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ABSTRACT

Background: Vegetation indices have recently been proposed for remote sensing SAR (synthetic 
aperture radar) sensor measurements to monitor vegetation. However, they still lack validation 
studies on different vegetation types for their correct application. Thus, the objective of this study was 
to test the applicability of the Dual-polarization SAR Vegetation Index (DPSVI) and the modified DPSVI 
(DPSVIm) as indicators of aboveground biomass (AGB) from dense forest fragments. 

Results: Three forest fragments, comprising 54 forest plots with AGB ranging from 12 up to 220 
Mg ha-1, were studied. These forest fragments belong to the Brazilian Atlantic Forest biome, and 
were located within the Doce river hydrographic basin in the state of Minas Gerais, Brazil. AGB was 
compared with the DPSVI and DPSVIm indices, computed from dual-polarization Sentinel-1 images, 
using Spearman’s rank correlation test through two approaches. In the first approach (A1), correlation 
tests were performed using all forest plots; in the second approach (A2), samples were taken from 
plots on flat to undulating terrain slopes. The correlation of AGB with DPSVI presented no significant 
correlation (p-value >> 0.05). In contrast, for DPSVIm, the correlation with AGB was significant and 
positive, with coefficients ranging from 0.4 in approach A1 to 0.7 in approach A2. 

Conclusion: While the DPSVI index did not show a correlation with the AGB of the studied forests, 
even though it is a C-band index, the DPSVIm was found to be a good indicator of the amount of 
AGB in forests and therefore has potential for applications in future studies, particularly in areas with 
reasonable slope or flat terrain.

Keywords: aboveground biomass, forest inventory, microwave remote sensing,
semi decidual forest, slopes.

HIGHLIGHTS

Radar remote sensing provides important data for forest monitoring.
We tested the dual-polarization SAR vegetation indices (DPSVI and modified DPSVI).
Modified DPSVI (DPSVIm) showed to be correlated with forest aboveground biomass.
C-band SAR data can be utilised in forest monitoring.
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INTRODUCTION

From crop monitoring to ecosystem dynamics, 
vegetation indices (VIs) calculated using multispectral 
remotely sensed images have been widely utilized as 
tools to monitor terrestrial activities (de Oliveira Maia et 
al., 2022; Zeng et al., 2022). VIs are mathematical models 
that simplify the interpretation of the complex interactions 
between plant organs and electromagnetic radiation. The 
initial conceptions of optical VIs date back to the 1970s 
(Rouse et al., 1973). Since then, dozens of VIs have been 
developed to indicate various biochemical, biophysical, and 
physiological parameters of vegetation (Zeng et al., 2022).

Although VIs are widely employed in various 
vegetation monitoring strategies, the strong influence 
of clouds on the scenes results in data gaps, limiting 
continuous vegetation monitoring. In this context, the use 
of synthetic aperture radar (SAR) data emerges as a suitable 
alternative for monitoring vegetation dynamics regardless 
of weather conditions. SAR sensors are active sensors that 
operate in the microwave region of the electromagnetic 
spectrum, with wavelengths in the centimeter scale. 
Consequently, atmospheric effects on SAR images are 
reduced. Microwave radiation interacts with the structural 
properties of vegetation, such as size, shape, roughness, 
and orientation, and its dielectric properties, such as water 
content (Flores-Anderson et al., 2019; Woodhouse, 2006). 
Due to these characteristics, vegetation indices derived 
from SAR data offer an alternative for measuring biophysical 
parameters of vegetation, such as aboveground biomass 
(Chang et al., 2018; dos Santos et al., 2021; Periasamy, 
2018). The combination of SAR data and vegetation 
monitoring methods provides an opportunity to enhance 
the monitoring of crops, forests, and other ecosystems 
(Bhogapurapu et al., 2021; Flores-Anderson et al., 2019).

Recently, the increasing availability of free SAR 
data, particularly from the European Space Agency’s 
(ESA) C-band Sentinel-1 mission, has facilitated the 
development of multiple dual-polarization SAR VIs (Chang 
et al., 2018; dos Santos et al., 2021; Mandal et al., 2020; 
Nasirzadehdizaji et al., 2019; Periasamy, 2018). These VIs 
utilize the polarimetric features of the C-band radar signal’s 
interaction with vegetation canopies to enhance contrast 
between vegetation and other distributed targets, thereby 
simplifying SAR data interpretation (Bussinguer et al., 2024).

Among these indices, we highlight the Dual-
Polarization SAR Vegetation Index (DPSVI) (Periasamy, 2018). 
DPSVI is an empirical proxy for measuring the extent to which 
the three-dimensional and complex structure of vegetation’s 
leaves and branches changes the polarization of C-band 
microwaves (which have a wavelength of approximately 5.4 
cm). DPSVI, however, does not use a parameter such as the 
degree of polarization (Chang et al., 2018; Chang and Oh, 
2007; Woodhouse, 2006). Instead, it utilizes the Euclidean 
distance between the backscattering coefficients of the VV 
and VH polarizations to distinguish bare soil pixels from those 
of vegetation and water bodies. Subsequently, the index 
separates vegetation pixels from water body pixels using a 
cross-ratio approach between the VH and VV polarization. 

Finally, the index employs the VH polarization as an indicator 
of signal depolarization caused by vegetation.

De Jesus et al. (2023) used DPSVI, among other SAR 
data, to estimate aboveground biomass (AGB) of plots in 
the Caatinga biome in Brazil during the green, intermediate, 
and dry periods. The authors found that DPSVI was an 
important vegetation descriptor for Caatinga vegetation, as 
it was included in the AGB equations for all three periods. In 
the dry period, DPSVI and the backscattering coefficient VH 
constituted the best combination for modelling the plots’ AGB.

Models such as DPSVI, which utilize C-band radar 
data, have limitations when mapping areas with dense 
biomass vegetation, such as forested regions (Joshi et al., 
2017). The interactions between the C-band signal and 
densely vegetated areas are mostly confined to the upper 
part of the canopy (Omar et al., 2017), where the signal tends 
to saturate beyond this stratum. With this in mind, dos Santos 
et al. (2021) proposed modifications to the mathematical 
formulation of the DPSVI, incorporating terms that enhance 
the capacity of the modified index to map forested areas, 
thereby reducing the effects of signal saturation.

Bussinguer et al. (2024) studied the temporal 
performance SAR VIs in distinguishing three different 
phytogeographical classes of the Cerrado within a protected 
area. Regarding DPSVI and DPSVIm, the authors found that 
both indices could describe the seasonal influences on the 
vegetation, but DPSVIm provided improved separability 
compared to DPSVI in both the wet and dry seasons. 
Dos Santos et al. (2021) tested the agreement of DPSVI 
and modified DPSVI (DPSVIm) with the optical index for 
forest areas, the Enhanced Vegetation Index (Huete et al., 
2002), in plots of the Atlantic Forest, and observed a better 
correlation of EVI with DPSVIm than with DPSVI.

Areas of the Atlantic Forest are important for this kind 
of study due to the amount of biomass in the aboveground 
vegetation that forests can store, which can reach up to 663 
Mg ha-1 (Lindner, 2010). These are areas where the density 
of AGB is high. There is a lack of studies testing, with field 
measurements, the applicability of the recently developed 
dual-polarization SAR vegetation indices, including in 
regions (or vegetation types) different from those where they 
were created. This leaves a gap in knowledge regarding not 
only their advantages and limitations but also which plant 
biological parameters the indices are intended to represent.

Thus, in this work, we hypothesize that DPSVIm will 
show a better correlation with the AGB of Atlantic Forest 
plots than DPSVI. Therefore, the aim of the present study 
is to test the applicability of both DPSVI and DPSVIm as 
indicators of AGB in Brazilian Atlantic Forest fragments, 
aiming to elucidate the theoretical background of the 
indices for Sentinel-1 observations.

MATERIAL AND METHODS 

Description of the studied forest fragments

Three Atlantic Forest fragments were selected in 
this study, based on the availability of field measurements 
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made through a forest inventory (Tavares Júnior et al., 
2020). The fragments used in this study were São José, 
Ipaba, and Cachoeira das Pombas, which belong to the 
phytogeographical region of Seasonal Semideciduous 
Forest (Subcaducifolia Tropical Forest) according to the IBGE 
(2004) and to the ecoregion of Tropical and Subtropical 
Moist Broadleaf Forests (Olson and Dinerstein, 1998). All of 
these fragments are located in the Doce river hydrographic 
basin, Southeast Brazil (Figure 1). The forest fragments São 
José, Ipaba, and Cachoeira das Pombas, are situated in the 
municipalities of Coronel Fabriciano, Ipaba, and Guanhães, 
respectively, all inside the Brazilian state of Minas Gerais. 

One of the main characteristics of the basin, 
important for SAR imaging, is the presence of areas with 
high slopes, with relief ranging from nearly level and gently 
undulating (in the valleys and coast zone) to strongly 
undulating and mountainous areas (relief classes (Santos 
et al., 2018)). This is due to the impact of topography on 
modulating the backscattered microwaves, even generating 
radiometric distortions (Saatchi, 2019; Small, 2011). In such 
cases, after proper radiometric terrain corrections (Small, 
2011), methodologies for plant monitoring that work in such 
relief conditions could be tested elsewhere.

The São José fragment has 38.4 ha (hectares) and 
altitudes ranging from 450 to 950 m. The Ipaba fragment 
is subdivided into an area of 264 ha, with altitudes ranging 

from 200 to 450 m, and an area of 37.3 ha, with altitudes 
between 150 to 300 m. The Cachoeira das Pombas fragment 
has 106 ha and altitudes ranging from 800 to 1,162 m. 

Obtaining aboveground biomass from forest plots

In the forest fragments, permanent rectangular plots 
(10 x 50 m) with an area of 0.05 ha were delimited. In the 
São José, Ipaba, and Cachoeira das Pombas fragments, 12, 
22, and 20 plots were allocated and mapped, respectively 
(Figure 1). The forest inventories were conducted in the year 
2017 on the following dates: São José, between July 20 and 
August 02; Ipaba, between August 08 and 29; and Cachoeira 
das Pombas, between September 13 and October 02.

In each of the plots, the scientific nomenclature, the 
CBH (circumference at 1.30 m height, in cm), DBH (diameter 
at 1.30 m height, in cm), and the total plant height (H, in 
m) of all trees with CBH greater than or equal to 15 cm 
were collected. The H and DBH values obtained were set as 
inputs to the allometric equation (Equation 1), in order to 
obtain the aboveground biomass (AGB, in Kg) (dos Santos 
et al., 2021) of each sampled tree.

Figure 1: Location of the Atlantic Forest fragments in the Doce river hydrographic basin, Brazil. Digital Slope Model: 
derived from NASADEM.

  0.2443356 0.423602( ) 0.02453 ( ( ) ) ( ( ) )AGB tree DBH tree H tree (1)
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The calculations of the AGB of each tree were added 
together to obtain the total AGB of each plot, and then 
converted to AGB in Mg ha-1, by dividing the value found 
by the area of the plots.

Sentinel-1 mission imagery acquisition and processing

Images from the Sentinel-1 radar mission were 
used in the study (Table 1) and were obtained according 
to the dates of the forest inventories described in the 
previous topic. Dual-polarization images, set on VV and VH 
polarizations, obtained via the Interferometric Wide Swath 
imaging mode (IW) from Ground Range Detected (GRD) 
products, generated by the Sentinel-1B satellite, were used. 
Sentinel-1 IW GRD images are formed after the sensor scans 
the Earth’s surface in three sub-swaths: IW1, IW2, and IW3; 
with incidence angles of 32.9°, 28.3°, and 43.1° and azimuthal 
resolution (spatial resolution in relation to the flight direction 
of the satellite) of 22.4, 22.5, and 22.6, respectively (ESA, 
2022). The images were obtained from the Alaska Satellite 
Facility – ASF (ASF, 2023).

Imaging processing was performed to generate the 
bands with backscattering coefficient calibrated to gamma_
naught ( 0

VV  and 0
VH ), and for this, the following algorithms 

were applied: 1) Subset: to crop the scenes to the area of 
interest, i.e., the coverage area of the three forest fragments; 
2) Apply Orbit File: to correct the orbit vector (satellite 
position and speed) with accurate post-processed data 
(by the control segment); 3) Thermal Noise Removal: for 
removing thermal noise from the antenna itself; 4) Border 
Noise Removal: to remove noisy edges from the images; 5) 
Radiometric Calibration: to normalize the observed wave 
amplitude in each band to a section (Radar Cross Section) 
and obtain the backscattering coefficient (reflectivity per 
unit area) in β0 (the normalized backscattering coefficient 
without a Earth surface model, projected section necessary 
to perform terrain corrections); 6) application of a Speckle 
Noise removal filter: the Lee Sigma adaptive filter was applied, 
with a 11 x 11 pixel window: Lee Sigma was chosen because it 
is a standard deviation-based filter, which performs filtering 
based on statistics calculated from the data, preserving image 
sharpness and detail while suppressing noise (Meyer, 2019); 
7) Radiometric Terrain Flattening with oversamplingMultiple 
= 4.0: whose goal was to attenuate backscattering distortions 
caused by relief artifacts (hills, steep slopes, mountains, etc.) 
and where the backscattering coefficient was converted from 
β0 to γ0 (the backscattering coefficient after radiometric terrain 
correction with terrain Earth model) according to Small (2011) 
methodology; 8) which consisted of orthorectifying the 

images with the Range-Doppler Terrain Correction algorithm, 
in which the output pixel dimensions was set to 10 m.

Computation of Sentinel-1 SAR vegetation indices

The Dual-polarization SAR Vegetation Index (DPSVI) 
and the modified DPSVI (DPSVIm) vegetation indices were 
calculated using the VH and VV polarization bands. The 
values of the VH and VV bands were calibrated to γ0 in 
linear power units.

The DPSVI index is the product of two other indices 
and the VH band. The IDPDD (Inverse Dual-pol Diagonal 
Distance) and the VDDPI (Vertical Dual-pol Index) indices are 
calculated by (Equations 2, 3), respectively (Periasamy, 2018):

Acquisition date Product Unique Identifier Relative Orbit Number Forest fragment Rainfall (mm)*
July 26, 2017 495B

155
São José 0.2

August 31, 2017 6D51 Ipaba 0.0
September 24, 2017 F6D1 Cachoeira das Pombas 0.0

*Total rainfall on the same day plus in one week before the date of the acquired image, measured in the nearest rain gauge.

Table 1: Inventory of Sentinel-1 IW GRD images used in the study.
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Where VV(i,j) and VH(i,j) are the VV and VH band values, 
respectively, in the pixel at the coordinate (i,j).

By multiplying IDPDD by VDDPI and the VH band 
gives the value of DPSVI, which was obtained by (Equation 4):

( , ) ( , ) ( , ) ( , )i j i j i j i jDPSVI IDPDD VDDPI VH

The VVmax parameter was defined by exploring the 
VV versus VH scatterplot of the three used scenes. In this 
study, the VVmax parameter was set equal to 1.5. This value 
of VV was set following recommendations of Periasamy 
(2018), which states that VVmax must to encompass the 
natural surface scatterer pixels (water, uncovered soil, and 
plants) in a triangle where the VV and VH measurements 
are concentrated (Figure 2).

The DPSVIm index is the product of the DPDD 
(Dual-pol Diagonal Distance, (Equation 5) and Cross-ratio 
(CR) (Equation 6)) indices and the VH band: 

(4)
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Where CR(i,j) is the Cross-Ratio of VV to VH band.
By multiplying DPDD, CR, and VH band, it gives the 

value of DPSVIm, which was calculated using (Equation 7):

RESULTS

The range of AGB values for the studied forest plots 
varied from 12.6 to 219.7 Mg ha-1 (Table 2). In contrast, the 
values for Sentinel-1 VH polarisation varied on a different 
scale from AGB, ranging from approximately 0.01 to 0.09 (in 
linear power units scale). Comparatively, the Sentinel-1 derived 
indices, namely DPSVI and DPSVIm, exhibited similar ranges. 
These findings underscore the importance of conducting 
correlation tests to evaluate the relationship between dual-
polarisation SAR vegetation indices and forest AGB.

Spearman’s correlation tests were conducted 
between AGB and VH polarisation, the DPSVI, and the 
DPSVIm indices in both approaches (A1 and A2). In approach 
A1, there was no significant correlation between AGB 
and VH polarisation, as indicated by a p-value of 0.7392, 
as shown in Figure 4a. Similarly, there was no significant 
correlation between AGB and the DPSVI (p-value = 0.27252, 
Figure 4b). However, the correlation test between AGB and 
the DPSVIm yielded a p-value of 0.00339, leading to the 
rejection of the null hypothesis and suggesting a significant 
correlation between AGB and the DPSVIm.

In approach A1, the correlation between AGB 
and the DPSVIm was ρ = 0.394 (Figure 4c). However, this 
correlation coefficient was higher in approach A2.

In the approach A2, correlation tests between AGB 
and VH polarization and AGB and DPSVI remained with no 
significant effect (refer to Figure 5a and Figure 5b). However, 
the correlation coefficient of the test between AGB and 
DPSVIm increased from 0.4   (in the correlation test for 
approach A1) to ρ = 0.713, in the approach A2 (see Figure 5c). 
The difference between correlation tests in approaches A1 
and A2 lies in the former’s use of all samples from all forest 
plots together. Conversely, in approach A2, forest plot samples 
were filtered, and only samples from plots with nearly flat relief 

Figure 3: Quantile distribution plot of aboveground 
biomass (AGB) showing the statistical metrics of central 
tendency and dispersion of all the forest plots, as well as 
the results of the Shapiro-Wilk normality test.

Figure 2: Scatterplot between VV and VH bands showing 
the maximum VV value adopted for the DPSVI calculation 
and the approximation of a triangle representing soil, water, 
and vegetation pixels. Product Unique Identifier: 495B.

( , ) ( , ) ( , ) ( , )i j i j i j i jDPSVIm DPDD CR VH

The software codes used in this work, to handle 
Sentinel-1 IW GRD products, were developed by dos Santos 
et al. (2023) and are hosted in public repository. The scripts 
were developed in Python programming language, for 
Sentinel-1 IW GRD images processing, and in R language (R 
Core Team, 2023), for both raster sampling according to the 
forest plots and statistical analysis.

Comparative performance analysis of vegetation indices

The VH polarization, the DPSVI, and DPSVIm indices 
were compared with AGB of all forest plots using correlation 
test. The correlation test used was Spearman’s ranks test. 
This test was chosen after having tested the normality of 
the variables by the Shapiro-Wilk normality test. With this 
one, it was detected the AGB dataset do not follow a normal 
distribution (Figure 3).

For the correlation test, the null hypothesis (H0) is 
that there is no linear relationship between the two tested 
variables. The alternative hypothesis (Ha) states that there 
is a linear relationship between the two variables. The 
confidence interval for interpreting the correlation (and 
normality) was 95% (a significance level of ).

Due to the influence that topography has on side-
looking imaging, which is fundamental for SAR antenna 
sensing, two approaches to test the correlation between 
the indices were performed. In the first approach (A1) all 
samples were used together. In the second approach 
(A2), only samples from plots with nearly level, gently 
undulating, and undulating relief phases were used to test 
the correlation of the indices with AGB.

(7)
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(including gently undulating and undulating phases) were 
used to compare the SAR variables and the AGB.

When comparing the correlation of AGB versus 
DPSVI, as well as VH polarization, in approaches A1 (Figure 
4a and b) and A2 (Figure 5a and b), we noticed that although 
AGB values vary from 20 to 220 Mg ha-1, DPSVI and VH 
polarization values consistently hover around 0.05, exhibiting 
no significant correlation with AGB (adjusted p-values >> 
0.05). Conversely, upon filtering the samples by the relief of 
the forest plot, the correlation of DPSVIm with AGB increased 
from ρ = 0.4 to ρ ~ 0.7, indicating a strong correlation that 
remained statistically significant (p – value < 0.05).

DPSVI and DPSVIm share the same conceptual 
design; both were developed based on the depolarisation 
effect of microwave signals by vegetation. Therefore, the 
difference in observed correlation with AGB between 
the two indices can be attributed to the modifications 
introduced in DPSVIm. From DPSVI to DPSVIm, two internal 
indices were altered: the IDPDD was replaced by the DPDD, 
and the VDDPI was substituted with the CR.

Figure 6 depicts scatterplots between DPDD vs. IDPDD 
(Figure 6a) and CR vs. VDDPI (Figure 6b) obtained from 
Sentinel-1 scene 495B. The other two Sentinel-1 products were 
not included due to their similarity to scene 495B.

The DPDD and IDPDD exhibit an inversely proportional 
relationship with each other, as depicted in Figure 6a. Also, the 
inversely proportional relationship of DPDD and IDPDD holds 
similar range of values. However, in the case of the DPSVI, the 
depolarization index VDDPI has been substituted with the CR.

The CR and VDDPI indices display an inversely 
proportional relationship, with the CR demonstrating 
exponential behaviour. As VDDPI values decrease towards 
zero (from 3.0), CR values increase towards 25 (from zero). 
This implies that the VV polarization has a greater influence 
on the DPSVIm index, which tends to better reflect the 
signal backscattered by broadleaf vegetation.

Figure 7 displays the computed DPSVIm maps for 
each forest fragment along with the locations of the forest 
plots. Additionally, on the left side of the DPSVIm maps, the 
relative composition of Sentinel-2 images in natural colour is 
presented. In Figure 7, it is evident that the lowest DPSVIm 
values (near zero) correspond to water bodies, while low 
DPSVIm values are observed in unforested areas, whether 
with or without bare soil.

In Figure 7, forest plots were positioned at their 
centroids and depicted by circles, with size increasing 
as AGB (Mg ha-1) increases. Additionally, in Figure 7, we 
observed that the smallest circles correspond to the darkest 

Figure 4: Scatterplot and the result of the correlation test for approach A1, between aboveground biomass (AGB) 
and: the Sentinel-1 VH polarization ( 0

VH ) in plot a); the Dual-polarization SAR Vegetation Index (DPSVI) in plot b); the 
modified DPSVI (DPSVIm) in plot c).

Variable Min Q25 x sd Md Q75 Max
Shapiro-Wilk test s

W p-value
AGB (Mg ha-1) 12.6 42.1 72.2 44.5 61.3 94.2 219.7 0.898 0.000235 1.32

 0.01249 0.03758 0.04420 0.01147 0.04316 0.04775 0.08915 0.872 0.000035 1.32
DPSVI 0.01967 0.04478 0.05463 0.01636 0.05133 0.06199 0.12796 0.857 0.000013 1.92

DPSVIm 0.00067 0.02026 0.02735 0.01276 0.02368 0.03140 0.07733 0.839 0.000004 1.79

Note: Min, Q25, x, sd, Md, Q75, and Max refers to the minimal, quantile 25%, mean, standard deviation, median, quantile 75%, and maximum values 
obtained from each described variable’s distribution; W and p-value refers to the statistics from Shapiro-Wilk normality test; and s refers to the skewness 
distribution coefficient.

Table 2: Descriptive statistics for the obtained variables: Aboveground Biomass (AGB, Mg ha-1), Sentinel-1 VH polarization 
( 0
VH ), Dual-Pol SAR Vegetation Index (DPSVI), and the modified DPSVI (DPSVIm).
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DPSVIm regions, while the largest circles are positioned 
near o precisely over the brightest DPSVIm regions. 

DISCUSSION

Typically, C-band measured backscattering tends to 
saturate at approximately 50 Mg ha-1 of AGB (Joshi et al., 
2017; Sarker et al., 2013), however, dos Santos et al. (2021) 
have already observed that with the DPSVIm index it was 
possible to distinguish plots with biomass levels less than 50 
Mg ha-1 from others with AGB density around 200 Mg ha-1, as 
can be seen in Figure 4 and in Figure 5. Therefore, even being 
a C-band index, DPSVIm tends to attenuate signal saturation 
over areas of dense biomass, such as the Atlantic Forest.

The correlation test using the A2 approach was 
performed bearing in mind the influence of relief on 
SAR side-looking observation systems. Relief artifacts, 
depending on the slope steepness and sensor parameters, 
generate geometric distortions in SAR images (Vollrath et 
al., 2020), which influence vegetation mapping and biomass 
quantification (Atwood et al., 2014). While radiometric 
terrain flattening (RTF) method can significantly enhance 

the radiometric accuracy of SAR images, it does not 
completely solve all geometric effects on backscattering 
(Small, 2011). Therefore, reasonable slope or flat terrain 
areas are recommended for this type of test (Saatchi, 2019).

Calibrating the images for the gamma backscattering 
coefficient (γ0), which is important to apply to analyze SAR 
remote sensing products in steep areas, mitigates the 
influence of steep terrain on SAR imaging, but does not 
resolve all geometric effects of the relief (dos Santos et 
al., 2021; Vollrath et al., 2020). Therefore, we observed a 
gain in correlation coefficients in the DPSVIm index when 
confronting the index with AGB in less sloping areas (with 
steepness slope inferior to 20%), which indicates a good 
correlation of DPSVIm data with AGB.

The structure of the proposed modifications to the 
DPSVI model was carried out to decrease the computational 
demand for image processing, since several operations are 
performed with Sentinel-1 images. Furthermore, dos Santos 
et al. (2021) sought to deal with the uncertainty associated 
with the choice of the parameter VVmax for DPSVI application 
in vegetation mapping in large hydrographic basins (the Doce 
river basin).

Figure 6: Scatterplots: in a) between DPDD (Dual-polarization Diagonal Distance) and IDPDD (Inverse DPDD) indices; and 
in b) between the CR (Cross-ratio) and VDDPI (Vertical Dual-depolarization Index) indices. Product Unique Identifier: 495B.

Figure 5: Scatterplot and the result of the correlation test for approach A2, between aboveground biomass (AGB) 
and: the Sentinel-1 VH polarization ( 0

VH ) in plot a); the Dual-polarization SAR Vegetation Index (DPSVI) in plot b); the 
modified DPSVI (DPSVIm) in plot c). Only forest plot samples from nearly level, gently undulating, and undulating 
terrain were used in these scatterplots.
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By replacing the inverse diagonal distance (between 
the VV and VH) (IDPDD) with the diagonal distance (DPDD) 
(both from Periasamy (2018)), an advantage arises in the 
use of DPSVIm: the need for the remote sensing expert to 
analyze the scatterplots (VV vs. VH) of all scenes in search 
of a representative VVmax becomes dispensable.

This advantage eliminates the need to analyze a 
large number of scatterplots when the index is applied for 
mapping large areas. But, as the IDPDD and DPDD have 
an inversely proportional relationship (Figure 6a), the 
term VDDPI was also replaced to maintain the scale of the 
DPSVIm: 0 < DPSVIm, increasing as plant biomass increases.

The VDDPI index represents, for DPSVI, the measure 
of depolarization of the microwave signal (Periasamy, 2018). 
The highest VDDPI values represent the surface targets 
that do not change the polarization of the signal, such as 
continental water surfaces and bare soil. These are natural 
targets that, depending on roughness, generate the single 
bounce backscattering mechanism (Woodhouse, 2006). 
Hence, when VDDPI is integrated with IDPDD, the bare soil 

and water surface pixels are separated from the other pixels 
representing vegetation (Periasamy, 2018).

The VDDPI was replaced with the CR value, used by 
Frison et al. (2018) to monitor deciduous oak (Quercus spp.) 
forests, because they are inversely proportional (Figure 6b). 
The smaller CR values represent scatterers that do not much 
change the wave polarization, but in addition, when the VV 
band is the numerator of the cross-ratio (Equation (6)), a 
greater weight is given to surface scattering from leaves and 
branches in the upper part of the deciduous forest canopy 
(Frison et al., 2018). Hence CR, in addition to being inversely 
proportional to VDDPI, still stratifies dense vegetation pixels 
better than VDDPI. In Figure 5b it can be seen that the range 
of VDDPI is from 1.0 to 3.0 while CR ranges from 0.0 to 25.

The presented results (Figure 4, Figure 5, and Figure 
7) show the applicability of Sentinel-1 dual-polarization 
observations for forestry applications. Although the original 
model, DPSVI, does not correlate well with forest AGB, there 
was a correlation gain with the modifications performed to 
propose DPSVIm. 

Figure 7: Modified Dual-polarisation SAR Vegetation Index (DPSVIm) maps for each studied forest fragment and 
relative natural colour composition from Sentinel-2 optical images. Forest plots are represented with points whose size 
varies according to aboveground biomass (AGB) density.
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Different optical vegetation indices with different 
purposes (Zeng et al., 2022) can be used in ensembles 
to monitor different aspects of vegetation, and the same 
is true for SAR vegetation indices. Recently other indices 
have been developed to identify the phenological 
stages of crops (Bhogapurapu et al., 2021, 2022; Mandal 
et al., 2020) and the phenology of forests (Frison et 
al., 2018). DPSVI itself has already shown efficiency in 
representing crops’ AGB (Periasamy, 2018) and was used, 
together with DPSVIm, to monitor maize (Zea mays 
L.) lodging (Guan et al., 2022). VH polarization, DPSVI, 
and DPSVIm were also utilised jointly and effectively to 
model potato carbon uptake (Araujo-Carrillo et al., 2024) 
and to retrieve soil moisture at high spatial resolution 
over alpine ecosystems (Taghavi-Bayat et al., 2024). VH 
polarization and DPSVIm were also successfully applied 
in predicting alfalfa yield (Yu et al., 2024). However, for 
applications in areas of dense biomass, whether crops, 
forest plantations, or natural forests, descriptors such as 
CR and DPSVIm may be more efficient. 

In this context, Bussinguer et al. (2024) have 
evaluated the efficacy of various SAR vegetation indices in 
discriminating vegetation classes within the Cerrado biome, 
Brazil. The authors employed the radar vegetation index 
adapted for dual-polar data (Nasirzadehdizaji et al., 2019), 
the Dual-polarization radar vegetation index (Mandal et al., 
2020), the polarimetric radar vegetation index (Chang et al., 
2018), DPSVI, and DPSVIm. They assessed three vegetation 
categories, namely Forest, Savanna, and Grassland. The 
authors observed that DPSVIm more accurately reflected 
biomass levels across the three vegetation types and 
surpassed the other indices in class differentiation.

It is essential that future studies test the sensitivity 
of DPSVIm in areas of dense biomass, but with different 
vegetation landforms than semideciduous forests. Zheng 
et al. (2023) effectively used DPSVIm, and other variables, 
to map the distribution of tree species in landscapes 
that include tropical rainforests, subtropical evergreen 
broadleaf forests, and mixed coniferous broadleaf forests. 
However, future studies can test the applicability of DPSVIm 
in similarly dense biomass areas, but with different plant 
architectures, such as sugarcane (Saccharum officinarum L.) 
and other monocot crops.

CONCLUSIONS

The DPSVI index showed no correlation with the 
AGB in Atlantic Forest plots. This demonstrates that it 
is insensitive to large amounts of AGB, and not a good 
indicator of AGB of Subcaducifolia Tropical Forest plots. 
The DPSVIm showed correlation coefficients varying from 
ρ = 0.4 to ρ = 0.7 with AGB in the same Subcaducifolia 
Tropical Forest plots. Hence, DPSVIm is a C-band SAR index 
more suitable for forest applications than the DPSVI. The 
higher correlation coefficient was observed with AGB of 
forest plots with near flat relief, indicating its potential for 
monitoring the AGB of forests, such as the Atlantic Forest, 
particularly in areas with reasonable slope or flat terrain 
(steepness less than 20%).
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