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Toll-like receptor signaling pathway involved in pathogenesis of
thromboangiitis obliterans through activating of NF-κB
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H I G H L I G H T

� The pathogenic mechanisms of Thromboangiitis Obliterans (TAO) are not entirely known and autoimmune inflammation plays a vital role in the initiation and con-
tinuance of TAO activity. The authors investigated in this study the role of the TLR signaling pathway in the pathogenesis of TAO.
� First, the authors detected the expressions of MyD88, TRIF and NF-κB in vascular walls of 46 patients with TAO and 32 patients with trauma and osteosarcoma by
western blot assay. Second, the authors detected the cellular localization of MyD88, TRIF and NF-κB in vascular walls of patients with TAO by immunofluorescent
assay.
� The protein expressions of MyD88, TRIF and NF-κB were much higher in the vascular walls of TAO patients (p < 0.05). Higher expressions of MyD88 and NF-κB were
detected both on vascular endothelial and vascular smooth muscle cells of TAO patients. However, higher expression of TRIF was just detected on vascular smooth mus-
cle cells of TAO patients.
� These dates suggest that the TLR signaling pathway might play an important role in the pathogenesis of TAO, it might induce vasospasm, vasculitis and thrombogen-
esis to lead the pathogenesis and progression of TAO.
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A B S T R A C T

Objectives: The pathogenic mechanisms of Thromboangiitis Obliterans (TAO) are not entirely known and autoim-
mune inflammation plays a vital role in the initiation and continuance of TAO activity. The authors investigated
in this study the role of the TLR signaling pathway in the pathogenesis of TAO.
Methods: First, the authors detected the expressions of MyD88, TRIF and NF-κB in vascular walls of 46 patients
with TAO and 32 patients with trauma and osteosarcoma by western blot assay. Second, the authors detected the
cellular localization of MyD88, TRIF and NF-κB in vascular walls of patients with TAO by immunofluorescent
assay.
Results: The protein expressions of MyD88, TRIF and NF-κB were much higher in vascular walls of TAO patients (p
< 0.05). Higher expressions of MyD88 and NF-κB were detected both on vascular endothelial and vascular smooth
muscle cells of TAO patients. However, higher expression of TRIF was just detected on vascular smooth muscle
cells of TAO patients.
Conclusions: These dates suggest that the TLR signaling pathway might play an important role in the pathogenesis
of TAO, it might induce vasospasm, vasculitis and thrombogenesis to lead to the pathogenesis and progression of
TAO.
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Background

Thromboangiitis obliterans (TAO), also known as Buerger’s disease,
was first described in 1908 by Buerger.1 It is a non-atherosclerotic
inflammatory disorder of unknown etiology and can affect small and
medium-sized arteries and veins in the upper and lower extremities.2
Although the inflammatory reactions of vasal intima have been shown
in patients with TAO, the pathogenesis of TAO is still not explained
exactly.3 Additionally, it is generally accepted that autoimmune inflam-
mation is an ultimate pathogenic factor of TAO,1−3 but the action mech-
anism of autoimmune inflammation in patients with TAO remains
unknown.
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Table 1
Clinical characteristics of patients.

TAO group Control group
n (%) n (%)

Mean age ± SD 35.2 ±7.3 38.1 ± 16.4
Gender (M/F) 46/0 100/0 18/14 56.3/43.7
Mean ABI 0.267 ± 0.143 1.023 ± 1.045
Previous smoking 46 100 15 46.9
History of intermittent claudication 46 100 0 0
Pain at rest (narcotic requirement) 46 100 0 0
Ischemic nonhealing ulcer 38 82.6 0 0
Thrombophlebitis 36 78.3 0 0
Raynaud’s phenomenon 35 76.1 0 0
Previous treatments with drugs
Aspirin 44 95.7 2 6.3
Warfarin 3 6.5 0 0
Iloprost 46 100 0 0
Previous amputation
Major/minor 3/7 6.5/15.2 0/0 0/0
Distal bypass graft
Below knee/crural arteries 8/0 17.4/0 0/0 0/0
Sympathectomy 31 67.4 0 0
Immunosuppression 0 0 0 0
Malnutrition 10 21.7 2 6.3

Table 2
The protein expression of MyD88, TRIF and NF-κB in in vascular tissues of
two groups.

Group n MyD88 TRIF NF-κB
Control group 46 0.188 ± 0.021 0.162 ± 0.017 0.175 ± 0.011
TAO groupa 32 0.763 ± 0.041 0.806 ± 0.015 0.785 ± 0.032

a p < 0.01 vs. control group.
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Toll-like receptor signaling pathways (TLRs) are one of the most
deeply researched signaling pathways related to inflammatory dis-
eases.4−6 TLRs are one kind of protein molecule involved in nonspecific
immunity and it is also a bridge between nonspecific immunity and spe-
cific immunity.7 As public data described, TLRs can be triggered via two
signaling pathways, named Myeloid Differentiation factor 88 (MyD88)
dependent signaling pathway and MyD88 independent signaling path-
way (also known as TRIF signaling pathway).8 Interestingly, both two
signaling pathways may work by activating the downstream NF-κB sig-
naling pathway.9 However, whether TLRs/MyD88(TRIF)/NF-κB signal-
ing pathways are involved in the pathogenesis of TAO is still elusive.

In the present study, the authors ascertained the protein levels of
MyD88, TRIF and NF-κB in the vascular walls of TAO patients and deter-
mined the subcellular localization of MyD88, TRIF and NF-κB in the vas-
cular walls of TAO patients. These findings preliminarily uncovered that
TLRs/MyD88(TRIF)/NF-κB signaling pathways are involved in the path-
ogenesis of TAO, which may provide more therapeutic targets for TAO
patients.

Materials and method

Patients and sample collection

From January 2015 to December 2019, a total of 46 patients with
TAO were admitted to the first affiliated hospital of Chongqing Medical
University and affiliated central hospital of Chongqing University. TAO
was diagnosed via color Doppler flow imaging instrument, manifesting
as peripheral arterial ischemia to varying degrees. The inclusion criteria
of TAO patients were: i) History of smoking; ii) Age less than 50-years
old; iii) Occlusion on infrapopliteal/upper extremity artery and/or wan-
dering phlebitis engagement. Patients with hepatorenal dysfunction,
proximal limb arterial embolism, atherosclerosis, hematological system
diseases and other autoimmune diseases were excluded. Additionally,
32 individuals served as the controls. Patients with hypertension, hyper-
lipidemia and other cardiovascular and cerebrovascular organic diseases
were excluded. The clinical characteristics of the patients are reported
in Table 1. The vascular tissues were obtained via surgery and stored at
-80°C for succeeding experiments. The study protocols were approved
by the research ethics and scientific committee of the first affiliated hos-
pital of Chongqing Medical University and the affiliated central hospital
of Chongqing University, and all subjects gave informed consent.

Western blot assays

Vascular tissues were lysed in RIPA buffer containing 50 mM Tris
−HCl, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate,
2 Mm sodium fluoride, 2 mM Na3VO42, 1 mM EDTA, and 1 mM EGTA,
and then analyzed by western blotting as previously described.10 In
brief, samples (20 µg of total protein or 1 mg of total cell proteins) were
loaded onto SDS-PAGE gels (Invitrogen) and separated by size using
electrophoresis. Proteins were then transferred to PVDF membranes for
1h. The membranes were then blocked for 1h with 5% non-fat milk.
Membranes were incubated with primary antibodies against MyD88
(Abcam biotechnology, inc, USA; 1:500 dilution), TRIF (Abcam; 1:500
dilution) and NF-κB (Abcam; 1:500 dilution) at 4°C overnight. After
incubation with horseradish peroxidase-conjugated secondary antibody
(1:1000 dilution) for 3h at 37°C. Proteins were detected by ECL chemilu-
minescence and analyzed by densitometry with image software.

Immunofluorescent assay

Frozen tissues were fixed with 4% paraformaldehyde for 24h and
then cut into 20-μm-thick sections. Sections were incubated by mouse
anti-MyD88/TRIF/NF-κB (Abcam; 1:100 dilution), mouse anti-α-SMA (a
vascular smooth muscle cell marker; Abcam; 1:250 dilution) and mouse
anti-CD31 (a vascular endothelial cell marker; Abcam; 1:250 dilution)
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primary antibodies at 4°C overnight. Then, the slices were incubated
with an anti-mouse secondary antibody (1:100 dilution) at 25°C for
60 min, followed by adding freshly prepared 0.02% diaminobenzidine
for 5 min. Tissue sections were observed and photographed under a laser
confocal microscope.11
Statistical analysis

Statistical Package for the Social Science software (version 19.0;
SPSS Concepts) was used for the data analysis. Measurement data were
expressed as mean ± SD and statistically evaluated by independent-sam-
ples t-test; p < 0.05 was considered to indicate a statistically significant
difference.
Result

Protein expressions of MyD88, TRIF and NF-κB in vascular tissues of two
groups

The authors found that the protein levels of MyD88 (0.763 ± 0.041),
TRIF (0.806 ± 0.015) and NF-κB (0.785 ± 0.032) in TAO group were
dramatically elevated compared to those in the control group (MyD88
[0.188 ± 0.021], TRIF [0.162 ± 0.017] and NF-Kb [0.175 ± 0.011])
(Table 2, Fig. 1) (p < 0.05).
Subcellular localization of MyD88 and TRIF in vascular tissues of TAO group

The subcellular localization of MyD88 and TRIF in vascular tissues of
TAO patients were then ascertained. The authors found that MyD88 was
mainly located in vascular endothelial cells (Fig. 2) and vascular smooth
muscle cells (Fig. 3). Meanwhile, TRIF was observed to be located in vas-
cular smooth muscle cells (Fig. 4).



Fig. 1. The protein levels of MyD88, TRIF and NF-κB in vascular tissues of two
groups were determined via Western blotting.

Fig. 2. Co-expression of MyD88 with CD31 (a‒d) in the vascular endothelial
cells of vascular tissues of TAO group (magnification × 400).

Fig. 3. Co-expression of MyD88 with SMA (a‒d) in the vascular smooth muscle
cells of vascular tissues of TAO group (magnification × 400).

Fig. 4. Co-expression of TRIF with SMA (a‒d) in the vascular smooth muscle
cells of vascular tissues of TAO group (magnification × 400).

Fig. 5. Co-expression of NF-κB with CD31 (a‒d) in the vascular endothelial cells
of vascular tissues of TAO group (× 400).
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Subcellular localization of NF-κB in vascular tissues of TAO group

For further detection of the subcellular localization of NF-κB in vas-
cular tissues of TAO group, the immunofluorescent assay was used. The
results showed that NF-κB protein (Fig. 5-b, green) and vascular endo-
thelial cell marker CD31 (Fig. 5-c, red) were co-expressed evidently
(Fig. 5-d, yellow). Also, the results showed that NF-κB protein (Fig. 6-b,
green) and vascular smooth muscle marker SMA (Fig. 6-c, red) were co-
expressed evidently (Fig. 6-d, yellow). These results implied that NF-κB
was also located in vascular endothelial cells and vascular smooth mus-
cle cells.



Fig. 6. Co-expression of NF-κB with SMA (a‒d) in the vascular smooth muscle
cells of vascular tissues of TAO group (× 400).
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Discussion

More than 100 years have passed as the first description of TAO, but
the pathogenesis of TAO is still unknown.12 Previous studies have indi-
cated that tobacco-induced autoimmune inflammation is closely related
to the pathogenesis of TAO 13, but the mechanisms of occurrence and
development of autoimmune inflammation are still ambiguous.14 It is
acknowledged that autoimmune inflammation is a complex molecular
biological process involving multiple inflammatory pathways.15−17

Interestingly, public data showed that the TLRs signaling pathway, act-
ing as a widespread innate immune pathway, can activate signaling
pathways that result in immune responses and autoimmune
inflammation.18,19 However, whether TLRs is involved in the onset and
progression of TAO is still not determined. In the current study, the
authors preliminarily detected the expression and subcellular localiza-
tion of TLRs-related signaling pathways in vascular tissues of patients
with TAO patients, namely MyD88, TRIF and NF-κB.

As illustrated in many research, stimulation of TLRs triggers the acti-
vation of a common MyD88-dependent signaling pathway as well as a
MyD88-independent (TRIF-dependent) signaling pathway.20,21 Both of
these two pathways are strongly related to innate and adaptive immune
responses that are the potential predisposing factors for autoimmune
inflammation.22,23 It is generally accepted that TLRs play an important
role in many autoimmune inflammation diseases, such as systemic lupus
erythematosus, rheumatoid arthritis, systemic sclerosis, and Sjogren’s
syndrome.24−26 TAO is an autoimmune inflammation disease with an
unexplained mechanism, the authors speculated it may be also associ-
ated with TLRs.27 In this study, the authors found that the expression of
MyD88 and TRIF was much higher in patients with TAO. Meanwhile,
the results of subcellular localization showed that MyD88 was mainly
located in vascular endothelial cells and vascular smooth muscle cells,
while TRIF was observed to be located in vascular smooth muscle cells.
According to the dates, the authors found that the main inflammatory
injuries of TAO were located at vascular endothelial cells and vascular
smooth muscle cells. Also, higher expressions of MyD88 and TRIF in
those cells indicated that activation of TLRs signaling pathway might
participate in the pathogenesis and progression of TAO.

For further determination of the relationships between TLRs and
TAO, the expression of NF-κB, an important downstream transcription
4

factor of TLRs was detected.28 NF-κB signaling pathway as a primary
inflammatory pathway has been widely confirmed to participate in
many autoimmune inflammation diseases,29,30 including TAO.31 Many
inflammatory processes can be initiated by NF-κB signaling pathways
such as angiospasm, inflammatory cell infiltration, and thrombosis.32−34

Interestingly, all of those inflammatory processes were considered
important pathophysiological changes to be involved in the progression
of TAO.35,36 In the present study, the authors found that the expression
of NF-κB was much higher in patients with TAO compared to that of con-
trol individuals. At the same time, NF-κB was mainly located in the
nucleus and cytoplasm of vascular endothelial cells and vascular smooth
muscle cells. The results evidenced that the activation of NF-κB signaling
pathway may have participated in the pathogenesis of TAO.

Some limitations have also existed in this study. First, the NF-κB sig-
naling pathway can promote inflammatory cell infiltration by activation
of intercellular adhesion molecule-1, vascular cell adhesion molecule-1,
and inflammatory factors.37,38 Second, NF-κB signaling pathway may
also promote thrombosis and vascular inflammation by accelerating the
production of anti-neutrophil cytoplasmic antibodies, anticardiolipin
antibodies, and other immune-related antibodies.39,40 The authors will
elucidate these issues in the future.

Conclusion

In a word, the current study uncovers the high expression of MyD88,
TRIF and NF-κB in the vascular wall of patients with TAO, indicating
that the activation of TLRs/MyD88/NF-κB and TLRs/TRIF/NF-κB signal-
ing pathways may promote the progression of TAO by induction of vas-
cular inflammation. These findings preliminarily evidenced that
targeted therapy for the TLRs signaling pathway may be a potential ther-
apeutic target for TAO.
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