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HIGHLIGHTS

Optimal wavelengths related to nutrient concentrations were identified.

Nutrient indices were developed to predict leaf nutrient concentrations.

Nutrient concentration in Eucalyptus were predicted by spectral indices.

Quantitative models between spectra and nutrient concentrations were established.

ABSTRACT

Determination of leaf nutrient concentrations is traditionally performed by carrying out 
destructive procedures, requiring laboratory chemical analysis, specialized equipment, 
and skilled labor. However, technological advances in recent years have now made it 
possible to analyze leaf nutrient concentrations using non-destructive methods such 
as leaf reflectance. This study evaluates the relationship between leaf reflectance and 
nutrient concentration in order to develop and apply nutrient indices by proximal sensing 
data in plantations of Eucalyptus. Two experiments were carried out for the development, 
application and validation of nutrient indices in Eucalyptus stands in the municipalities of 
Lassance and Três Marias, Minas Gerais state, Brazil. Study I was undertaken in Eucalyptus 
stands with 25 months old and, three clones. Leaves from the lower crown were visually 
classified into five color patterns using the Munsell chart for plant tissues. Study II was 
carried out in commercial stands of a hybrid of Eucalyptus urophylla ST Blake, whith 9, 
12, 15 and 25 months old. Analysis revealed strong relationships between leaf nutrients 
and leaf reflectance in the visible and near infrared regions (400 - 900 nm) of the light 
spectrum. Correlation analysis between leaf reflectance and nutrients can be useful in 
an exploratory analysis of leaf nutrient concentration. Some nutrient indices developed 
(NI, PI, SI and CuI) provided satisfactory estimates of leaf nutrient concentration in 
Eucalyptus stands. The nutrient indices developed in this study may be a useful alternative 
to laboratory chemical analysis.
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INTRODUCTION

 Nutrient concentration in the tissues of a plant, 
especially foliage tissue, is directly related to exchange 
processes between matter and energy, including 
photosynthesis, evapotranspiration and respiration 
(Marschner, 1995). Consequently, evaluation of leaf 
nutrient concentrations (LNCs) is useful for understanding 
a plant’s nutritional needs, planning fertilization, and 
optimizing the economic return from crops by maximizing 
productivity and minimizing resource inputs.

 Determination of LNCs is traditionally 
performed using destructive procedures, requiring 
laboratory chemical analysis, specialized equipment, and 
skilled labor. However, technological advances in recent 
years have made it possible to analyze LNC using non-
destructive methods (Pimstein et al., 2011; Mahajan et al., 
2016; Oliveira et al., 2017). Spectral analysis techniques, 
using a variety of sensors, have enabled crops to be 
managed using non-destructive methods (Ustin et al., 
2009; Ollinger, 2010; Schlemmer et al., 2013), and the 
technology could be extended to tree plantations (Stein 
et al., 2014; Oliveira et al., 2017).

Remotely-sensed analysis techniques require multiple 
electromagnetic wavelengths reflected by the plant’s foliage 
to be processed. The visible region (VIS, 400 – 700 nm) is 
influenced mainly by leaf pigments, especially chlorophyll 
(Gitelson et al., 2003; 2006; 2009). The near infrared region 
(NIR, 701 – 1200 nm) is related to morphological and 
anatomical leaf structures (Gates et al., 1965).

Currently, several indices are used to quantify 
the relationships between reflectance in the VIS and 
NIR regions and LNCs. However, such implementation 
has been limited to estimates of leaf pigments (eg, 
Gitelson et al., 2003; 2006; 2009) and nitrogen (N, eg 
Fitzgerald et al., 2010; Schlemmer et al., 2013; Oliveira 
et al., 2017). Deficiencies in nutrients other than N 
can alter plant metabolism and consequently a leaf’s 
reflectance (Mariotti et al., 1996; Mahajan et al., 2014). 
However, applications linking leaf reflectance to other 
macronutrients and micronutrients are poorly developed 
for trees (eg, Ponzoni and Gonçalves, 1999; Adams et al., 
2000; Pimstein et al., 2011; Mahajan et al., 2014; Stein et 
al., 2014). Therefore, the study of relationships between 
N, phosphorous (P), potassium (K), calcium (Ca), 
magnesium (Mg), sulfur (S), boron (B), iron (Fe), zinc 
(Zn), manganese (Mn) and cooper (Cu) concentrations 
and leaf reflectance can be useful to procced non-
destructive analysis in Eucalyptus stands.

The objective of this study is to predict LNCs 
using leaf reflectance in order to develop nutrient indices 
of Eucalyptus plantation by proximal sensing data.

MATERIAL AND METHODS

Two studies (Study I and Study II) were carried out 
for the development, application and validation of nutrient 
indices using Eucalyptus stands in the counties of Lassance 
and Três Marias, Minas Gerais - Brazil (Figure 1).

FIGURE 1 Study I and Study II plots.

Study I was established in Eucalyptus stands 
with 25 months old, planted with 7.0 x 1.3 m tree 
spacing, with three clones (E. urophylla x E. grandis: 
GG680, E. urophylla x E. grandis: GG682 and hybrid 
of E. urophylla ST Blake: I144). In these stands nine 
plots of 10 ha were allocated, three per clone. Leaves 
from the lower parts of tree crowns were visually 
classified into five color patterns using the Munsell 
chart for plant tissues (Gretag-Macbeth, New Winsor, 
NY, USA). The leaf color patterns were defined by 
the clear expression of the biochemical cycling of 
nutrients (Table 1).

TABLE 1 Leaf color patterns sampled in Eucalyptus stands.
Color name 

diagrams
Matte color 

chips
Hue Value Chroma

Munsell 
color code

Brilliant 
yellow green

7.5 GY 8 8 7.5 GY 8/8

Light yellow 
green

7.5 GY 8 4 7.5 GY 8/4

Brown  7.5 YR 4 2 7.5 YR 4/2

Yellow 2.5 Y 7 6 2.5 Y 7/6

Strong yellow 2.5 Y 8 10 2.5 Y 8/10

For each color pattern, 30 leaves were collected 
from each of the nine plots. A leaf was collected from 
each tree encountered on a random zig-zag walk. Each 
set of 30 leaves constituted a composite sample, and there 
was a total of 45 composite samples (3 clones x 3 plots 
x 5 leaf color patterns). This sampling was performed 
to obtain a wide variation in LNCs. Immediately after 
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leaf collection, the leaf reflectance (400-900 nm) was 
scanned in the abaxial part of each leaf, 10 mm from 
the lower border, on the left side of each leaf using a 
CI-710 mini-spectrometer (CID Bio- Science - Camas, 
Washington, USA).

The leaf reflectance was analyzed using 
SpectraSnap! (software version 1.1.3.150, CID Bio-
Science) with 300 milliseconds of integration time, a 
boxcar with 10 points and two scans for averaging. 
Subsequently, the reflectance spectra were smoothed 
using the Savitsky-Golay algorithm (Savitzky and Golay, 
1964) with a second-degree polynomial model. From 
every set of 30 smoothed spectra per composite sample, 
the average value of leaf reflectance was obtained, giving 
values for each of the 45 composite samples.

 Subsequent to collecting the leaf reflectance, 
the 30 leaves for each composite sample were 
placed in paper bags and oven-dried with forced air 
circulation at 65ºC. After drying, the 45 composite 
samples were digested in nitro-perchloric solution and 
the concentrations of Ca, Mg, S, Zn, Fe and Mn were 
determined by spectrophotometry. The P concentration 
was determined by colorimetry, the K concentration by 
flame photometry and the total N concentration using 
the Kjeldahl method following sulfuric digestion.

 Study II was carried out in commercial stands 
of the hybrid of Eucalyptus urophylla ST Blake (clone 
I144), which were 9, 12, 15 and 25 months old. Sixteen 
plots of 10 ha were allocated, four for each age of tree 
(Figure 1). Leaves from 25 trees in each of these plots 
were sampled; they were taken from the upper canopies 
of the stands (80% percentile). For each tree, four 
completely expanded leaves, without physical damage, 
were collected at the four cardinal points near the middle 
of each Eucalyptus crown (Bellote and Silva, 2000). The 
100-leaf set was made up of a composite sample used 
to determine nutrients and to collected leaf reflectance. 
The procedures for collecting, smoothing the reflectance 
spectra and leaf chemical analysis were the same as those 
used in Study I.

The results obtained from Studies I and II were 
grouped into a unique dataset and split into two groups: 
75% as a training set and 25% as a validation set using 
the bootstrap resampling method with 1000 random 
iterations (Efron and Tibshirani, 1994). The bootstrap 
statistic involves randomly composing the population 
samples n times, producing n statistical values with the 
objective of reducing the error associated with non-
representative samples. The training set was used to 
generate the models for LNCs, while the validation set 
was used to validate the regression model generated.

The smoothed leaf reflectance spectra and the 
nutrient concentrations in the training set for the same 
composite sample were correlated in each iteration. 
This procedure was carried out to verify the effect of 
nutrients on Eucalyptus leaf by reflectance spectral 
responses. The Pearson correlation (r) was obtained 
using two vectors in each iteration: the corresponding 
average smoothed leaf reflectance of the training set and 
the foliar chemical analysis of the same samples. In order 
to identify significant wavelengths, a p-value (α ˂ 0.05) 
was also computed.

Spectral indices for different nutrients were 
calculated with all possible combinations of leaf 
reflectance at wavelengths between 400 and 900 nm. 
The indices were developed based on the Normalized 
Difference Vegetation Index (NDVI) model (Equation 1), 
wherein: NDVI is nutrient index based on Normalized 
Difference Vegetation Index;  is the reflectance at 
wavelength (λ) x and  is the reflectance at wavelength (λ) 
y, with x and y varying from 400 to 900 nm.

[1]

The nutrient indices were evaluated based on 
the mean for the coefficient of determination (R²train) in 
all iterations, obtained by simple linear regressions. The 
R²train mean values were organized into matrices ranging 
from white, for smaller R²train, up to black, for larger R²train. 
Among all the indices, the one that provided the highest 
R²train value in each nutrient was selected for analysis of 
the regression and application in the validation set. The 
analysis of the quality of the adjustments was made based 
on the mean of the Root of Mean Square Error (RMSEtrain) 
(Equation 2), wherein: Yi is the nutrient concentration of 
sample i estimated using the equation; yi is the nutrient 
concentration observed in the laboratory of sample i; 
and n is the total number of samples. RMSEtrain: g.kg-1 for 
N, P, K, Ca, Mg and S; mg.kg-1 for B, Zn, Mn, Fe and Cu.

[2

To validate the nutrient indices and equations 
obtained for the training set, the determination coefficient 
(R²val) and the Root Mean of Square Error (RMSEval) were 
used; they were calculated in the same way as RMSEtrain 
(Equation 2). The Kernel density was used with the 
bandwidths chosen according to Silverman’s rule of 
thumb (Silverman, 1986) to demonstrate the density 
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of the statistics bootstraps in the training and validation 
sets. The mean of the parameters slope and intercept 
was used to estimate the concentration of each nutrient 
in the original dataset. All statistical procedures were 
carried out using the software R Core Team (2017) 
version 3.4.0, platform support R Studio version 1.0.143.

Moreover, in order to aid the interpretation of 
the results obtained, mean and standard deviations of 
LNCs from commercial eucalyptus stands, which were 
between 0.4 and 7.0 years old, were used for reference 
(Galdino, 2015). These values came from an evaluation 
of 9608 leaf samples taken from the middle of each 
Eucalyptus crown, using the same method of leaf analysis 
as Studies I and II in this research.

RESULTS

The reflectance spectra in the bootstrap training 
and validation sets were similar (Figure 2). The visible 
spectrum, more specifically between 530 – 780 nm, was 
the region of the reflectance spectrum within the samples.

nm, and Zn concentration showed significant correlation 
only in a small region around the wavelength of 400 
nm. There was no significative correlation between 
Mg concentration and leaf reflectance for any of the 
wavelengths studied.

The correlation curves between N, P, S, Cu, K 
concentrations and leaf reflectance followed a similar 
pattern for all wavelengths evaluated (Figure 4). 
Moreover, the correlation curves between Ca, Mn, B 
concentrations and leaf reflectance also showed a similar 
pattern. Additionally, around a wavelength of 730 nm all 
nutrients presented correlations with the leaf reflectance 
close to zero. Above this wavelength, all nutrients 
reversed their relationship with leaf reflectance. Most 
of the nutrient concentrations exhibited maximum 
correlations in the red edge region (680 - 740 nm); only 
Zn demonstrated a maximum correlation in the region of 
blue (400 - 450 nm) and Ca at around 750 nm.

For most nutrients, the wavelengths combinations 
in red edge region provided high R² values in the 
development of the index (Figure 5). All indices developed 
showed significant R² at 95% probability using t test (α < 
0.05). The Nitrogen Index (NI) had the highest R² (0.96), 
followed by the Phosphorus Index (PI, R² = 0.92), Sulfur 
Index (SI, R² = 0.79), Copper Index (CuI, R² = 0.71), 
Potassium Index (KI, R² = 0.64), Calcium Index (CaI, R² 
= 0.60), Manganese Index (MnI, R² = 0.56), Boron Index 
(BI, R² = 0.55), Zinc Index (ZnI, R² = 0.36), Iron Index 
(FeI, R² = 0.22) and Magnesium Index (MgI, R² = 0.17).

The NI obtained the highest R2 values followed 
by others with wavelength combinations in the red edge 
region (Figure 5). To estimate the P concentration, two 
well-demarcated regions of high R² were obtained, one in 
the red edge region and other in the green region (≈ 560 
- 570 nm). However, the highest R² value was obtained 
in the red edge region. Therefore, the PI was developed 
with wavelengths in this region. Similar to PI, other 
indices like KI, CaI, SI and MnI obtained their maximum 
R2 values in more than one region of spectrum. For KI, 
the maximum was obtained in the green wavelength 
region; for CaI and SI maximums were in wavelength 
combinations in red edge region, and the MnI used red 
edge and blue wavelength regions. MnI and CuI were 
indices formed by combinations of distinct regions of 
the electromagnetic spectrum with the CuI developed 
using blue and green wavelengths. Some indices obtained 
higher values of R² with combinations of wavelengths in 
the blue region, such as ZnI and FeI. Additionally, MgI 
obtained higher R² values using near infrared (NIR) 
wavelengths. Nevertheless, MgI was the index with the 
lowest R².

FIGURE 2 Reflectance spectrum of training and validation sets.

 The samples provided a wide range of nutrient 
concentrations (Figure 3). This amplitude is desirable for 
the training and validation models. Nutrients with higher 
mobility, such as N and P presented lower concentrations 
when compared to the standard nutrient concentrations 
for Eucalyptus. The opposite was observed for some 
nutrients with lower mobility in plants, such as Ca, B and 
Mn concentrations. The other nutrients concentrations 
were similar in the training/validation sets compared 
with standard nutrient concentration.

As can be observed in Figure 4, there was a 
negative correlation between N, P, K, S, Cu concentrations 
and leaf reflectance in almost the entire visible region 
(400 - 700 nm). However, for K concentration, lower 
correlations were obtained in this region. The opposite 
was observed for Ca, B and Mn concentrations, which 
showed positive correlations in almost the entire 
visible region. Furthermore, Fe concentration showed 
significant correlation only at wavelengths of 560 - 710 
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on average. As can be observed in Figure 7, this index 
showed excellent prediction of N concentration.

Similar to predicted N concentration, the PI 
estimate for the P concentration with R2

train= 0.92, R2
val= 

0.93, RMSEtrain= 0.10 (g.kg-1) and RMSEval= 0.09 (g kg-1) 
on average (Figure 6), resulted in an excellent prediction 
of P concentration (Figure 7). The SI and CuI estimates 
for the S and Cu concentrations showed relationships 
R2

train= 0.79, R2
val= 0.80 and R2

train= 0.71, R2
val= 0.70 

respectively, on average (Figure 6). Furthermore, the 
SI provided RMSEtrain and RMSEval = 0.12 g.kg-1 and CuI 
provided RMSEtrain and RMSEval = 0.71 mg.kg-1 on average 
(Figure 6), resulting in good predictions for both S 
concentration and Cu concentration (Figure 7).

The linear relationships between K, Ca, B and 
Mn concentrations and their indices were less precise 
than previous nutrients (Figures 6, 7). However, these 
nutrients were predicted with R2

train and R2
val average 

ranges between 0.55 and 0.66. Moreover; the RMSEtrain 
and RMSEval on average were 1.56 and 1.57 g.kg-1 for K 

FIGURE 3 Mean and standard deviation of nutrient concentrations in training and validation sets and standard concentrations to Eucalyptus. 
Standard concentration data from Galdino (2015).

FIGURE 4 Pearson correlation (r) between nutrient concentrations 
and leaves reflectance from training set. Shaded region 
illustrate significance level (α< 0.05).

To demonstrate all iterations for the bootstrap 
regression, training and validating were used to produce 
the Kernel density plot for each leaf nutrient (Figure 6). 
The estimates of N, P, S and Cu concentrations using their 
related indices gave higher R2

train and R2
val, on average. The 

estimate for nitrogen using the NI gave the highest R2
train 

and R2
val, 0.96, on average. Moreover, the NI estimates N 

with RMSEtrain= 1.23 (g.kg-1) and RMSEval= 1.20 (g.kg-1), 
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FIGURE 5 Determination coefficient (R²) between indices and nutrient concentrations from training set. NI= Nitrogen Index; PI= 
Phosphorus Index, KI= Potassium Index; CaI= Calcium Index; MgI= Magnesium Index; SI= Sulphur Index; BI= Boron Index; 
ZnI= Zinc Index; MnI= Manganese Index; FeI= Iron Index; CuI= Copper Index.

FIGURE 6 Kernel Density of parameters intercept and slope, R²train, R²val, RMSEtrain and RMSEval. Training average: black dotted 
vertical lines. Validation average: grey dotted vertical lines.
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concentration, 2.60 and 2.56 g.kg-1 for Ca concentration, 
26.72 and 26.46 mg.kg-1 for B concentration and 589.83 
and 587.32 mg.kg-1 for Mn concentration (Figure 6).

On average, the estimates for Mg, Zn and Fe 
concentrations and their related indices showed the 
lowest linear relationships (Figure 7). The MgI was the 
index with the lowest R2

train (0.17) and R2
val (0.22), and 

it also had the peak R2
val for Kernel density, at close to 

0 (Figure 6). Likewise, the FeI also had a peak R2
val for 

Kernel density close to zero and the average linear 
relationship with Fe concentration was 0.22 for training 
and 0.25 for validation. The ZnI provided an R2

val for 
Kernel density with a range of 0.00 to 0.80, which may 
mean that the linear model is not suitable for estimating 
Zn concentration (Figure 6).

DISCUSSION

The major standard deviation range in the visible 
region is due to the color pattern used in leaf sampling 
(Table 1). Changes in leaf color result in changes in leaf 
reflectance, mainly in the visible region (Merzlyak et al., 
2003). The similarity between training and validation sets 
occurred as a result of using the bootstrap technique 
(Figures 2, 3). This is mainly because the bootstrap statistic 
distribution is based on a large number of resamples, 
representing the distribution for each statistic, based on 
a large number of samples (Efron and Tibshirani, 1994).

The negative correlation between N, P, K, Cu, S 
concentrations and foliar reflectance in the VIS region 
indicates that the lower these nutrients concentrations in 
the leaves, the higher will be the reflectance in this region 
(Figures 3 and 4). This similarity in pattern suggests that 
the nutrients in question are strongly correlated (Pimstein 
et al., 2011; Mahajan et al., 2014). The increase of 
reflectance in the VIS region is mainly due to a reduction 
in chlorophyll concentration, triggered by the lowering 
of these nutrient concentrations (Al-Abbas et al., 1974; 
Adams et al., 2000). Consequently, with an increase of 
reflectance in the visible region there is a decrease in the 
intensity of the leaf color (Ponzoni and Gonçalves, 1999; 
Ayala-Silva and Beyl, 2005; Oliveira et al., 2017). Thus, 
the reduction of the intensity of the green coloration of 
Eucalyptus leaves can be verified through a deficiency 
in these nutrients with evolution of the characteristic 
symptoms for each nutrient (Dell, 1996).

Regarding the Ca, B and Mn concentrations, 
positive correlations obtained with leaf reflectance in the 
VIS region indicate that the higher their concentrations, 
the greater will be the leaf reflectance in this region 
(Figure 4). The concentrations of these nutrients are 
higher than the ranges for leaf desire concentrations for 
Eucalyptus (Figure 3). Therefore, an increase in these 
nutrient concentrations in leaves could indicate damage 
to the metabolism and a consequent increase in leaf 
reflectance as suggested by the correlations in the visible 
region (Figure 4).

FIGURE 7 Measured and predicted nutrient using nutrient indices.
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At around 700 nm, correlation peaks were found 
for all nutrient concentrations (Figure 4). This region 
of the electromagnetic spectrum is widely used in the 
estimation of chlorophyll (Ustin et al., 2009) and strongly 
correlates with LNCs (Mutanga et al., 2004; Mahajan et 
al., 2014; Stein et al., 2014). Thus, in the development of 
nutrient indices, the selection of at least one wavelength 
in this region was expected (Figure 4).

In the development of the NI, combinations 
of wavelengths with high R² were obtained (Figure 5). 
The relationship between N and leaf reflectance is very 
strong in practically all VIS region (Figure 4). Therefore, 
in the literature, indices are able to estimate the N 
concentration in the blue wavelength region (Hansen and 
Schjoerring, 2002) and in the green, red and red edge 
regions (Oliveira et al., 2017). In this study, better results 
were found using combinations of red edge wavelength 
regions (Figure 5). In addition, it is a common observation 
in plants that the N concentration estimates are the most 
accurate out of all leaf nutrients (Ponzoni and Gonçalves, 
1999; Richardson and Reeves III, 2005; Mahajan et al., 
2014). This was also the case in our study, where the 
N concentration was predicted with Rtrain and Rval above 
0.95 (Figures 6 and 7).

Similar to the NI, the PI was developed using 
a combination of red edge wavelengths (Figure 5). 
Moreover, combinations of leaf reflectance in the region 
for green wavelengths (≈ 550 nm) also showed high 
R² in the estimation of P concentration (Figure 5). Leaf 
reflectance in these regions of the electromagnetic 
spectrum is widely used to construct relationships 
between P concentration and leaf reflectance. For 
instance, leaf reflectance in the green region was related 
to P concentration in soybean plants (Glycine max (L.) 
Merr.) and seedlings of Eucalyptus saligna Smith (Milton et 
al., 1991; Ponzoni and Gonçalves, 1999). Nevertheless, 
correlation peaks between P concentration and leaf 
reflectance in the green and red regions were also 
verified in sequoias (Gong et al., 2002). In addition, the 
region of red wavelengths has been used to estimate 
P concentration in rangeland plants and pastures 
(Kawamura et al., 2011; Özyiğit and Bilgen, 2013). It is 
assumed that for P concentration, there is the possibility 
of developing a PI in both regions, green and red edge. 
However, the adjustment performed with the PI in 
the red edge region presented a better estimate of P 
concentration in this study (Figures 6, 7).

The correlations curve and matrix between 
S concentration and leaf reflectance demonstrated a 
great similarity with the correlation curves between N 

and P concentrations and leaf reflectance (Figures 4, 
5). Moreover, the S concentration predicted provided 
average Rtrain and Rval above 0.79 and RMSEtrain and RMSEval 
below 0.12 g.kg-1 (Figures 6, 7). The wavelengths selected 
for the SI were close to those selected for the NI (Figure 
5). Probably, this was due to the high correlation between 
these nutrients, both of which have structural functions 
in amino acids and proteins (Marschner, 1995). The CuI, 
another index that predicted nutrient concentration 
with high accuracy (Figures 6, 7), was developed by 
combining blue and red wavelength regions (Figure 5). 
More than half of the Cu located in the chloroplast is in 
plastocyanin, a blue protein component of the electron 
transport chain (Marschner, 1995). Possibly because 
of this, these wavelengths provided the best results. 
Furthermore, Wang et al. (2015) noted the red and red 
edge wavelength regions were strongly correlated with 
Cu concentration in Carex cinerascens Kük..

The K, Ca, B and Mn concentrations were 
predicted with less accuracy than the previously 
mentioned nutrients. The index constructed to predict 
K concentration (KI) was developed by combining 
green wavelengths (Figure 5). Although the relationship 
between leaf reflectance and K concentration was lower 
than for N and P concentrations (Figure 4), wavelength 
combinations in the visible region can be used to predict 
K concentration (Figure 5). Perhaps for this reason, the 
visible region has been used to detect K deficiencies in 
Eucalyptus saligna Smith seedling leaves (Ponzoni and 
Gonçalves, 2010).

The CaI was developed using red edge 
wavelengths (Figure 5), a region that has a strong 
relationship with the metabolic changes in plants (Horler 
et al., 1983). Nevertheless, it was expected that the CaI 
would be developed using wavelengths related to foliar 
structural components such as the NIR region (Gates et 
al., 1965), because of Ca’s structural function in the leaf 
cell wall (Marschner, 1995). However, there is evidence 
of the direct role of Ca in photosynthesis as a cofactor 
in photosystem II (Siegbahn and Crabtree, 1999), which 
would explain the selection of wavelengths in this region.

Another index for which a combination of red 
edge wavelengths provided better results was the 
BI (Figure 5). It was also expected that estimation for 
this nutrient concentration would be most accurate in 
the NIR wavelength region. This is mainly owing to B’s 
contribution to cell wall biosynthesis and structure; it is 
the main element responsible for membrane integrity 
(Marschner, 1995). However, there is evidence that a 
cascade effect for this nutrient occurs, wherein changes in 
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membrane integrity lead to changes in plant metabolism 
(Marschner, 1995). Probably due to this cascade effect, 
better results were obtained in the red edge wavelength 
region (Figure 5).

The MnI was developed using red edge and blue 
wavelength regions (Figure 5). The red edge wavelengths, 
as previously stated, are related to the metabolism of 
plants (Horler et al., 1983). In terms of the choice of 
the blue wavelength region, the light in the blue region 
may cause a photodamage process to photosystem II. It 
is suggested that this process occurs at the manganese 
cluster of the oxygen-evolving complex (OEC) by 
means of photoexcitation of manganese (Hakala et 
al. 2005). It may be due to this that combinations of 
blue regions with high R2 (Figure 5) can be observed. 
The Mn was predicted with mean values for R2

train and 
R2

val above 0.56, and RMSEtrain and RMSEval below 590 
mg.kg-1 (Figures 6, 7). As in this study, Adams et al. 
(2000), using NDVI to discriminate some micronutrient 
deficits in soybean leaves, obtained better results for Mn 
and Cu concentrations.

The ZnI, FeI and MgI each provided lower linear 
relationships with their concentrations (Figure 6). Among 
these indices, a better estimate for Zn concentration was 
observed (Figures 6, 7). For the FeI, the green wavelength 
region (≈550 nm) estimated the Fe concentration better 
than the blue region in sunflowers (Helianthus annuus L.) 
and maize (Zea mays L.) (Mariotti et al., 1996). On the 
other hand, Adams et al. (2000), using NDVI, failed to 
discern Fe and Zn deficits in soybean leaves, in spite of 
obtaining better results for Mn and Cu concentrations. 
The MgI was developed in the NIR wavelength region in 
this study. The MgI was the index that presented smaller 
R² (Figure 5). Mostly, estimates of this nutrient provide 
lower R² of LNCs (Richardson and Reeves III, 2005; Stein 
et al., 2014). Mg is the central atom of the chlorophyll 
molecule, in addition to being an activator of some 
enzymes in plants (Marschner, 1995). Thus, wavelengths 
more related to chlorophyll, such as the red edge region, 
were expected to be selected. However, the NIR region 
is generally used to estimate Mg concentration (Ferwerda 
and Skidmore, 2007; Mutanga et al., 2004).

CONCLUSION

There are strong relationships between leaf 
nutrients and leaf reflectance in the visible and near 
infrared regions (400-900 nm) of the spectrum. 
Correlation analysis between foliar reflectance and leaf 
nutrients may be useful in an exploratory analysis of 
LNCs. Some of the nutrient indices developed provided 

satisfactory estimates of LNC in Eucalyptus stands. The 
nutrient indices developed may offer a viable alternative 
to laboratory chemical analysis.
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