Acessibilidade / Reportar erro

MicroRNA-1258 suppresses oxidative stress and inflammation in septic acute lung injury through the Pknox1-regulated TGF-β1/SMAD3 cascade

Highlights

  • MiR-1258 is downregulated in septic ALI.

  • MiR-1258 inhibits inflammation and oxidative stress via Pknox1 in ALI.

  • MiR-1258 targets Pknox1 to control TGF-β1/SMAD3 cascade.

Abstract

Aim

The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation.

Methods

BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry.

Results

In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-β1/SMAD3 cascade activation.

Conclusions

The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-β1/SMAD3 cascade.

Keywords
MicroRNA-1258; Pknox1; Sepsis; Acute lung injury; Transforming growth factor β1/SMAD3 pathway; Inflammation; Oxidative stress

Faculdade de Medicina / USP Rua Dr Ovídio Pires de Campos, 225 - 6 and., 05403-010 São Paulo SP - Brazil, Tel.: (55 11) 2661-6235 - São Paulo - SP - Brazil
E-mail: clinics@hc.fm.usp.br