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MicroRNA-1258 suppresses oxidative stress and inflammation in septic acute
lung injury through the Pknox1-regulated TGF-β1/SMAD3 cascade
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� MiR-1258 is downregulated in septic ALI.
� MiR-1258 inhibits inflammation and oxidative stress via Pknox1 in ALI.
� MiR-1258 targets Pknox1 to control TGF-β1/SMAD3 cascade.
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A B S T R A C T

Aim: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming
Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and
inflammation.
Methods: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively.
miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflamma-
tion, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry.
Results: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung
injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-
1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented
inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact
of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258
overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice
through suppressing Pknox1 expression and TGF-β1/SMAD3 cascade activation.
Conclusions: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI
through the Pknox1-regulated TGF-β1/SMAD3 cascade.
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Introduction

Sepsis is a systemic inflammatory response syndrome caused by
severe infection.1 Sepsis often leads to multiple organ failures and even
death.2 The lungs are the most common failing organ in sepsis and is
also the primary site with the highest frequency of infection.3 Under sep-
tic conditions, excessive inflammation and apoptosis lead to the destruc-
tion of alveolar epithelial cells, increased epithelial permeability, and
the influx of edema fluid into the alveolar space, ultimately leading to
Acute Lung Injury (ALI).4 However, there are no specific drugs or treat-
ments for sepsis and septic ALI.

The inflammatory response has been indicated in the pathogenesis of
septic ALI, and this process is associated with the upregulation of inflam-
matory cytokines and chemokines (Transforming gGrowth Factor-β1
[TGF-β1], Interleukin [IL]-1β, IL-6, IL-13, and Tumor Necrosis Factor
[TNF]-α).5,6 TGF-β1 is an important inflammatory cytokine involved in
various pathophysiological processes. Although the underlying mecha-
nism of TGF-β-mediated ALI remains unclear, studies suggest that TGF-
β1 may enhance ALI by increasing pulmonary microvascular endothelial
and alveolar epithelial cell permeability and promoting actin stress fiber
formation.7 Elevated TGF-β1 in ALI mice is involved in the late stages
and leads to lung injury in the early stages of disease progression.8 In
addition, oxidative stress is also one of the key pathological processes of
sepsis-related ALI.9 TGF-β1 is associated with oxidative stress in various
diseases,10 indicating the importance of TGF-β1 in septic ALI.

MicroRNAs (miRNAs) participate in various cellular processes,
including inflammation, oxidative stress, and apoptosis.11,12 Patholog-
ically, miRNAs are associated with human diseases, including ALI.13 It
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has been previously documented that miRNAs such as miR-490 and
miR-494 ameliorate septic ALI.14,15 MiR-1258 has a tumor suppressor
role by targeting heparanase in gastric, breast and non-small cell lung
cancers,16 and is implicated in cancer immune evasion and systemic
inflammation.17,18 Nevertheless, the role of miR-1258 in ALI remains
unreported.

Lipopolysaccharide (LPS) is an endotoxin that activates the inflam-
matory signaling pathway through Toll-Like Receptor 4 (TLR4), induces
a large number of inflammatory cytokines, and recruits a wide range of
macrophages and neutrophils in the lung. LPS-induced in vivo and in
vitro models have been recognized as classic models of acute lung injury
due to sepsis.19 The present study hypothesized that miR-1258 alleviates
oxidative stress and inflammation in septic ALI through the Pknox1-reg-
ulated TGF-β1/SMAD3 cascade and aimed to investigate the role and
mechanisms of miR-1258 in septic ALI. The objectives included investi-
gating miR-1258 expression in patients and septic ALI models and
understanding the function and mechanism of miR-1258 in LPS-induced
inflammation and oxidative stress in vitro. The study also aimed to
determine whether MiR-1258 targets Pknox1-regulated TGF-β1/SMAD3
cascade and if miR-1258 prevents LPS-induced inflammation and oxida-
tive stress in vivo.

Materials and methods

Serum specimen

Forty-four patients with septic ALI admitted to Guangzhou Hospital
of Integrated Traditional and West Medicine from July 2019 to July
2020 were selected, including 27 males and 17 females aged 33 to
70 years old, with an average of (53.35 ± 10.01) years old. Another 44
healthy donors with no smoking history were selected, including 24
males and 20 females; the ages ranged from 27 to 70 years old, with an
average of (50.13 ± 9.14) years old. Gender and age had no significant
difference (p > 0.05). Sepsis and ALI were diagnosed according to the
corresponding international criteria. The ALI diagnosis criteria used
included an acute onset, PaO2/FiO2 ≤ 200 mm Hg, and bilateral infil-
trates seen on the frontal chest radiograph. The clinical symptoms used
for diagnosis included dyspnea, tachypnea, production of sputum, hyp-
oxia, and pleuritic chest pain.20 Blood samples were obtained and centri-
fuged at 8000 × g for 3 min.

Cell culture and transfection

Human normal lung epithelial cell line BEAS-2B (ATCC) main-
tained in DMEM containing 10 % fetal bovine serum were transfected
with mimic-CTR, miR-1258 mimic, si-CTR, si-Pknox1 and oe-Pknox1
(Genepharma, Shanghai, China) using Lipofectamine 3000 (Invitro-
gen, CA, USA). The medium was purchased from Gibco (CA, USA). A
Lipopolysaccharide (LPS)-induced model was established after 24h,
cell exposure to 1.0 μg/mL LPS for an additional 24h (Sigma-Aldrich,
MO, USA).

Experimental animal

Adult healthy male C57BL/6 mice (25s∼30g, 6∼8 weeks-old; Bei-
jing Vital River Laboratory Animal Technology Co., Ltd., Beijing,
China) were fed with standard feed and purified water under the condi-
tions of 61 % air humidity, 21∼26°C temperature, and 12h light/dark-
ness.

LPS intravenous injection to induce septicemic lung injury is the
most widely used method for modeling ALI.21,22 After intraperitoneal
injection of LPS at 10 mg/kg, increased respiratory rate, chills, stand-
ing hair, decreased activity, and watery stool indicated the successful
induction of ALI. Normal mice were injected with 0.20 mL of normal
saline.
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Animal treatment

The mice were divided into 4 groups, with 10 mice in each group.
Except for the Sham and ALI groups, mice in the agomir-CTR group and
miR-1258 agomir group were injected intravenously with agomir-CTR
and miR-1258 agomir (GenePharma) for 3 consecutive days prior to LPS
induction. After euthanizing the mice, lung tissue and blood from the
inner canthus were collected for testing.

All animal experiments complied with the ARRIVE guidelines and
performed in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. The experiments were
approved by the Institutional Animal Care and Use Committee of
Guangzhou Hospital of Integrated Traditional and West Medicine.

Inflammatory factor detection

Mouse serum was collected by centrifugation, and the BEAS-2B cell
culture supernatant was amassed. TNF-α, IL-6, and IL-1β in serum and
cell supernatant were detected using enzyme-linked immunosorbent
assay kits (ELISA, R&D company). The absorbance was determined at an
optical density of 490 nm on a microplate reader.

Oxidant indicator detection

BEAS-2B cells were suspended in 0.3 mL PBS and disrupted on ice by
ultrasound to extract total intracellular protein. Lung tissues were pre-
pared into tissue homogenate using normal saline. SOD activity23 and
MDA and GSH contents were measured by kits (Nanjing JianCheng Bio-
engineering Institute, Nanjing, China).

MTT assay

The single-cell suspension of BEAS-2B was cultured in the 96-well
plate at 2 × 108/L, 100 μL/well. The medium was replaced with fresh
DMEM after 48h and incubated for an additional 12h. Next, MTT (5 g/L,
10 μL/well) was added, forming Formanzan, which was then dissolved
by Formanzan lysis solution (100 μL/well). Finally, optical density490 nm

was measured.

AnnexinV-FITC/PI double staining

BEAS-2B cells were plated in the 6-well plate at 2 × 108/L for 24h.
Later, adhered cells were detached and collected by centrifugation at
1500 r/min for 10 min. Next, after adding 400 μL Annexin V binding
solution, BEAS-2B cells were incubated with 5 μL AnnexinV-FITC solu-
tion and 10 μL PI solution, followed by a flow cytometry test and
WinMDI software analysis.

Hematoxylin-eosin (H&E) staining

Mouse lung tissues were made into 5 μm slices and embedded into
paraffin. Paraffinized sections were dehydrated with conventional gradi-
ent alcohol, cleared with xylene, stained with hematoxylin, differenti-
ated with 1 % hydrochloric acid alcohol, and immersed in 1 %
ammonia. After counter-staining with 1 % eosin solution, the slices were
treated with conventional dehydration and permeability, sealed, and
viewed under a microscope (Olympus, Tokyo, Japan).23

Quantitative Real Time PCR detection

Lung tissues of mice in all groups, LPS-induced BEAS-2B cells, and
control cells were taken after the above treatment and lysed, and total
RNA was extracted by one-step method with Trizol (Invitrogen, CA,
USA), of which the concentration and quality were determined by Nano-
Drop2000 (Thermo Fisher Scientific, USA). According to the Rever Tra
Aceq PCR RT Kit (TOYOBO), 500 ng of RNA was loaded in the reverse



Table 1
Sequences in PCR.

Gene Sequences

miR-1258 RT: 5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC-
GACTTCCAC-3’

R: 5’-ATCCAGTGCAGGGTCCGAGG-3’
F: 5’- GCGGCGGAGTTAGGATTAGGTC-3’

Pknox1 F: 5’-AGCAGGCCATTTATAGGCATC-3’
R: 5’-TCACCATTAGGTTGTCAGTTTCC-3’

U6 F: 5’-ATTGGAACGATACAGAGAAGATT-3’
R: 5’-GGAACGCTTCACGAATTTG-3’

GAPDH F: 5’-ACGGCAAGTTCAACGGCACAG-3’
R: 5’-GACGCCAGTAGACTCCACGACA-3’

Note: miR-1258, MicroRNA-1258; Pknox1, Prep1; GAPDH, Glyceraldehyde-
3-phosphate dehydrogenase.
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transcription reaction system, and the products were processed accord-
ing to the protocol of the Sybrgreen kit (Takara). MiR-1258 expression
was examined using a Bulge-LoopTM miRNA kit (RuiBo, China) with U6
as a control. Primers listed in Table 1 were synthesized by BGI (Shenz-
hen, China), among which U6 and GAPDH were considered internal con-
trols. Data were analyzed using the 2−ΔΔCt method.24 All experiments
were repeated three times.

Western blot

Tissues and cells were processed to obtain total protein, and the pro-
tein concentration was determined by a BCA kit (Boster, Hubei, China).
Proteins were separated by 10 % polyacrylamide gel electrophoresis, fol-
lowed by immunoblotting onto PVDF membrane and blocking with 5 %
BSA. Primary antibodies; TGF-β1 (Santa Cruz Biotechnology, 1:1000),
Smad3, p-Smad3 (CST, 1:1000), and GAPDH (Abcam, 1:3000). The
membrane was incubated with the corresponding secondary antibodies
(MT-Bio, Shanghai, China). Finally, a chemiluminescence reagent was
added to the membrane, and band development was observed using
GELDOCEZIMAGER (Bio-rad, CA, USA). Band analysis was done using
ImageJ software.

Luciferase reporter gene assay

The binding of miR-1258 and Pknox1 was predicted using the bioin-
formatics software https://cm.jefferson.edu/rna22. MiR-1258 was
found to bind to Pknox1 at the 3′UTR. Based on that, Pknox1 3′UTR
wild-type plasmid (Pknox1 3′UTR-WT, with miR-1258 binding site) was
synthesized, and Pknox1 3′UTR-MUT (with a mutated binding site). Lip-
ofectamine 2000 (Invitrogen) was used to transfect BEAS-2B cells when
70 % confluence was achieved. The Pknox1 3′UTR-WT or Pknox1
3′UTR-MUT was co-transfected with miR-1258 to mimic or mimic NC.
Fig. 1. miR-1258 downregulation in clinical and experimental septic ALI. MiR-1258
Repetitio n = 3) and lung tissue of LPS-treated mice (C, n = 10). * p 0.05, ** p < 0.01
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The luciferase activity was measured with the Dual-Luciferase Reporter
Assay System kit (Promega, WI, USA).
Statistical analysis

GraphPad Prism 8 was applied to statistical analysis. Data were pre-
sented as mean ± standard deviation. Normally distributed data were
assessed by t-test, and otherwise by One-Way analysis of variance and
Tukey’s method; p was a two-sided test, and p < 0.05 was considered sta-
tistically significant.
Results

MiR-1258 is downregulated in patients and in in vitro septic ALI models

There are currently no specific drugs or treatments for sepsis and sep-
tic ALI. The present study aimed to investigate miR-1258 in oxidative
stress and inflammation in septic ALI. The objectives included investi-
gating miR-1258 levels in septic ALI and understanding its function and
mechanism in LPS-induced inflammation and oxidative stress. The study
also aimed to determine whether miR-1258 targets Pknox1-regukated
TGF-β1/SMAD3 cascade and if miR-1258 prevents LPS-induced inflam-
mation and oxidative stress in vivo. miR-1258 expression was signifi-
cantly reduced in ALI patients (Fig. 1A). RT-qPCR results confirmed a
significant miR-1258 suppression in LPS-treated cells (Fig. 1B) and LPS-
induced animals (Fig. 1C). These observations confirmed that miR-1258
is downregulated in patients, LPS-induced cells, and septic ALI models.
MiR-1258 inhibits LPS-induced inflammation and oxidative stress via
Pknox1 in vitro

When analyzing the mechanism of miR-1258 in septic ALI, the BEAS-
2B cells were transfected with LPS, miR-1258 mimic, mimic-CTR, miR-
1258 mimic+oe-Pknox1, si-CTR or si-Knox1. The MTT assays confirmed
significantly reduced cell viabilities in the LPS, mimic-CTR, miR-1258
mimic+oe-Pknox1, and si-CTR, but remarkably high cell viabilities in
miR-1258 mimic and si-Pknox1 cells compared to the control group, as
shown in Fig. 2A. Flow cytometry experiments confirmed increased apo-
ptosis in LPS, mimic-CTR, miR-1258 mimic+oe-Pknox1, and si-Pknox1
compared to the miR-1258 mimic and si-Pknox1 (Fig. 2B). ELISA experi-
ments confirmed significantly increased TNF-α, IL-6, and IL-1β in LPS,
mimic-CTR, miR-1258 mimic+oe-Pknox1, and si-Pknox1 compared to
the miR-1258 mimic and si-Pknox1, as shown in Fig. 2C. Oxidant indica-
tors detection experiments confirmed significantly reduced SOD and
GSH expressions in LPS, mimic-CTR, miR-1258 mimic+oe-Pknox1, and
si-Pknox1 compared to the miR-1258 mimic and si-Pknox1. However,
MDA was significantly increased in LPS, mimic-CTR, miR-1258 mimic
+oe-Pknox1, and si-Pknox1 compared to the miR-1258 mimic and si-
expression in clinical serum samples (A, n = 44), LPS-treated BEAS-2B cells (B,
. Data were presented as mean ± standard deviation.

https://cm.jefferson.edu/rna22


Fig. 2. miR-1258 prevents LPS-induced inflammation and oxidative stress via Pknox1 in vitro. Cell viability (A), apoptosis rate (B), inflammatory factor concentrations
(C), contents of oxidative stress-related indicators (D); Repetitio n = 3; Data were presented as mean ± standard deviation.
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Pknox1 (Fig. 2D). These observations demonstrate that MiR-1258 allevi-
ates LPS-induced inflammation and oxidative stress via Pknox1 in vitro.

MiR-1258 targets Pknox1 to regulate TGF-β1/SMAD3 cascade

Pknox1 contains a conserved binding site for miR-1258 in the
https://cm.jefferson.edu/rna22/ (Fig. 3A). Subsequent investigation
indicated that miR-103a-3p mimics significantly decreased PKnox1-WT
luciferase activity, whereas did not impact PKnox1-MUT luciferase activ-
ity (Fig. 3B). RT-qPCR and Western blot results confirmed Pknox1
expressions elevated in LPS and mimic-CTR transfected cells compared
to miR-1258 mimic and control cells (Fig. 3C,D). Further, when explor-
ing the downstream mechanisms of the miR-1258 and Pknox1 in septic
ALI, western blotting confirmed a significant increase of TGF-β1 and p-
Smad3in LPS, mimic-CTR, miR-1258 mimic+oe-Pknox1, and si-CTR
compared to the miR-1258 mimic and si-Pknox1 transfected cells
(Fig. 3E). These results confirmed that miR-1258 targets Pknox1 to con-
trol TGF-β1/SMAD3 cascade.

MiR-1258 prevents LPS-induced inflammation and oxidative stress in vivo

In vivo, studies were finally done to confirm the role of miR-1258 in
LPS-induced inflammation. H&E tissue staining depicted no effect on
the lung pathology in the sham group, as reflected by intact lung tissue
structure and no alveolar septum edema and inflammation. However,
4

LPS injection severely damaged alveolar structures and widened alveo-
lar septa, accompanied by pulmonary interstitial exudation, hemor-
rhage, and massive inflammatory cell infiltration. However, these
pathological damage observations in the ALI group were alleviated in
miR-1258 agomir pre-treatment, as shown in Fig. 4A.

TNF-α, IL-6, and IL-1β expressions increased in ALI and agomir-CTR
compared to the miR-1258 agomir and the sham groups shown in
Fig. 4B. The SOD expression was significantly reduced in the ALI and
Agomir-CTR-treated groups compared to the miR-1258 agomir-treated
cells. However, the MDA expression was significantly increased in the
ALI and Agomir-CTR but reduced in the miR-1258 agomir-treated
groups (Fig. 4C). The RT-qPCR and western blot assays were used to ana-
lyze Pknox1 expression. The observations confirmed significantly
increased Pknox1 mRNA and protein expression in ALI and agomir-CTR
compared to miR-1258 agomir and sham group, as shown in Fig. 4D‒E.
Western blot confirmed increased TGF-β1 and p-Smad3 protein expres-
sion in ALI and agomir-CTR but reduced TGF-β1 and p-Smad3 protein
expressions in the miR-1258 agomir groups, as shown in Fig. 4F. These
observations confirmed that miR-1258 prevents LPS-induced inflamma-
tion and oxidative stress in vivo.

Discussion

The authors reported for the first time that overexpressing miR-1258
alleviated septic ALI by suppressing oxidative stress and inflammation

https://cm.jefferson.edu/rna22/


Fig. 3. miR-1258 targets Pknox1 to control TGF-β1/SMAD3 cascade. The binding site of miR-1258 and Pknox1 (A), targeting the relationship between miR-1258 and
Pknox1 (B), Pknox1 mRNA, and protein expression (C‒D), TGF-β1/SMAD3 cascade-related factor protein expression (E); Repetitio n = 3; Data were presented as
mean ± standard deviation.

Fig. 4. miR-1258 prevents LPS-induced inflammation and oxidative stress in vivo. H&E staining images of lung tissue (× 200, A), inflammatory factors in serum (B),
oxidative stress-related indicators in lung tissue (C), Pknox1 mRNA and protein expression in lung tissue (D‒E), TGF-β1/SMAD3 cascade-related factor protein expres-
sion of mice (F); n = 10; Data were presented as mean ± standard deviation.
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by targeting Pknox1 to inactivate the TGF-β1/SMAD3 cascade, which
provides a potential therapeutic strategy for the clinical treatment of
severe septic infection. Sepsis is primarily caused by the cellular
response to infection.25 The lung is an important immune organ and the
first organ affected by sepsis.26 ALI caused by sepsis has the highest mor-
bidity and mortality among the causes of ALI.27 The occurrence of sepsis
is related to the bacteria or bacterial toxin LPS on the wound. LPS can
induce sepsis, septic shock, and multiple organ dysfunction syndrome.
LPS induces the body’s immune response through a variety of signal
5

transduction pathways and stimulates immune cells to produce a large
number of inflammatory cytokines with thermogenic effects, such as
TNF-a and IL-6, resulting in excessive activation of the immune sys-
tem.28 Meanwhile, sepsis leads to the destruction of the alveolar epithe-
lium, inflammatory exudation and respiratory distress. These
phenomena are consistent with those observed in LPS-induced ALI mice
in this study.29 In this study, the authors found that LPS injection
induced severe destruction of alveolar structure, widening of alveolar
interval, interstitial exudation, bleeding, and infiltration of
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inflammatory cells in mice. The levels of inflammatory and oxidative
stress markers in the blood of the LPS-induced ALI mice increased signif-
icantly. This indicates that the in vivo model used in this study is highly
representative and simulative.

Multiple miRNAs are dysregulated in ALI, covering various patholog-
ical and physiological processes, such as inflammation and oxidative
stress.30,31 miR-144-3p enhances lung tissue damage, inflammation, and
apoptosis in septic ALI mice.32 miR-34a knockdown attenuates oxidative
stress and inflammation in septic ALI mice,23 and miR-217 regulates
inflammation and oxidative stress and lung injury in septic mice.33

Therefore, studying the functions of aberrantly expressed miRNAs in
septic ALI may contribute to developing effective treatments for ALI. In
the present study, miR-1258 was downregulated in serum samples of
septic ALI patients, LPS-treated mice, and the BEAS-2B cell model, sug-
gesting that miR-1258 may be involved in the development of septic
ALI. The present study’s in vitro cell experiments showed that upregulat-
ing miR-1258 could alleviate LPS-induced cell damage by inhibiting oxi-
dative stress and inflammatory insult, increasing cell viability, and
inhibiting apoptosis. In addition, the results of animal experiments were
consistent with the cellular observations.

Next, the authors explored the potential mechanism by which miR-
1258 regulated septic ALI and focused on Pknox1. PKnox1 is a homeodo-
main transcription factor of the TALE superclass essential for embryo-
genesis.34 According to the previous investigations, PKnox1 cooperates
with HOX/PBX complex in vitro and regulates Tp53 and Bcl-x, thus
inhibiting oncogenic pathways via hindering MEIS1-dependent tran-
scriptional co-activators recruitment.35 In addition, Pknox1 stimulates
the expression of pro-inflammatory cytokines in aortic endothelial cell
models36 and could regulate inflammatory diseases and organ damage,
such as viral myocarditis37 and steatohepatitis.38 In the setting of septic
ALI, it was confirmed that LPS treatment promoted Pknox1 expression,
whereas up-regulation of miR-1258 did the opposite, further confirming
Pknox1 as a downstream target of miR-1258. Furthermore, Pknox1
knockdown had similar effects to miR-1258 overexpression on LPS-
treated cells, whereas Pknox1 overexpression could partially reverse the
amelioration of LPS-treated cells damage by up-regulation of miR-1258.

Notably, the authors found the activated TGF-β1/SMAD3 cascade in
LPS-treated BEAS-2B cells, while up-regulating miR-1258 or down-regu-
lating Pknox1 suppressed TGF-β1 and p-Smad3 expressions. TGF-β1/
SMAD3 cascade is involved in lung injury in inflammation, fibrosis, and
epithelial-mesenchymal transition.39 Fei et al. have validated the allevi-
ating effect of TGF-β1/SMAD3 cascade inactivation on septic ALI.40 Con-
sistent with their findings, the authors confirmed that miR-1258
ameliorated LPS-induced oxidative stress and inflammation by targeting
Pknox1 to inactivate the TGF-β1/SMAD3 cascade.

The study also has some limitations. The number of samples is insuffi-
cient, and larger populations need to be tested to elucidate the relation-
ship between miR-1258 expression in serum and the pathological features
of septic ALI. MiR-1258 may also exert its protective role in ALI by regu-
lating other downstream targets, which requires further studies to detect
and identify alternative miR-1258 targets involved in ALI progression.

Conclusion

In evidence, miR-1258 ameliorates septic ALI by suppressing inflam-
mation and oxidative stress by suppressing Pknox1 expression and TGF-
β1/SMAD3 cascade activation. The findings of this study. This study
demonstrates the clinical relevance of the functional relationship of
miR-1258 in patients with sepsis and gives a novel basis for targeting
Knox1 and its downstream molecular axis as a possible alternative for
developing effective drug therapy against ALI. The present findings con-
tribute to further understanding of septicaemia-induced organ damage
and provide a new perspective for the diagnosis and treatment of septi-
caemia-induced lung injury based on miRNA. Further clinical trial data
are required to validate the obtained preliminary in vitro and in vivo
results.
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