Open-access PROGNOSE EM NÍVEL DE POVOAMENTO DE CLONES DE EUCALIPTO EMPREGANDO REDES NEURAIS ARTIFICIAIS

STAND-LEVEL PROGNOSIS OF EUCALYPTUS CLONES USING ARTIFICIAL NEURAL NETWORKS

Objetivou-se, neste estudo, treinar, aplicar e avaliar a eficiência de redes neurais artificiais (RNA) para realizar a prognose da produção de povoamentos equiâneos de clones de eucalipto. Os dados utilizados foram provenientes de povoamentos localizados no sul da Bahia, totalizando cerca de 2.000 hectares de floresta. Foram utilizadas variáveis numéricas, como: idade, área basal, volume e variáveis categóricas, como classe de solo, textura, tipos de espaçamento, relevo, projeto e clone. Os dados foram divididos aleatoriamente em dois grupos: treinamento (80%) e generalização (20%). Foram treinadas redes de três tipos: perceptron, perceptron de múltiplas camadas e redes de função de base radial. As RNA que apresentaram os melhores desempenhos no treinamento e generalização foram selecionadas para realizar a prognose com dados, a partir do primeiro inventário florestal. Conclui-se que as RNA apresentaram resultados satisfatórios, comprovando o potencial e aplicabilidade da técnica na solução dos problemas de mensuração e manejo florestal.

modelagem do crescimento e produção florestal; aproximação de funções; povoamentos não desbastados


location_on
UFLA - Universidade Federal de Lavras Universidade Federal de Lavras - Departamento de Ciências Florestais - Cx. P. 3037, 37200-000 , Tel.: (+55 35) 3829-1411 - Lavras - MG - Brazil
E-mail: cerne@dcf.ufla.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro