
Ci. Fl., Santa Maria, v. 34, n. 3, e73469, p. 1-16, July/Sept. 2024  •   https://doi.org/10.5902/1980509873469
Submitted: 10th/12/2022  •  Approved: 30th/11/2023  •  Published: 29th/08/2024

Published by Ciência Florestal under a CC BY 4.0 license.

ISSN 1980-5098

Articles

Using drones for estimating fuel material
in Cerrado grasslands

Uso de drone para a estimativa do material combustível
em formações campestres no Cerrado

Igor Viana SouzaI , Francisca de Cássia Silva da SilvaI ,
Antonio Carlos BatistaII , Gil Rodrigues dos SantosI ,

Maria Cristina Bueno CoelhoI , Marcos GiongoI 

IUniversidade Federal do Tocantins, Gurupi, TO, Brazil
IIUniversidade Federal do Paraná, Curitiba, PR, Brazil

ABSTRACT

In the quest to advance fire prevention and control strategies, new techniques for quantifying combustible 
material are being explored. Among these, the use of multispectral sensors and red, green, and blue 
(RGB) cameras has emerged as promising solutions to streamline both cost and time expenditures 
in the field. This study aimed to assess the feasibility of employing an airborne multispectral sensor 
and an airborne RGB digital camera, mounted on a multirotor drone, to estimate combustible material 
load in a Cerrado area through linear regression analysis. Conducted within a savanna formation, the 
study involved evaluating 40 samples of combustible material load in 1 m² plots. Aerial surveys were 
conducted to capture images, facilitating the derivation of reflectance variables, vegetation indices, 
and descriptive parameters of the three-dimensional model. The resulting equation, customized to 
predict total combustible material within the study area, exhibited considerable significance (p < 0.001), 
accompanied by a determination coefficient (R²) of 0.70 and an adjusted R² of 0.65. Upon analyzing the 
variables’ impact on the model, it became evident that while the point density of the model showed 
higher correlations, the normalized difference vegetation index wielded notable influence, as indicated 
by its prominent weight within the adjusted equation.
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RESUMO

Em busca de alternativas para aprimorar o controle e gerenciamento das ações de prevenção aos 
incêndios, novas técnicas para quantificação do material combustível têm sido estudadas. Para reduzir 
os custos e tempo gasto em campo, o uso de sensores multiespectrais e câmera RGB (Red, Green e Blue) 
vêm se destacando como ferramentas úteis e eficazes na estimativa do material combustível. Nesse 
contexto, objetivou-se neste trabalho avaliar a viabilidade da utilização de um sensor multiespectral 
e câmera digital RGB aerotransportada por um multirrotor, para estimativa de carga de material 
combustível em área de Cerrado por meio de regressão linear. O trabalho foi conduzido em área de 
formação savânica, onde foram avaliadas 40 amostras de carga de material combustível em parcelas de 
1 m², coletando-se também imagens, mediante a um aerolevantamento, para obtenção de variáveis de 
reflectância, índices de vegetação e variáveis descritivas do modelo tridimensional. A equação ajustada 
para prever o conteúdo de material combustível (MCT) na área de estudo revelou-se relevante, com 
significância estatística (p < 0,001), um coeficiente de determinação (R²) de 0,70 e R² ajustado de 0,65. 
Ao analisar a influência das variáveis no modelo, observou-se que, embora a densidade de pontos 
no modelo (DPM) apresentasse correlações superiores entre as variáveis, o índice de vegetação NDVI 
exerceu uma influência mais significativa, evidenciada pelo seu maior peso na equação ajustada.

Palavras-chave: Sensoriamento remoto; VANT; Estimativa

1 INTRODUCTION

The Cerrado biome is renowned as one of the world’s most diverse savannas 

but faces significant threats as one of the most endangered ecosystems, largely due 

to human activities leading to habitat loss and fragmentation (Strassburg et al., 2017). 

Human activity in the Cerrado biome has resulted in significant alterations in fire 

management practices, which depend on the timing and frequency of occurrences, 

and are greatly influenced by fire behavior dynamics (Schmidt et al., 2016). While fire is 

a natural and essential element that has played a pivotal role in shaping the Cerrado 

biome over thousands of years, the expansion of urbanization has made humans the 

primary drivers of wildfires, causing extensive harm to this biome (Soares et al., 2017).

The repercussions of wildfires are multifaceted, encompassing biodiversity 

depletion due to habitat destruction, disruptions in the hydrological cycle leading to 

water scarcity, soil erosion from vegetation cover removal, and substantial greenhouse 

gas emissions contributing to climate change. In response to these challenges, novel 

techniques for understanding fire behavior have been explored to enhance control 

and management strategies in wildfire prevention efforts (Tavares, 2017).
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A study by Santos et al. (2018) exemplifies investments in procedures aimed 

at enhancing our comprehension of fire behavior. This research investigated the 

relationship between moisture content and the flammability of species inhabiting the 

Cerrado grasslands in the Jalapão region. Through tests covering ignition frequency, 

average time to ignition, combustion duration, and flame height across six species at 

four moisture levels, the researchers deepened our understanding of fire dynamics.

According to Soares et al. (2017), fire behavior involves three primary elements 

of combustion: fuel, oxygen, and heat, collectively known as the fire triangle. Fuel 

encompasses any organic material susceptible to combustion, including branches, 

twigs, fallen logs, grasses, herbs, shrubs, humus, and peat, and it can be managed. 

However, quantifying combustible material within the Cerrado area presents challenges 

due to the biome’s heterogeneity and diversity, making conventional quantification 

methods costly and intricate (Ferraz et al., 2014).

In this context, indirect methods are notable for their ability to establish 

correlations between vegetation parameters and easily accessible variables, particularly 

through remote sensing techniques (Souza et al., 2018). Multispectral sensors provide 

insights into the interactions between the target and its spectral response, enabling 

the characterization of vegetation based on its spectral features (Bendig et al., 2014). 

Consequently, the utilization of airborne sensors offers an alternative that provides 

images with enhanced spatial and spectral resolutions, thereby allowing for more 

precise quantification of vegetation attributes (Berni et al., 2009).

In the field of digital image processing (DIP), advancements in airborne 

multispectral sensors and high-resolution digital cameras are noteworthy due to their 

user-friendliness and data accessibility, making them invaluable tools for field research 

endeavors (Banu et al., 2016). The significant advantage of aerial photogrammetry 

over traditional measurement methods lies in the high density of data points acquired 

through DIP, resulting in meticulous data processing and rendering it a cost-effective 

alternative for target characterization (Rodrigues and Gallardos, 2018).
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The application of aerial photogrammetry for estimating vegetation parameters 

finds exemplary validation in the studies of Bendig et al. (2014), Li et al. (2016), and 

Souza et al. (2018). These studies, focusing on biomass estimation in summer barley, 

canopy height and biomass assessment in corn plantations, and combustible material 

quantification in “campo sujo” areas of the Cerrado, distinctly demonstrate the practical 

and innovative utility of this technology in agricultural and ecological analyses.

Building upon this foundation, our study assumes that the use of an airborne 

multispectral sensor and an airborne red, green, and blue (RGB) photographic sensor, 

both deployed via a multirotor drone, enables the acquisition of vegetation parameters 

within a “campo sujo” area of the Cerrado. Furthermore, it is hypothesized that these 

parameters can be integrated into statistical models to accurately estimate the load of 

combustible material.

Therefore, the aim of this study was to evaluate the feasibility of employing an 

airborne multispectral sensor and an airborne RGB digital camera, both mounted on a 

multirotor drone, for estimating combustible material load in “campo sujo” areas within 

the Cerrado biome. This evaluation will be conducted through linear regression analysis.

2 MATERIALS AND METHODS

2.1 Study area

The research was conducted in July 2017, during the dry season period in the 

Cerrado, specifically within the Xerente Indigenous Land. Located in the municipality of 

Tocantínia, in the southern region of the state of Tocantins, the study area is centrally 

positioned at coordinates 9°39’00” South latitude and 48°07’12” West longitude.

Within this region, there are areas undergoing recovery, predominantly 

characterized by low-growing herbaceous vegetation in a state of senescence. Both 

are situated within a “campo sujo” zone of the Cerrado. According to the Köppen 

classification, the prevailing climate in the study region is C2wA´a´, indicating a sub-

humid climate with moderate water deficiency in winter, an average precipitation of 

1,500 mm, and an average temperature of 26.6°C (Alvares et al., 2014).
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2.2 Data collection

For aerophotogrammetry, a Survey3W multispectral sensor with a resolution of 

4,000 × 3,000 pixels was utilized. This sensor can detect near-infrared light (NIR) around 

850 nm, red light (Red) at 660 nm, and green light (Green) at 550 nm. Additionally, an 

FC6310 camera with a resolution of 5,472 × 3,648 pixels and a focal length of 8.8 mm 

was deployed. Both devices were mounted on a multirotor drone, and an external USB 

GPS receiver was integrated into the sensor to accurately geotag each captured image.

In the flight plan, an altitude of 100 m was established with an 85% overlap both 

longitudinally and laterally. This configuration resulted in a ground sample distance of 

2.3 cm, representing the value of each pixel in the image in ground units. Additionally, 

artificial targets measuring 1 m² (1 × 1 m) were strategically positioned across all 

the plots. These targets, consisting of plates with distinctive markings, were utilized 

to enhance their identification in the images, thereby augmenting the accuracy and 

interpretability of the acquired data.

The sampling of combustible material involved 40 plots measuring 1 m² (1 × 

1 m), randomly distributed as defining quadrants. All the plant material within each 

plot was collected on the same day, at 10 a.m., immediately following the flight of the 

multirotor drone. Following collection, the material was weighed, divided into sub-

samples, and stored in Kraft paper bags. Subsequently, the samples underwent oven 

drying at 70°C until a constant mass was achieved. This approach aimed to estimate 

the load of total combustible material (TCM) in each plot, allowing for extrapolation to 

tons per hectare (t.ha–1).

2.3 Data analysis

After capturing the images with the Survey3W multispectral sensor, it was necessary 

to prepare them before generating the digital model through the MAPIR Camera Control 

software. This involved converting the photos from RAW to TIFF format, followed by 

image calibration. This critical procedure significantly contributes to enhancing image 

quality and mitigating spectral variability (Jorge and Inamasu, 2014).
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Following image preparation, a three-dimensional model was generated by 

executing the Structure from Motion (SfM) algorithm. This technique utilizes multiple 

overlapping photographs to reconstruct the area in three dimensions. Subsequently, 

the three-dimensional model was converted into a digital red, green, and NIR (NGR) 

model. As a result, each pixel contains a known reflectance value expressed as a 

percentage. Upon completion of this process, the normalized difference vegetation 

index (NDVI) was calculated following the methodology outlined by Rouse et al. (1974) 

(Equation (1)), and the normalized green-red difference index (NGRDI) was determined 

in accordance with Hunt et al. (2005) (Equation (2)):

(1)

(2)

Where: Nir, is the near-infrared spectral region (850 nm); Red, is the red spectral region (660 nm); Green, 
is the green spectral region (550 nm).

The NDVI, derived from a mathematical expression ranging between –1.0 and 

1.0, is widely used in vegetation cover studies. This index is segmented into various 

classes and can be adjusted based on the specific vegetation characteristics, as outlined 

in Table 1. Leveraging NDVI values enables the assessment of leaf area index, biomass, 

soil cover percentage, photosynthetic activity, and productivity.

Table 1 – Classification of NDVI values

NDVI Interpretation

-1.0 – 0.0 Lack of vegetation cover

0.0 – 0.2 Low vegetative vigor

0.2 – 0.4 Moderate vegetative vigor

0.4 – 0.6 High vegetative vigor

0.6 – 1.0 Very high vegetative vigor

Source: Aquino (2017)
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The NGRDI, proposed by Motohka et al. (2010), serves as both a complement and 

an alternative to the NDVI, owing to its sensitivity in detecting changes in vegetation 

colors. Therefore, the applicability of the NGRDI is crucial for enhancing vegetation 

cover assessment.

The FC6310 camera-captured images underwent processing using the same 

SfM algorithm, resulting in the generation of a three-dimensional model. This 

model was exported in LAS format to derive new variables: Zmin, Zmax, and Zmean, 

representing the minimum, maximum, and mean altitudes in centimeters within the 

digital elevation model, respectively. Additionally, point density of the model (PDM) 

was generated, indicating the density of points in the dense point cloud per square 

meter. Subsequently, data from each spectral band (NIR, Green, and Red), vegetation 

indices (NDVI and NGRDI), and descriptive statistics from the three-dimensional model 

were extracted for each plot and organized using GIS software.

A descriptive analysis encompassed the variables TCM, Red, Green, Nir, NDVI, 

NGRDI, Zmin, Zmax, Zmean, and PDM, followed by Pearson correlation analysis (p < 

0.05) between the dependent variable TCM and the other variables. To increase the 

pool of estimators for analysis, the variables underwent transformations into Ln(x), 

Log(x), 1/x, x², and x³. The Stepwise selection method was then used to adjust the linear 

regression equations, considering the dependent variable TCM in tons per hectare 

(t.ha–1) alongside the aforementioned estimators and their respective transformations.

The selection of the adjusted model was based on graphical analysis of the 

residuals in percentage, the standard error of estimate in percentage (Syx%), the 

coefficient of determination (R²), the adjusted coefficient of determination (R²adj), 

and the histogram of the residuals in percentage. To identify the most influential 

predictor variables in the regression model, the coefficients’ values were standardized. 

This standardization enables comparison of predictors on different scales upon their 

coefficients. Additionally, the hypothesis of non-collinearity was examined (Myers, 

1990; Bowerman and O’Connell, 1990; Menard, 1995).



Ci. Fl., Santa Maria, v. 34, n. 3, e73469, p. 8, July/Sept. 2024

8 | Using drones for estimating fuel ...

3 RESULTS AND DISCUSSIONS

3.1 Descriptive analysis

The results of the descriptive analysis of the used parameters are presented in 

Table 2. The average reflectance values, expressed as percentages for Red (21.98%), 

Green (11.47%), and NIR (25.23%), shed light on the physicochemical attributes of the 

vegetation. Absorbance, the process by which plants absorb electromagnetic radiation, 

is prominently observed in the Red and NIR wavelengths. These bands are associated 

with the photosynthesis process and, consequently, with the vegetative vigor of the 

plant (Geipel et al., 2014).

Table 2 – Descriptive analysis

Parameters Minimum Average Maximum CV%

Red 13.18 21.98 30.26 22.03

Green 5.97 11.47 16.20 22.13

Nir 14.68 25.23 33.04 20.46

NDVI -0.03 0.07 0.14 61.08

NGRDI -0.48 -0.22 0.39 56.70

Zmin (cm) 199.04 255.70 320.91 14.36

Zmax (cm) 358.35 492.68 607.16 15.39

Zmean (cm) 300.79 360.39 421.46 10.17

DPM (p m-2) 201.00 406.56 655.00 26.55

MCT (t ha-1) 1.79 4.66 7.60 29.97

Source: Authors (2022)

Where: Red, Green and Nir refer to reflectance values in percentage; NDVI and NGRDI to vegetation 
indices; Zmin, Zmáx and Zmean, altitude in centimeters; DPM, number of points per square meter; MCT, 
load of combustible material in ton per hectare.

Examining the average values, it is evident that the NDVI (0.07) and NGRDI 

(–0.22) vegetation indices classify the vegetation as having low vegetative vigor and no 

vegetation cover, respectively, based on the NDVI value classification.

The seasonality of the Cerrado biome is primarily marked by two distinct periods: 

the dry season, spanning from April to September, and the rainy season, occurring from 
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October to March (SEPLAN, 2012). This characteristic directly impacts the descriptive 

values of the data, particularly the reflectance and vegetation index variables, which 

are influenced by the vegetation’s vigor (Marcussi et al., 2010).

3.2 Pearson Correlation and linear regression

Table 3 presents the results of the Pearson correlation between the dependent 

variable TCM and the independent variables: Red, Green, NIR, NDVI, NGRDI, Zmin (cm), 

Zmax (cm), Zmean (cm), and PDM (p.m-²), along with their respective transformations.

Table 3 – Descriptive analysis

Variable r Variable r

Red -0.37* 1 / NDVI -0.31*

Ln (Red) -0.36* NGRDI² -0.31*

Log (Red) -0.36* Z Mean -0.32*

Red² -0.37* Z Mean² -0.33*

Red³ -0.36* Z Mean³ -0.35*

1 / Red 0.35* DPM 0.49**

Green² -0.31* Ln (DPM) 0.49**

Green³ -0.33* Log (DPM) 0.49**

NDVI 0.42** DPM² 0.48**

NDVI² 0.41** DPM³ 0.46**

NDVI³ 0.36* 1/ DPM -0.47**

Source: Authors (2022)

Where: Red, Green and Nir refer to reflectance values; NDVI and NGRDI to vegetation indices; Z Mean 
and DPM to the statistics of the three-dimensional model; Red², Green², NDVI², NGRDI², Z Mean² and 
DPM² to squared variables; Red³, Green³, NDVI³, Z Mean³ and DPM³ to variables cubed; 1/Red, 1/NDVI 
and 1/PointCount in inverse of Red, NDVI and DPM, respectively; Log = logarithm in base 10; Ln = natural 
logarithm; r = Pearson correlation; * and ** = significant at 5% and 1% by T test, respectively.

The Pearson correlation coefficient between the dependent variable TCM and 

the independent variables of Red reflectance, Ln (Red), Log (Red), Red², Red³, Green², 

and Green³ revealed weak and inverse correlations, significant at a 5% probability level 

(r = –0.37, r = –0.36, r = 0.36, r = –0.37, –0.31, and –0.33, respectively), except for the 

variable 1/Red, which displayed a weak and positive interaction (r = 0.35).
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The association between the variable TCM and the NDVI, NDVI², and NDVI³ 

vegetation indices demonstrated a positive correlation (r = 0.42, r = 0.41, and r = 0.36, 

respectively). In contrast, 1/NDVI and NGRDI² exhibited a weak and inverse correlation, 

with an r = –0.31 for both. Notably, only the NDVI variable was found to be significantly 

relevant at the 1% level according to the T-test.

The descriptive variables derived from the three-dimensional model, namely 

PDM, Ln(PDM), Log(PDM), PDM², PDM³, and 1/PDM, exhibited higher correlations, 

albeit still considered weak (r = 0.49, r = 0.49, r = 0.49, r = 0.48, r = 0.46, and r = –0.47, 

respectively) compared to reflectance variables and vegetation indices. Conversely, 

variables Zmean, Zmean², Zmean³, displayed inverse and weak correlations (r = –0.32, 

r = –0.33, and r = –0.35, respectively). Notably, similar to NDVI, the PDM variable 

demonstrated statistical significance at a 1% probability level.

Interestingly, manipulation and transformation of the Red and NIR spectral 

bands into NDVI resulted in an increase in correlation with the variable TCM. Tumlisan 

(2017) emphasizes the importance of combining and transforming variables into new 

indices for improved interpretation of vegetation cover.

Ponzoni et al. (2015) elucidate that healthy vegetation undergoes photosynthesis, 

absorbing approximately between 80% and 90% of the visible spectrum while reflecting 

between 40% and 50% of the NIR light. Consequently, applying the normalized 

difference index expression enhances vegetation, with brightness directly proportional 

to its vigor.

The correlation coefficient between combustible material and NGRDI revealed 

a weak association. In precision agriculture studies, Li et al. (2016) and Jannoura et 

al. (2015) observed indices with moderate interactions, ranging from r = 0.55 to r = 

0.74. Conversely, Souza et al. (2018) achieved an r = 0.41 for the interaction between 

combustible material and NGRDI in a “campo sujo” area in the Cerrado. Tumlisan 

(2017) suggests that RGB wavelengths reflect less as chlorophyll availability increases 

in plants, hence associating NGRDI with photosynthetic activity akin to NDVI.
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The variable ZMean, representing elevation in centimeters, exhibited a weak 

correlation (r = 0.32). This required an improvement in the classification of points, 

similar to the approach employed by Bendig et al. (2014), Cunliffe et al. (2016), Geipel 

et al. (2014), and Souza et al. (2018), resulting in a normalized digital elevation model.

The variable PDM emerged as a focal point in this study, showcasing a correlation 

coefficient of r = 0.49. The increased granularity of data points within the plots facilitated 

finer segmentation of the vegetation, thereby directly correlating with the quantity of 

combustible material within those plots.

In the realm of Pearson correlation analyses, the equation refined through the 

stepwise method for estimating the combustible material load from multispectral 

sensor data and RGB camera inputs is delineated in Table 13. Notably, the model’s 

F-adjustment (interaction) exhibits a significant p-value of < 0.01, signifying the 

relevance of the interrelationship between the variables in elucidating the response 

variable TCM. Upon evaluating the hypothesis of non-multicollinearity, it is discernible 

that the variance inflation factor (VIF) values remain below 10, affirming the absence 

of collinearity. Notably, scholars such as Myers (1990) and Bowerman and O’Connell 

(1990) suggest caution against VIF values exceeding 10, which may introduce bias into 

the regression model, while Menard (1995) states that a tolerance threshold of 0.20 is 

indicative for concern.

Table 4 - Adjustment of the regression equation

Y X C C.P R2 R2aj Syx% F 
M.C

T FIV

MCT

ß0 -12.31***

0.7 0.65 17.56

16.06
Ln (DPM) 2.69*** 0.54 (p <0.01) 0.95 1

NDVI 18.81*** 0.6 0.74 1.3
Red3 -6.93e-5** -0.36 0.84 1.1

1/NGRDI -0.19** -0.32   0.71 1.4

Source: Authors (2022)

Where: C, coefficient; C.P, standardized coefficient; M.C, multicollinearity; T, tolerance and IVF, Variance 
inflation factor; **, significant at 1% and ***, significant at 0.1% probability.
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The determination coefficient for the equation stands at R² = 0.70, with 

an adjusted R²aj = 0.65. Through an appraisal of the variables’ significance, all 

were found to be highly significant per the T-test. Furthermore, when analyzing 

the relevance of each variable in the model, it is evident that although Ln (PDM) 

exhibits significant correlation, as presented in Table 13, NDVI wields a greater 

influence in refining the model compared to the other variables as evidenced by 

the standardized coefficient column.

Yue et al. (2017) and Bendig et al. (2015), in their efforts to estimate vegetation 

biomass using the NDVI, attained R² values of 0.37 and 0.48, respectively. Furthermore, 

Yue et al. (2017) used Green and Red wavelengths for the same purpose, achieving 

determination coefficients of 0.56 and 0.59, respectively.

The error frequency histogram depicted in Figure 1 reveals that 45% of the 

errors fall within the 10% to 20% range, indicating no discernible trend in errors. With 

a Syx% value of 17.56 for the smallest error range of 1% to 10%, approximately 8% of 

the errors were observed in this region.

Geipel et al. (2014), Bendig et al. (2015), and Souza et al. (2018) underscore 

the importance of combining variables, highlighting that integrating diverse factors 

significantly enhances model performance. This integration leads to improvements in 

adjustments and a reduction in the standard residual error.

Figure 1 - Error Frequency Histogram

Source: Authors (2022)
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3 CONCLUSIONS

The utilization of remote sensors mounted on drones showcases potential 

for the quantitative assessment of combustible material in “campo sujo” vegetation 

areas within the Cerrado region. Specifically, the Survey3W and FC6310 multispectral 

sensors emerge as viable options for data collection through image capture. In light of 

the hypotheses and objectives set for this study, the following conclusions are drawn:

1– The NDVI and NGRDI vegetation indices exhibit a moderate correlation with 

the load of combustible material;

2– The PDM variable demonstrates the highest correlation with the combustible 

material load;

3– The adjusted equation devised for estimating the combustible material load 

demonstrates significant potential for facilitating fuel management in “campo sujo” 

areas within the Cerrado.
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