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INTRODUCTION

In modern manufacturing processes, the cost burden on 
the machining process has led to an exhaustive investigation 
of traditional coolants used in the majority of machining 
processes. The costs associated with the use of coolant range 
from 7% to 17% of the total machining process costs [1]. 
Furthermore, the workplace in the manufacturing industries 
is not clean, safe, and healthy. Current technological trends 
suggest that this condition will not be sustainable in the 
future and that a systematic approach would be expected 
to address the strict environmental rules [2]. The cost of 
manufacturing and the environmental impact of coolants can 
be considerably reduced by discontinuing the coolants and 
by adopting dry machining or minimum quantity lubrication 
(MQL) technologies [3]. The decrease in significant coolant 
hazards at work can improve manufacturing process 
performance, worker safety, cost, quality, and job satisfaction 
[4]. The machining process of material can lead to heat 
generation in the cutting zone because of friction. During 
machining, cutting fluids can govern the adverse effects of 
friction, temperature rise, tool-workpiece adherence, and 
chip flushing [5]. As a result, the use of cutting fluids has 
been considered an important element of the metal cutting 
processes to achieve a robust machining process, increased 
tool life, and an excellent surface finish. Coolants release 
harmful fumes and bad odors can cause skin irritations and 
have an adverse effect on operators and the environment 

[6]. Manufacturing industries were somewhat effective to 
decrease coolant effects by adopting minimum quantity 
lubrication (MQL) or mist lubrication [7]. The mist can 
have a negative impact on the operator’s respiratory system. 
The difficulty of acquiring, supplying, collecting, injecting, 
controlling, and dismantling cutting fluids results in higher 
overhead expenses [8].

Dry machining is a feasible alternative for a cost-
effective and safe machining process. The use of effective 
dry machining requires studying and assessing the cutting 
process mechanisms, cutting tool material, cutting tool 
design, and their associated equipment [9]. Dry machining 
cannot be executed just by cutting off the coolant feed. Dry 
machining requires an extensive understanding of both the 
cutting tool and the workpiece materials [10]. Dry cutting 
is convenient when using a larger positive rake angle on a 
submicron WC-Co tool, which considerably decreases the 
overall cutting energy [11], a tool having high hot hardness 
and hence able to withstand high cutting temperatures, 
application of coatings on the cutting tool to serve as a 
friction-reducing surface layer to resist the temperature, 
and decreasing cutting speed to achieve longer tool life and 
cost efficiency [12]. The use of a large positive rake angle 
and a slower cutting speed cannot outweigh the advantages 
because it reduces tool strength, tool life, and productivity. 
On the other hand, cutting tool coatings can be drawn out, 
which do not provide the sufficient productivity demanded 
in the modern machining process. The ceramic refractory 
cutting tools are capable to sustain very high temperatures 
(around 1200 °C) and yield long tool life at high cutting 
speeds. For effective turning of hard-to-cut materials, many 
researchers have carried out comprehensive experimental 
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work employing alumina-based ceramics [13], silicon 
nitride-based ceramics [14], cermet-based ceramics [15], 
and SiAlON-based ceramics [16]. Ceramic coatings and 
texturing of ceramic tools are the focus of most experimental 
efforts and testing of machining behavior [17, 18]. Alumina-
zirconia (Al2O3-ZrO2) ceramic insert tool is used in this 
experimental study.

Titanium alloys have excellent properties like low density, 
resistance to corrosion, high specific strength, and superior 
fracture toughness making them more popular in aerospace, 
marine, automobile, and defense sectors. Titanium alloys 
have a low elastic modulus and low heat conductivity, making 
them hard to cut [19]. Ceramic cutting tools have high wear 
resistance, good compressive strength, and high chemical 
stability, making them successively adopted for machining 
hard-to-cut materials with excellent surface integration 
and high machining performance [20]. However, due to 
catastrophic failure, low toughness, and brittle fracture, 
ceramic cutting tools have not been adopted widely in the 
manufacturing industry. As a result, for improved toughness 
and strength in ceramics, the microstructural arrangement 
has been a significant factor in manufacturing structural 
ceramics. One approach of ceramic toughening mechanism 
is governing a processing region around the crack tip, the 
other approach is involving reinforcements (particulates, 
fibers, whiskers, etc.) for crack bridging, and another is the 
transformation toughening regulated by grain size, grain 
size distribution, and stabilizing concentrations [21, 22]. 
A stabilized tetragonal zirconia (t-ZrO2) based structural 
ceramics are extensively utilized in the cutting tool, bearing 
components, biomedical field, and other various application 
domains because of their high fracture toughness and strength 
predicted on martensitic tetragonal to monoclinic (tgm) 
transformation [23]. However, at room temperature t-ZrO2 
is not stable [24]. The three primary zirconia polymorphic 
phases are m-ZrO2, t-ZrO2, and c-ZrO2. Kuwabara et al. [25] 
effectively estimated the Helmholtz free energies of t-ZrO2 
and m-ZrO2 and revealed that t-ZrO2 becomes more stable 
than m-ZrO2 at a temperature over 1350 K and it requires 
more research to bridge link between phase structures and 
charge properties. The instability of t-ZrO2 ceramics under 
certain conditions can cause immediate transformation 
of t-ZrO2gm-ZrO2 [26]. The stability of zirconia-based 
ceramics can be improved by the production of ceramics 
that are less susceptive to the negative tgm transformation 
effects. In zirconia toughened alumina (ZTA), it is possible 
to slow down this phase transformation due to the stiff 
alumina matrix [27]. Yttria is the most effective stabilizer to 
obtain the tetragonal phase in zirconia ceramics and results 
in superior mechanical properties and wear characteristics, 
and has an effect on tetragonal phase transformability [28]. 
Shin et al. [29] investigated tgm transformation in three 
types of Al2O3-ZrO2, synthesized without additives or with 
yttria as a tetragonal phase stabilizer. They found that the 
toughness improvement was because of tgm transformation, 
attributed to the volume fraction of m-ZrO2 transformation 
in fracture. Szutkowska [30] evaluated the influence of 

unstabilized or 10 vol% yttria-stabilized ZrO2 in an Al2O3. 
By comparing both results, the yttria-stabilized ZrO2 has 
stabilized the tetragonal phase, as a result, a lower amount 
of ZrO2 contributes to the toughening improvement from t 
to m transformations. The reviews imply that the toughening 
mechanism and the toughness-strength correlations are 
governed by the microstructure, type, and content of ZrO2, 
the grain size of both Al2O3 and ZrO2, and the ZrO2 particle 
positions. The yttria-stabilized ZrO2-toughened-Al2O3 
has induced significant observations as a way to improve 
machining performances. In this experimental work, 
3Y-ZTA was chosen as a ceramic cutting insert.

There has been little research reported on solid ceramic 
insert tools during turning operation. The ceramic cutting 
tool can attain a temperature of around 1200 °C when 
machining titanium alloys, affecting the tool material 
properties and increasing tool wear [31]. Grguraš and 
Kern [32] performed machining operations on hard-to-cut 
material using ceramic and carbide tools. They revealed 
that in comparison to carbide tools, ceramic tools can 
enhance the performance and production rate. Chen et al. 

[33] performed high-speed machining of Ti-6Al-4V with 
TiB2-B4C ceramic tool to study wear mechanism and cutting 
performance. Ceramic cutting tools with higher TiB2 content 
may have better-cutting performance and longer tool life in 
the cutting of Ti-6Al-4V alloys as compared to WC cutting 
tools. Tian et al. [34] prepared a graded Si3N4 [Si3N4/(W,Ti)
C/Co] ceramic tool for turning a GH2132 iron-based alloy, 
which demonstrated enhanced thermal and mechanical 
shock resistance compared to the homogeneous reference 
tool. This is because of the evolution of residual compressive 
stress, which reduces the stresses resulting from external 
loading and reduces the driving force for crack propagation. 
Altin et al. [35] studied the influence of the input parameters 
while machining nickel-based hard-to-cut alloy using 
ceramic tools on tool tribology and service life. The square 
type Al2O3+SiCw ceramic tool was found to be effective for 
low-cutting speeds, while the round type insert was found 
to be good for high-cutting rates. Zeilmann et al. [36] 
investigated the tribological behavior of ceramic tools in dry 
and wet Inconel 718 turning and deduced that the notch wear 
for SiAlON tools was observed less using coolants, while in 
dry turning using Al2O3+SiCw insert performance improved. 
It can be noted that previous research largely focused on 
cutting superalloys using nitrides, SiAlON, and cermets-
based ceramic tools, while only a little amount of work 
has been noted on alumina-based ceramic tools, especially 
alumina-zirconia based ceramic tools. 

Numerous decision-making methodologies, such as the 
analytic hierarchy process (AHP), a technique for order of 
preference by similarity to ideal solution (TOPSIS) [37], 
entropy weight method (EWM) [38], data envelopment 
analysis based ranking (DEAR), grey relational analysis 
(GRA)[39], and multi-objective optimization method by ratio 
analysis (MOORA) [40], have been suggested in the literature 
to investigate the multiple criteria involved with turning 
operation. GRA methodology converts multi-objective 
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optimization problems into a single objective function. To 
evaluate several responses in GRA, a grey relational grade 
is created to determine the measure of similarity among 
sequences. Tzeng et al. [41] and Singh et al. [42] used the 
GRA methodology to optimize the turning operation. GRA 
was used in the drilling process of composites by Haq et 
al. [43] and Rajmohan and Palanikumar [44] to optimize 
multi-response output. The traditional method involves a 
large series of experiments and it also does not consider 
the interacting effects between input variables. Response 
surface methodology (RSM) is a convenient method for 
developing mathematical models since it requires fewer tests 
and so saves money and time [45]. Hybrid methodology, for 
optimizing responses in various contexts, incorporates two 
techniques; a combination strategy was established to take 
the benefits of the methodologies included in the research 
work [46]. 

This work aimed to optimize the turning process 
parameters of Ti-6Al-4V alloy in a dry machining 
environment. The experiments were performed as per 
Taguchi’s L25 orthogonal array on CNC (computerized 
numerical control) machine using alumina-zirconia (Al2O3-
ZrO2) ceramic insert with cutting speed, feed rate, and depth 
of cut as input parameters while surface roughness, tool flank 
wear, materials removal rate, and tool wear loss as multi-
output responses. Subsequently, GRA methodology with 
the AHP weight assign method was employed to optimize 

the multi-responses. ANOVA was used to determine the 
significance of each parameter in the turning operation. The 
output attribute turning operations were examined and a 
hybrid methodology of grey Taguchi-based response surface 
methodology (GT-RSM) was presented for predicting the 
optimum machining condition. The quadratic mathematical 
model using RSM was developed. The validity and fitness 
of the developed model were tested. Finally, a confirmation 
experiment was performed using the optimum levels of 
input turning parameters to demonstrate the enhancement of 
the performance measure, namely the grey relational grade. 

MATERIALS AND METHODOLOGY

Turning process: Ti-6Al-4V grade 5 (Plus Metals, 
India) alloy bar with a length of 220 mm and a diameter 
of 40 mm was used as the workpiece in the experiments. 
The chemical composition and mechanical properties of 
Ti-6Al-4V (grade 5) alloy is presented in Tables I and II, 
respectively. The scanning electron microscopy (SEM, Evo 
500, Zeiss) micrograph and energy dispersive spectroscopy 
(EDS) spectrum of the Ti-6Al-4V alloy are shown in Fig. 
1. The turning experiments were performed on a three-axis 
CNC machine (Uniturn 500, Gedee Weiler) with different 
input cutting parameters. The turning experiments under 
a dry cutting environment were performed by alumina-
zirconia (Al2O3-ZrO2) ceramic insert (grade SZ 200, Union 

Table II - Physical and mechanical properties of Ti-6Al-4V (grade 5) alloy.
Density 
(g/cm3)

Vickers 
hardness

Ultimate tensile 
strength (MPa)

Modulus of 
elasticity (GPa)

Fracture toughness 
(MPa.m1/2)

4.43 349 900 114 43

Table I - Chemical composition of the Ti-6Al-4 V (grade 5) 
alloy.

Ti Al V Fe O
90% 6% 4% 0.25% 0.2%

Figure 1: SEM micrograph (a) and EDS spectrum (b) of Ti-6Al-4V alloy.
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Mater., South Korea) having 20% 3Y-ZrO2 and 80% Al2O3. 
The ceramic insert used had ISO designation CNGN 
120408 E40 with rhombic shape, 0° rake angle, and with no 
chip breaker. Its properties are presented in Table III. The 
experimental setup used to perform turning operations on 
the CNC machine is shown in Fig. 2. SEM micrograph and 
EDS spectrum of the alumina-zirconia ceramic insert are 
shown in Fig. 3. The chemical composition of the alumina-
zirconia ceramic insert is shown in Table IV.

The CNC machine had a spindle rotation speed range 
from 50 to 4000 rpm (revolutions per minute) with a 7.5 
kW motor drive. The input parameters adopted for the trails 
were the cutting speed (v) in rpm, feed rate (f) in mm/rev., 
and depth of cut (d) in mm. The numbers of input parameters 
with their chosen levels for the work are presented in Table 
V. The experiment runs were performed using Taguchi’s L25 
factorial design. Each experiment trail was carried out at 
random by a new insert, and the trails were replicated twice 
to ensure data consistency and to average out the influence of 
uncontrollable variables. The output responses measured for 
the different experimental runs included surface roughness 
(SR), tool flank wear (TFW), material removal rate (MRR), 
and tool wear loss (TWL). The surface roughness tester 
(TR-200, Time) was used to measure the roughness of the 

Figure 3: SEM micrographs (a,b), EDS spectrum (c), and X-ray diffraction pattern (d) of alumina-zirconia (Al2O3-ZrO2) ceramic insert tool.

Figure 2: Images of experimental set-up for turning Ti-6Al-4V 
alloy in a CNC machine.
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Color Density 
(g/cm3)

Vickers 
hardness

Fracture 
toughness 
(MPa.m1/2)

Thermal 
conductivity 

(cal.m-1.s-1.°C-1)

White 4 1800 4.50 0.07

Table III - Physical and mechanical properties of the 
alumina-zirconia (Al2O3-ZrO2) ceramic insert.
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turned surface. The tool flank wear of the ceramic insert 
used in every cutting experiment was measured using a 
tool maker’s microscope (RT 500, Radical). The tool wear 
loss (TWL) was calculated by using a laboratory weight 
measuring machine (CWS Series, Scale-Tec, precision 
±0.001 g) to measure the weight of the ceramic tool before 

and after the experiment. A conventional equation was used 
to calculate the material removal rate. Table VI represents 
the layout of experiment runs as per Taguchi’s L25 orthogonal 
array design with their measured responses. The responses 
were measured twice and their average value accounted to 
minimize the inaccuracy in the observed measurements.

Cutting tool characterization: SEM micrograph (Fig. 
3b) showed that the 3Y-ZrO2 was uniformly distributed in 
Al2O3. The grain sizes of Al2O3 and 3Y-ZrO2 ranged from 
1-7 µm and 0.2-1 µm, respectively. Fig. 3d shows the X-ray 
diffraction (XRD) pattern of the Al2O3-ZrO2 ceramic insert, 
which presented Al2O3, t-ZrO2, and m-ZrO2. The main phase 

Table IV - Chemical composition of the alumina-zirconia 
(Al2O3-ZrO2) ceramic insert.

Al Zr O
45.58% 9.57% 44.85%

Table V - Machining parameters with their levels.
Machining parameter Symbol Unit Level 1 Level 2 Level 3 Level 4 Level 5

Cutting speed v rpm 3500 3625 3750 3875 4000
Feed rate f mm/rev. 0.05 0.10 0.15 0.20 0.25

Depth of cut d mm 0.1 0.2 0.3 0.4 0.5

Table VI - Experiment runs as per L25 orthogonal array and the measured responses.
Exp. 
No.

Cutting speed 
(rpm)

Feed rate 
(mm/rev.)

Depth of 
cut (mm)

Surface 
roughness (µm)

Tool flank 
wear (mm)

Material removal 
rate (mm3/s)

Tool wear 
loss (g)

1 3500 0.05 0.1 0.600 1.118 1.512 0.021
2 3500 0.10 0.2 0.633 1.182 6.006 0.043
3 3500 0.15 0.3 0.744 1.232 13.315 0.063
4 3500 0.20 0.4 0.814 1.311 24.640 0.071
5 3500 0.25 0.5 0.959 1.374 37.400 0.071
6 3625 0.05 0.4 0.459 1.419 5.970 0.065
7 3625 0.10 0.5 0.596 1.463 14.469 0.093
8 3625 0.15 0.1 0.456 1.264 4.170 0.033
9 3625 0.20 0.2 0.525 1.318 11.028 0.042
10 3625 0.25 0.3 0.618 1.381 20.336 0.050
11 3750 0.05 0.2 0.392 1.363 2.734 0.061
12 3750 0.10 0.3 0.497 1.434 8.061 0.079
13 3750 0.15 0.4 0.547 1.492 15.699 0.087
14 3750 0.20 0.5 0.617 1.517 25.221 0.099
15 3750 0.25 0.1 0.459 1.325 6.011 0.039
16 3875 0.05 0.5 0.390 1.598 6.150 0.107
17 3875 0.10 0.1 0.358 1.391 2.338 0.045
18 3875 0.15 0.2 0.403 1.439 10.413 0.068
19 3875 0.20 0.3 0.480 1.502 13.445 0.082
20 3875 0.25 0.4 0.551 1.569 21.678 0.098
21 4000 0.05 0.3 0.285 1.529 3.206 0.082
22 4000 0.10 0.4 0.339 1.594 8.247 0.103
23 4000 0.15 0.5 0.400 1.619 14.709 0.112
24 4000 0.20 0.1 0.291 1.412 3.671 0.052
25 4000 0.25 0.2 0.347 1.484 9.051 0.064

H. Patel et al. / Cerâmica 68 (2022) 257-269
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of the sample, α-Al2O3, had peaks at 2θ= 25.7°, 35.2°, 41.8°, 
43.4°, 46.3°, 52.6°, 57.6°, 61.3°, 66.6°, 70.5°, 74.5°, 76.9°, 
and 77.3°, which were correlated with crystalline planes 
(012), (104), (110), (113), (024), (116), (211), (214), and 
(300), while the peaks at 2θ= 30.3°, 33.0°, 36.6°, 40.0°, 50.3°, 
51.7°, 54.0°, 60.2°, 62.9°, 74.6°, and 78.5° corresponded to the 
tetragonal phase of zirconia. The monoclinic phase of zirconia 
was detected at 24.2°, 24.6°, 28.4°, 31.6°, 48.0°, 56.0°, 64.3°, 
69.5°, and 75.3°. The appearance of comparatively large 
grains implied that the phase was most probably monoclinic, 
while the small inclusions were the tetragonal phase of 
zirconia. In addition, the tetragonal phase remained in the 
ceramic insert. It was possible to observe high-crystalline 
phases of Al2O3 and t-ZrO2 with significantly sharp extended 
peaks. The finding suggested that using yttria as a stabilizing 
oxide caused phase stability in Al2O3-ZrO2 ceramic. In this 
scenario, residual deformation within the ceramic due to the 
dilation effect may occur, resulting in significant influence 
due to strength fluctuations [22].

Grey relational analysis (GRA) methodology [39, 46]: in 
most machining operations, improving one output component 
by sacrificing the other is not attainable. Multi-objective 
optimization is extremely useful to draw critical decisions 
involving competing for output measured. A grey system 
represents the level of information that exists between the 
black (no information) state and the white (all information) 
state. The quality index grey relational grade (GRG) is used 
to characterize the correlation between the two states [43]. 
GRA approach reduces a multi-response problem into a single 
objective function (Fig. 4). 

The machining parameters were optimized using grey 
relational analysis (GRA) and the analytic hierarchy process 
(AHP). The step-by-step procedure for GRA is described 
as follows: Step 1 - data preprocessing: GRA begins by 
normalizing all of the responses and transforming them 
into a predetermined set of values between 0 and 1. The 
normalization of the output respondents is characterized by 
the specific objective [42]. This work aimed to minimize 
surface roughness (SR), tool flank wear (TFW), and tool 
wear loss (TWL) while maximizing the material removal rate 
(MRR). The goal of ‘smaller-the-better’ values for the surface 
roughness (SR), tool flank wear (TFW), and tool wear loss 
(TWL) while ‘higher-the-better’ values for material removal 
rate (MRR) were calculated using Eqs. A and B [39]:

Zij =
max(yij,i=1,2...n)-yij

max(yij,i=1,2...n)-min(yij,i=1,2...n) 		  (A)

Zij =
yij -max(yij,i=1,2...n)

max(yij,i=1,2...n)-min(yij,i=1,2...n) 		  (B)

where Zij is a normalized matrix, and yij is the experimental 
value. Step 2 - grey relation coefficients (GRC) calculation: 
the preprocessed data based on the normalized sequences 
were then used to compute GRC using Eq. C [39]:

g(Z0, Zij)=
Dmin + xDmax
Doj(k) + xDmax

			   (C)

where Δmax and Δmin are the highest and lowest value 
of the deviation sequence. The deviation sequence 
Δoj(k)=|[Z0(k)-Zij(k)]|. Here, Z0(k) represents the reference 
sequence and Zij(k) represents the comparability sequence. 
The distinguishing coefficient (ξ) value can range from 0 to 
1. In this investigation, it was chosen as 0.5. Step 3 - grey 
relational grade (GRG) calculation: by assigning a weight 
value to each input parameter, GRG converts the multi-
objective GRC to a single objective. The weighted GRG was 
calculated using Eq. D [39]:

GRG(Z0, Zij) =  Wk x g(Z0,Zij)		  (D)

where  Wk= 1 is the weight of each parameter. The 
weight assignment to the input parameter was calculated 
by the analytical hierarchy process (AHP) [40] as follows: 
i) a pairwise comparison matrix A (m×m) was created as 
Eq. E [31]:

Amxm =  	 (E)

where m denoted the number of performance measures taken 
into account. Each elemental relative score value of a matrix 
represents the relative importance rank of each character 
concerning the objective using the Saaty scale (Table VII) 
[40]. The values in the pairwise matrix were settled relevant 
to the adequacy of the objective, as shown in Table VIII. 
The values assigned to the row elements were compared to 
the values of the column elements in this case. An element 
value of 1 is given when the parameter is in relation to its 
own (Aij=1 for i=j). A reciprocal element value is given when 
the parameter is relative to others (Aij=1/Aji). As a result, the 
matrix diagonal is assigned by a value of 1, the half matrix 
values are assigned by the relative importance of the individual 
qualities while the other half values are assigned based on the 
reciprocal of the consequent element. The comparison is done 
on a scale, highlighting how many times or how influential 
an output response is in comparison to other responses linked 
to the compared criteria or property. This study aimed to 
increase productivity and quality when turning Ti-6Al-4V. As 

Figure 4: Schematic of the plan of grey relational analysis.
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titanium alloys are considered hard-to-cut materials because 
of their low thermal conductivity, achieving close dimension 
tolerance with a good surface is critical. Thus, surface 
roughness is given the highest weight followed by material 
removal rate. For sustainability in machining and requirement 
of tool life, tool flank wear and tool wear loss were given equal 
weights. The pairwise comparison matrix established for the 
output responses is shown in Table VIII. ii) To compute the 
normalized weight (Wj) of the characteristics, the geometric 
mean (XG) approach was used. The geometric mean and the 
normalized weight were determined from the pairwise matrix 
using Eqs. F and G [40]: 

XG = [  aij]
1/m				    (F)

Wj = 
XGi

XGi

					     (G)

which calculated values are presented in Table IX. iii) 
Measuring consistency is critical because inconsistent factors 
do not result in excellent outcomes. The λmax (maximum 
eigenvalue) was computed by summing relative values 

column-wise, multiplying with the relevant normalized 
weights of the characteristics, and averaging the values. The 
consistency index (CI) for the pairwise matrix was calculated 
using Eq. H [40]: 

CI = 
lmax-n

n-1  					     (H)

where n is the number of parameters. The λmax value 
calculated was 4.0733, with a consistency index (CI) of 
0.0244. iv) The consistency ratio (CR) of the matrix was 
computed using Eq. I [40]: 

CR = CI
RI  					     (I)

where the random index (RI) [40] for four parameters was 
chosen from Table X, which is 0.89 for n=4. As a result, the 
CR value for the current work was calculated as 0.0275. The 
value of CR determined from the pairwise matrix is used 
to determine the consistency of the assessment, and a value 
of 0.1 or less is generally deemed acceptable, reflecting a 
comprehensive examination of the present work. Step 4 - 
calculation of grey relational grade (GRG): using the AHP 

Table VII - Saaty scale [31].
Rating scale Definition Explanation

1 Equal importance Two activities contribute equally to the objective
3 Moderate importance Experience and judgment slightly favor one activity over another
5 Strong importance Experience and judgment strongly favor one activity over another

7 Very strong or demonstrated 
importance

An activity is favored very strongly over another; its dominance 
demonstrated in practice

9 Extreme importance Evidence favoring one activity over another is of the highest 
possible order of affirmation

2, 4, 6, 8 Intermediate value When compromise needed

Table VIII - The pairwise comparison matrix.

Response Surface roughness 
(µm)

Tool flank wear 
(mm)

Material removal rate 
(mm3/s)

Tool wear loss 
(g)

Surface roughness 1 7 5 7
Tool flank wear 1/7 1 1/3 1

Material removal rate 1/5 3 1 3

Tool wear loss 1/7 1 1/3 1

Table IX - Geometric mean and normalized weight of the output responses.
Response Geometric mean (XG) Normalized weight (Wj)

Surface roughness 3.9563 0.6541
Tool flank wear 0.4671 0.0772

Material removal rate 1.1583 0.1915
Tool wear loss 0.4671 0.0772
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normalized weights (Table IX) and GRC value of each output 
response, GRG was calculated by employing Eq. J [39]; the 
GRG calculated using these weights of each experimental 
trial is displayed in Table XI. 

GRG = 0.6541.GRC(SR)+0.0772.GRC(TFW)+
0.1915.GRC(MRR) +0.0772.GRC(TWL) 	(J)

RESULTS AND DISCUSSION

The results of the output factors (SR, TFW, MRR, and 
TWL) were evaluated to access how cutting parameters (v, f, and 
d) affected these responses. The main effects of each machining 
parameter are shown in Fig. 5. Fig. 5a indicates that with the 

rise of both the feed rate and depth of cut, there was a rise in the 
value of surface roughness. Pervaiz et al. [17] stated that such a 
statistical trend was observed, which was attributed to the fact 
that just a little amount of material was plowed at a shallow 
depth of cut with low feed rates. At low feed rates, the uncut chip 
thickness was low, and this standard can reduce plunging and 
be labeled as having a favorable low value of surface roughness 
[19]. On contrary, increasing the feed rate caused an increase in 
the plunging effect, which was integrated with a poor surface 
quality finish. The value of cutting speed increase was more 
promising for improving surface roughness. The mean effect plot 
in Fig. 5b reveals a steeper inclination curve for cutting speed 
and depth of cut, indicating that increasing these parameters led 

Table X - Random index (RI) value based on the number of parameters.

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table XI - Grey relation coefficient (GRC) and grey relational grade (GRG) calculated from the output responses.

Exp. No. Cutting 
speed (rpm)

Feed rate 
(mm/rev.)

Depth of 
cut (mm)

GRC   
(SR)

GRC 
(TFW)

GRC 
(MRR)

GRC 
(TWL) GRG

1 3500 0.05 0.1 0.3380 0.0772 0.0638 0.0772 0.5563
2 3500 0.10 0.2 0.3216 0.0615 0.0675 0.0521 0.5027
3 3500 0.15 0.3 0.2769 0.0531 0.0740 0.0402 0.4442
4 3500 0.20 0.4 0.2545 0.0436 0.0849 0.0368 0.4198
5 3500 0.25 0.5 0.2180 0.0382 0.1044 0.0368 0.3974
6 3625 0.05 0.4 0.4306 0.0351 0.0686 0.0393 0.5735
7 3625 0.10 0.5 0.3401 0.0325 0.0810 0.0299 0.4835
8 3625 0.15 0.1 0.4336 0.0488 0.0668 0.0611 0.6103
9 3625 0.20 0.2 0.3815 0.0429 0.0762 0.0528 0.5535
10 3625 0.25 0.3 0.3290 0.0377 0.0967 0.0472 0.5105
11 3750 0.05 0.2 0.4964 0.0390 0.0659 0.0411 0.6425
12 3750 0.10 0.3 0.4012 0.0341 0.0748 0.0340 0.5441
13 3750 0.15 0.4 0.3679 0.0310 0.0945 0.0315 0.5249
14 3750 0.20 0.5 0.3295 0.0298 0.1475 0.0285 0.5353
15 3750 0.25 0.1 0.4311 0.0423 0.0719 0.0553 0.6006
16 3875 0.05 0.5 0.4979 0.0265 0.0742 0.0267 0.6252
17 3875 0.10 0.1 0.5371 0.0370 0.0667 0.0506 0.6913
18 3875 0.15 0.2 0.4841 0.0339 0.0772 0.0380 0.6331
19 3875 0.20 0.3 0.4140 0.0305 0.1024 0.0330 0.5799
20 3875 0.25 0.4 0.3651 0.0276 0.1915 0.0287 0.6128
21 4000 0.05 0.3 0.6541 0.0292 0.0702 0.0330 0.7865
22 4000 0.10 0.4 0.5630 0.0266 0.0903 0.0276 0.7074
23 4000 0.15 0.5 0.4876 0.0257 0.1536 0.0257 0.6927
24 4000 0.20 0.1 0.6414 0.0355 0.0736 0.0459 0.7964
25 4000 0.25 0.2 0.5519 0.0314 0.1027 0.0397 0.7258

SR: surface roughness; TFW: tool flank wear; MRR: material removal rate; TWL: tool wear loss.
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to increased tool flank wear. With an increase in depth of cut due 
to the thermal effect, there is an increase in cutting temperature 
and thermal stress, increasing flank wear [18]. As shown in the 
mean effect plot in Fig. 5c, increasing the feed rate and depth of 
cut increased the material removal rate. When turning at high 
cutting speeds and high depth of cut as shown in the mean effect 
plot of Fig. 5d, the gradual tool wear, strain hardening effect 
generated by high plastic deformation while turning operation, 
and material adherence at the tool-workpiece interface all result 
in high tool wear loss. From Fig. 5, the nearly identical steep hill 
curve pattern for the depth of cut for all four output measures 
(SR, TFW, MRR, and TWL) indicated that the output value 
increased as the depth of cut increased. The SR, TFW, and MRR 

increased, and TWL decreased with an increase in feed rate. 
However, an increase in cutting speed decreased the SR and 
MRR and increased the TFW and TWL.

Table XII shows the best and worst output responses for all 
experiment trials. Different parameter settings in the turning 
process are required to attain excellent output responses. The 
desired output value for SR, TFW, and TWL should attain 
the minimum value whereas, for MRR, it is the maximum. 
As these parameter settings differ in producing the optimal 
responses, a robust multi-objective optimization is required 
for decision-making in machining operations. The grey 
relational grade (GRG) was used to evaluate the multi-
response quality characteristics, and a higher GRG value 

Table XII - The best and worst output responses for all experiment trials.

Response Output Cutting speed, v 
(rpm)

Feed rate, f 
(mm/rev.)

Depth of cut, d 
(mm)

Surface 
roughness

Best 0.285 4000 0.05 0.3
Worst 0.959 3500 0.25 0.5

Tool flank wear
Best 1.118 3500 0.05 0.1

Worst 1.619 4000 0.15 0.5

Material removal 
rate

Best 29.333 3875 0.25 0.4
Worst 0.836 3500 0.05 0.1

Tool wear loss
Best 0.021 3500 0.05 0.1

Worst 0.112 40000 0.15 0.5

Figure 5: Main effects plot (data means) for: a) surface roughness (SR); b) tool flank wear (TFW); c) material removal rate (MRR); and d) 
tool wear loss (TWL).
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was preferred regardless of the type of quality feature. GRG 
provides a single measure for multiple quality parameters, 
having higher GRG values yielding higher output features 
[41]. The highest value of GRG was measured for the 24th 
trial, implying that the optimal process parameters are near 
the operating state for that experiment run.

Regression model for GRG function [34]: a quadratic 
second-order polynomial model of response surface 
methodology (RSM) was created for a multi-objective GRG 
function, which accurately describes the GRG computed 
from the experiment results. The concise mathematical 
model is shown in Eq. K, including all the insignificant 
terms. The proposed model is only applicable to turning 
Ti-6Al-4V using alumina-zirconia (Al2O3-ZrO2) ceramic 
insert with the given machine tool, and the dry machining 
condition under the conditions used (3000≤ v ≤4000 rpm, 
0.05≤ f ≤0.25 mm/rev., 0.1≤ d ≤0.5 mm).

0.5342+0.09943.v-0.03722.f-0.06053d+
0.0419.v.v+0.0295.f.f+0.0275 .d.d-
0.0289.v.f-0.0238.v.d-0.0124.f.d

GRG = 	 (K)

Model validity and fitness test [42]: the validity of the 
created mathematical model was estimated by the use of the 
percentage variation (θi) and average percentage variation      
( ) expressed as [42]:

qi = 
GRGP - GRGE

GRGE

 .100 			   (L)

N100 - = 				    (M)

where GRGP is the predicted outcome obtained by the 
mathematical model, GRGE is the actual outcome measured 
by experimental data, and N is the size of the experimental 
data. Eqs. L and M were used to test the accuracy of the 
developed mathematical model. In this study, for Σθi=3.479 
and N=25, the average percentage variation (Eq. M) revealed 
that the developed mathematical model could accurately 
estimate the GRG value with 99.86% accuracy. 

The significance of the process parameters and the fitness 
of the model in developing a statistical relationship between 
the outcomes and the machining parameters were established 
using analysis of variance (ANOVA) [38]. As presented in 
Table XIII, ANOVA was explored at the confidence level of 
95% to analyze the influence of the machining parameters. 
The R2 value indicated that the model accurately explained 
97.49% of the total variations. From the ANOVA table it was 
identified that all linear (v, f, d) parameters were significant 
while quadratic (v.v, f.f, d.d) and interaction (v.f, v.d, f.d) 
parameters were non-significant. The cutting speed was 
the highest significant parameter affecting GRG among the 
turning experiment settings with 79.35% followed by the 
depth of cut (12.92%) and feed rate (3.76%). The quadratic 
factors had a total of 3.80% contribution while interaction 
parameters had a 0.18% contribution.

Figs. 6a to 6c present contour and surface graphs of 
GRG for the turning operation. These curves illustrate the 
correlation of the machining parameters to the calculated 
GRG value. The highest value of the GRG was retrieved 
at maximum cutting speed with minimum feed rate and 
a minimum depth of cut. Fig. 6d compares the GRG 
experimental collected from the experiments and GRG 
predicted values calculated from the developed regression 

Table XIII - ANOVA for response surface model.
Source DF Adj SS Adj MS F-value p-value % contribution

Regression 9 0.2536 0.0282 34.4 0.000 95.38
Linear 3 0.2084 0.2084 254.4 0.007 96.02

v 1 0.1722 0.1722 210.2 0.000 79.35 Significant
f 1 0.0082 0.0082 10.0 0.007 3.76 Significant
d 1 0.0280 0.0280 34.2 0.000 12.92 Significant

Quadratic 3 0.0082 0.0082 10.1 0.298 3.80
v.v 1 0.0036 0.0036 4.5 0.052 1.68
f.f 1 0.0028 0.0028 3.4 0.084 1.30
d.d 1 0.0018 0.0018 2.2 0.162 0.82

Interaction 3 0.0004 0.0004 0.5 2.196 0.18
v.f 1 0.0000 0.0000 0.0 0.920 0.00
v.d 1 0.0002 0.0002 0.2 0.675 0.07
f.d 1 0.0002 0.0002 0.3 0.601 0.11

Error 15 0.0123 0.0008 4.62
S: 0.0358 R2: 97.49% R2(adj.): 95.78%
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model having a maximum mean error of 3.47%. At the 
highest value of GRG, the shear force with the shear plane 
diminished at higher levels of feed rate, depth of cut, and 
lower cutting speed, resulting in an enhanced MRR but 
diminished SR, TFW, and TWL. The chip friction increases 
at a high feed rate and high depth of cut, resulting in an 
increased temperature and thermal stresses at the tool-chip 
interface, resulting in a rough surface [41]. The adverse 
impact of high feed rate and high depth of cut is conserved 
by high cutting speed [17]; as a result, the highest value of 
GRG was attained by experiment number 24 (input factors 
cutting speed, feed rate, and depth of cut set at 4000 rpm, 0.2 
mm/rev. and 0.1 mm, respectively).

Optimization of the GRG response surface model: 
the developed RSM mathematical model for GRG was 
employed to predict the optimal machining parameters when 
the grey relation grade was set for maximum value. Fig. 7 
displays the composite desirability as 0.8207, very close to 
1.0, which indicated optimized machining settings for grey 
relational maximum value attained when cutting speed, feed 
rate, and depth of cut were set as 4000 rpm, 0.05 mm/rev., 
and 0.1 mm, respectively. 

Confirmation experiment: the comparison of the 
optimum turning process parameters from the GRG RSM 
model and the best experimental trial of the L25 orthogonal 
array is given in Table XIV. The results showed a 10.31% 
decrease in surface roughness, 6.51% decrease in tool flank 
wear, 2.21% rise in MRR and a 7.69% increase in tool 
wear loss. The only parameter difference between the best 
experimental trial and the optimum trial was the feed rate, 
while the cutting speed and depth of cut were the same in 
both trials. To address multi-objective problems, it is critical 
to assess machining parameters during the machining 
process. As presented in Table XIV, when comparing the 
output results of surface roughness for both the trial runs, 
the surface quality improved with higher cutting speeds 
because there were fewer chances of built-up edge creation. 
On the other hand, an increase in the depth of cut and feed 
rate deteriorated the surface quality. When all of the input 
parameters (cutting speed, feed rate, and depth of cut) 
were set to their maximum level, the MRR increased. In 

Figure 6: Contour and surface graphs of GRG for the turning operation (a-c) and comparison of GRG experiment and GRG predicted values (d).
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comparison to the best trial, MRR for the optimized trial 
indicated a 2.21% reduction in material removal rate. The 
only variance between the two best and optimum trials 
(Table XIV) was that the feed rate was reduced, resulting 
in a lower MRR value. This is because, at lower feed rates, 
the turning mechanics do not shift from rubbing action to 
shearing action. In comparison to the best trial, tool flank 
wear and tool wear loss for the optimal trial decreased by 
6.51% and 7.69%, respectively. Increasing the feed rate and 
depth of cut result in more friction, which raises the cutting 
temperature and triggers the flank wear and tool wear. In 
the machining process, proper integration of machining 
parameters can lead to the optimum multi-response output.

CONCLUSIONS

In this study, Ti-6Al-4V alloy was turned on a CNC 
machine using an alumina-zirconia (Al2O3-ZrO2) ceramic 
insert. Cutting speed (v), feed rate (f), and depth of cut 
(d) each at five different levels were selected as the input 
machining factors. Surface roughness (SR), tool flank wear 
(TFW), material removal rate (MRR), and tool wear loss 
(TWL) were examined as quality attributes. The experiments 
were carried out using Taguchi’s L25 design. To achieve a 
sustainable machining process, optimal parameters were 
obtained using multi-objective optimization. Based on grey 
Taguchi-based response surface methodology (GT-RSM), the 
following can be concluded. i) Grey relation analysis (GRA) 
is a structured optimization methodology that is effectively 
employed for multi-objective optimization of machining 
parameters. This technique is easy to perform because 
it does not involve a large amount of computation theory 
and calculations. The GT-RSM method was successfully 
used in combination with the analytical hierarchy process 
(AHP) weight approach for multi-objective analysis using 
grey relational grade (GRG) to determine the optimal 
interpretation of machining parameters for the Ti-6Al-4V 
alloy. The optimum condition for the highest GRG value 
was attained when cutting speed, feed rate, and depth of 
cut were 4000 rpm, 0.2 mm/rev., and 0.1 mm, respectively. 
ii) According to the ANOVA results, cutting speed with a 
contribution of 79.35% had the highest influence on the 
machining responses (SR, TFW, MRR, and TWL) of all 
the input process parameters studied, followed by the depth 
of cut and feed rate with 12.92% and 3.76% contributions, 

respectively. iii) A quadratic mathematical model was 
formulated through response surface methodology (RSM). 
The R2 value of 97.49% and the average variation of 99.86% 
for the developed mathematical model were used to assess 
the models’ accuracy. GRG experimental values and GRG 
predicted values calculated from the developed regression 
model had a mean error of 3.47%. All of this validated 
that the proposed method had an excellent fit and can 
estimate multi-objective values that are rationally close to 
the experimental values. iv) The optimum trial revealed an 
enhancement of 10.31% in surface roughness, 6.51% in tool 
flank wear, and 7.69% in tool wear loss with a reduction of 
2.21% in material removal rate. Dry machining can promote 
sustainable green manufacturing by selecting the correct 
level of cutting speed, feed rate, and depth of cut to improve 
product quality, tool life, manufacturing lead time, energy, 
and cost. Future studies can integrate the impact of chip 
morphology, tool chattering, fatigue behavior, and specific 
cutting energy to determine the correct combination of the 
machining parameters. Cutting forces and morphological 
changes can also be studied concerning the type of cutting 
tool, its material, and its geometry. The proposed multi-
objective optimization methodology can be employed 
to enhance the sustainability of other machining and 
manufacturing techniques. 
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