 314.6 ± 23.6 18.68 ± 0.3 3.23 ± 0.3

Table III - Vickers indentation results.
[Tabela III - Resultados da indentação Vickers.]
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less chance of a given test “finding” the flaw of the ideal size
and position to propagate near the minimum load for fracture,
and so the trend of the curves to the minimum load to fracture
is less well-defined. For this reason, Warren [18] recommended
the use of coarse-polished surfaces in the determination of K

Ic

by Hertzian testing.
Table II summarizes the Hertzian indentation results for

each material: mean fracture load, P
mean

, mean contact radius,
a

mean
, mean ring crack radius, r

mean
, mean flaw size, c

mean
,. Also

shown are the values of minimum fracture load, P
min

,, and the
derived value of fracture toughness, K

Ic
, for each specimen.

The K
Ic
 values depend on the grain size, with coarse-grained

material having the lowest K
Ic
.

Table III summarizes the Vickers indentation results for
each material. The hardness and fracture toughness values for
each material vary slightly with applied loads. For specimens
of coarser grain size there is an increase in the fracture

toughness with applied load. This corresponds to increasing
fracture toughness with increasing crack length and agrees
with other results showing larger R-curve effects for coarser
grained alumina. At the lowest test load at which usefully
measurable median / radial cracks could be produced (4.91 N),
the toughness values of the different materials begin to diverge.
While the uncertainty in the results at these low loads is large,
the trend in K

Ic
 with crack size is consistent with the better -

defined Hertzian K
Ic
 determinations, as shown in Fig. 7.

Table III also shows the wet erosive wear rates of these
materials. The tests were made in a slurry medium of SiC grits
dispersed in water, with particle impacts at ~2.7 m/s normal to
the specimen surface, tests run for 11 hours [35]. The wear rate
increases strongly with increasing grain size. The variation in
erosive wear rate is in the direction that would be expected from
the Hertzian fracture toughness results, with the tougher and harder
fine grained material having the lowest erosion rate. However,

Method Specimen Surface  Reference

G=1.2 µµµµµm× G=3.8 µµµµµm× G=14.1 µµµµµm×

Hertzian 3.66±0.10 3.55±0.03 3.06±0.05 Syton This
Hertzian 3.58±0.06 3.45±0.04 2.96±0.4 45 µm+ Work
Vickers* 2.98±0.3 2.92±0.2 2.96±0.4
Vickers** 2.89±0.3 2.90±0.1 2.91±0.2

G=5 µµµµµm×

Hertzian 3.53±0.02 6 µm+ a
Vickers* 3.25±0.27

G=3.5 µµµµµm×

Hertzian 2.9±0.1 3 µm+ b
Hertzian 2.9±0.1 14 µm+

Vickers* 2.14±0.23
Vickers** 2.25±0.17

G<5 µµµµµm× (?)(?)(?)(?)(?)

Hertzian 4.33±0.05 6 µm+ c
Hertzian 3.80±0.05 600-grit SiC

G=5 µµµµµm×

Hertzian 3.77±0.09 1 µm+ d

G=1.0 µµµµµm× G=4.2 µµµµµm× G=12.3 µµµµµm×

Vickers** 2.7±0.2 2.6±0.5 2.7±0.5 e

Table IV - Comparison of fracture toughness values, K
Ic
 (determined by Hertzian and Vickers

indentation), for polycrystalline alumina materials.
[Tabela IV - Comparação entre os valores da tenacidade à fratura K

Ic
 (determinados pela

indentação Hertziana e Vickers) das amostras policristalinas de alumina.]

*Vickers indentation 5 kg load.
**Vickers indentation 10 kg load.
×grain size

A. Franco Jr. et al / Cerâmica 50 (2004) 94-108

+surface finished with diamond.
a [37], b[36], c[18], d[27-28] and [10].
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the erosion rates vary over an order of magnitude, whereas the
toughness values vary only by ~10% and hardness values by only
~20%; factors other than simply the fracture toughness and
hardness therefore contribute to the erosive wear rates.

Fig. 13 shows the fracture toughness determined by Vickers
hardness indentation (Table III) and Hertzian indentation
(Table II) as a function of crack length. The value of fracture
toughness determined by the Hertzian indentation method is
higher for specimens of smaller grain size (K

Ic
= 3.58 MPam1/2

for G=1.2 µm, K
Ic
= 2.96 MPam1/2 for G= 14.1 µm). These

values correspond to short cracks, 4.20 µm and 5.75 µm,
respectively. For the Vickers indentation method the values
of fracture toughness that correspond to short cracks are higher
for specimens of smaller grain size (K

Ic
= 3.16 MPam1/2 for

G= 1.2 µm for cracks of 21.3 µm and K
Ic
= 2.95 MPam1/2 for

G= 14.1 µm for cracks of 24.5 µm) whereas for long cracks
the fracture toughness values are higher for specimens of
coarser grain size (K

Ic
= 2.93 MPam1/2 for G= 1.2 µm for cracks

of  330.1 µm and  K
Ic
= 3.23 MPam1/2 for G= 14.1 µm for

cracks of 314.6 µm). Note that the K
Ic
 variation with crack

size is a consistent curve for each grain size.
Table IV shows the values of K

Ic
, determined by Hertzian

indentation and Vickers indentation, of similar polycrystalline
alumina but with different surface finishes [27-28], Warren [18],
Anya and Roberts [36], Carroll et al. [37] and Miranda-Martinez
et al. [10]). (Note that Anstis’ equation [32]was used by them
for determining K

Ic
 values). Also some K

Ic
 results from the

present work (Table II and III) are included for comparison.
It is clear that is quite difficult to compare the K

Ic
 values

determined by Hertzian indentation for the material used here
to the (very few) other data. For instance there are no other
data on K

Ic
 for Al

2
O

3
 of small grain size (e.g. G ~ 1.5 µm) or

coarser grain size specimens (e.g. G > 10 µm). For specimens
of grain sizes in the range of 3.5 - 5.0 µm there are four K

Ic

values that can be compared to the present work (for specimens
of  G = 3.8 µm), but the specimens have different surface
finishing. The values obtained for K

Ic
 by Hertzian indentation

are different for each surface finish. In fact the surface finish
should not affect the real K

Ic
 values but will affect the

probability to detect a flaw which will fracture at the minimum
load, thus the accuracy of the K

Ic
 determination. In coarse-

finished surface there are likely to be many more flaws with a
broader flaw size range, thus it is more likely that one will
detect that flaw that corresponds to the K

Ic
 of the material. As

recommended by Warren [18], K
Ic
 values should be ideally

determined using specimens with a coarse-finished surface.
The K

Ic
 values range from 2.9 MPam1/2 [36] to 3.8 MPam1/2

[18]. The result from the present work, 3.09 MPam1/2 is close
to those of Anya and Roberts [36], 2.9 MPam1/2 and Carroll et
al. [37], 3.53 MPam1/2. The scatter in K

Ic
 values for specimens

of grain sizes in the range of 3.5 - 5.0 µm may be attributed to
the fact that the materials do not have the same microstructures
(e.g. grain size, shape and possible glassy phase present) and
also to surface finishing conditions.

Again to compare the K
Ic
 values determined by Vickers

indentation with those determined with other workers is not
quite so simple. The best possible comparison is to those results

presented by Miranda-Martinez et al. [10], as their specimens
are quite similar to those studied in the present work (the
specimens were prepared by following the same sintering and
hot-pressing conditions). For loads of 10 kg, the K

Ic
 values are

in good agreements and are grain-size independent. However
to compare the present results to those of other researchers (Table
IV), the available data are for Vickers indentation loads of 5 kg
only for specimens of grain size ranging from 3.5 µm to 5.0
µm. The K

Ic
 values vary but those presented by Anya and Roberts

[36] are close to those in the present work.
In summary the K

Ic
 values measured by Hertzian

indentation method in the present work are comparable to the
few results found in the literature, however the lack of data in
the literature makes any further comparison impossible. Also
the results are comparable to those found by Vickers
indentation methods but only for small indentation loads (e.g.
5 and 10 kg) especially if the trends in measured K

Ic
 with

crack size are considered (see Figure 13).

CONCLUSIONS

Hertzian indentation tests were used to determine surface
flaw sizes and densities on well and coarse-polished
polycrystalline alumina specimens with grain sizes G= 1.2,
3.8 and 14.1 µm. The following conclusions can be drawn:

Ring cracks were fully formed and easy to see on well-
polished specimens of finer grains (F). The use of KOH etching
followed by polishing process made the ring cracks easily
visible for the other specimens.

The minimum fracture load to form ring cracks in a series
of tests increases as the grain size decreases (as shown in Table
II, e.g. P

min
 is 434, 411 and 298 N for specimens F, M and C,

respectively). This minimum fracture load (which is used to
determine K

Ic
) is relatively well defined by the trend in results

for tests on the coarse polished material   (Fig. 13).
The average surface flaw size after polishing increases only

slightly as grain size increases (as shown in Table 2, e.g. c
mean

is 4.20, 4.83 and 5.76 µm for specimens F, M and C,
respectively); The flaw size distribution is much broader for
coarse grained specimens (Fig. 6).

Flaw sizes found are larger than the grain size for
specimens F and M. Thus it seems that flaws sizes introduced
by a polishing material are more closely dependent on the
size of the polishing grit than on the grain size.

The fracture toughness values determined by Hertzian and
Vickers indentation corresponding to small crack length
increase as the grain size decreases. For large crack lengths
the fracture toughness values (determined by Vickers
indentation) increase as the grain size increases.

The fracture toughness values measured by Vickers
indentation increase with grain sizes for cracks lengths larger
than 120 µm, whereas for cracks of much shorter lengths the
K

Ic
 values increase as grain sizes decrease, following the same

trend as the K
Ic
 values determine by Hertzian indentation.

The wet erosive wear produced by particle impacts in
alumina [35] varies much more strongly with grain size than
the variations of toughness and hardness with grain size.
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Factors other than simply fracture toughness and hardness
therefore contribute to the erosive wear rates.
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