HNTs purification |
Dispersion-centrifugation-drying technique |
10 wt% water suspension with heating to 60 °C |
5
5 P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci. 74 (2013) 47.
), (
38
38 M.L. Jackson, Soil chemistry analysis: advanced course, Madison, Wisconsin (1956).
|
H2O2 to remove organic impurities |
H2O2 aqueous solution (30%) |
39
39 S. Zeng, C. Reyes, J. Liu, P.A. Rodgers, S.H. Wentworth, L. Sun, Appl. Polym. 55 (2014) 6519.
|
Covalent functionalization |
Reduction of the polarity; shielding of the hydroxyl groups; inclusion of hydrocarbons; creation of functional groups |
Grafting silanes via condensation between the hydrolyzed silanes and the surface hydroxyl groups of the HNTs |
40
40 M. Poikelispää, A. Das, W. Dierkes, J. Vuorinen, J. App. Polym. Sci. 127 (2013) 4688.
|
Increase the interfacial adhesion of the HNTs |
γ-glycidoxypropyltrimethoxysilane; 3-(trimethoxysilyl)propyl methacrylate |
7
7 S. Zhong, C. Zhou, X. Zhang, H. Zhou, H. Li, X. Zhu, Y. Wang, J. Hazard Mater. 276 (2014) 58.
), (
22
22 M. Liu, Z. Jia, D. Jia, C. Zhou, Prog. Polym. Sci. 39 (2014) 1498.
|
Surface modifier (introduce double bonds onto the surface of HNTs to form sites for polymerization) |
3-methacryloxypropyltrimethoxysilane; poly(2-hydroxyethyl methacrylate); poly(2-hydroxyl ethyl methacrylate-b-methyl methacrylate) |
41
41 C. Zhou, H. Li, H. Zhou, H. Wang, P. Yang, S. Zhong, J. Sep. Sci. 38 (2015) 1365.
|
Enhance biocompatibility of several nanomaterials |
3-Aminopropyltriethoxysilane |
4
4 S. Del Buffa, M. Bonini, F. Ridi, M. Severi, P. Losi , S. Volpi, T.A. Kayal, G. Soldani, P. Baglioni, J. Colloid Interface Sci. 448 (2015) 501.
), (
35
35 T.Y. Cheang, B. Tang, A.E. Xu, G.Q. Chang, Z.J. Hu, W.L. He, Z.H. Xing, J.B. Xu, M. Wang, S.M. Wang, Int. J. Nanomed. 7 (2012) 1061.
|
Improve dispersion in polymers (intercalation and interaction of lumen space inside HNTs) |
γ-methacryloxypropyl trimethoxysilane |
5
5 P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci. 74 (2013) 47.
|
Enhance the negative charge or become neutral HNTs surface |
Cationic and anionic surfactants: sodium dodecanoate and decyl trimethyl ammonium bromide |
33
33 M.J. Mitchell, C.A. Castellanos, M.R. King, Biomaterials 56 (2015) 179.
|
Covalently grafting phosphonic acid |
Change morphology of nanotubes to nanoplatelets: increase the basal spacing from 7.2 to 15.1 Å |
Phenyl phosphonic acid |
42
42 J.L. Guimarães, P. Peralta-Zamora, F. Wypych, J. Colloid Interface Sci. 206 (1998) 281.
), (
43
43 Y. Tang, S. Deng, L. Ye, C. Yang, Q. Yuan, J. Zhang, C. Zhao, Compos. Part A 42 (2011) 345.
|
Remove the air from nanotubes lumen - drug loading |
Octadecyl phosphonic acid: bond to the alumina sites at the tube lumen but not the outer siloxane surface |
31
31 W.O. Yah, A. Takahara, Y.M. Lvov, J. Am. Chem. Soc. 134 (2012) 1853.
|
Non-covalent functionalization |
|
|
Alkali treatment |
Low concentration NaOH: to maximize the density of hydroxyl groups on silica; increase the dispersibility of HNTs in polar solvents |
NaOH react with the tetrahedral silicate to create silanol (Si-OH) groups |
39
39 S. Zeng, C. Reyes, J. Liu, P.A. Rodgers, S.H. Wentworth, L. Sun, Appl. Polym. 55 (2014) 6519.
), (
44
44 Q. Wang, J. Zhang, A. Wang, App. Surf. Sci. 287 (2013) 54.
|
Acid activation |
Disaggregation of HNTs: elimination of mineral impurities and inner layers dissolution; replacement of interlayer cations by protons; better exposure of the external adsorption sites |
H2SO4
|
45
45 E. Abdullayev, A. Joshi, W.B. Wei, Y.F. Zhao, Y.M. Lvov, ACS Nano 6 (2012) 7216.
), (
46
46 D. Banaś, A. Kubala-Kukuś, J. Braziewicz, U. Majewska, M. Pajek, J. Wudarczyk-Moćko, K. Czech, M. Garnuszek, P. Słomkiewicz, B. Szczepanik, Radiat. Phys. Chem. 93 (2013) 129.
|
Acid and heat activation |
Dehydroxylation of the structural aluminol groups: decrease of the adsorption capacity for cationic drug; HNTs becomes amorphous |
Structural rearrangement: changes in the pore structure and surface properties; remove the physically bounded water |
18
18 Q. Wang, J. Zhang, Y. Zheng, A. Wang, Colloids Surf. B 113 (2014) 51.
|