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MicroRNA-218-5p accelerates malignant behaviors of breast cancer through
LRIG1
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H I G H L I G H T S

� MiRNA-218-5p up-regulates ErbB2 and EGFR expression by suppressing LRIG1 expression.
� MiRNA-218-5p promotes the malignant behaviors of BC.
� MiRNA-218-5p may exert a pro-tumor effect on BC and serve as a therapeutic target for BC treatment.
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A B S T R A C T

Objective: MicroRNAs play crucial roles in the pathogenesis of cancers. MiRNA-218-5p may act as either an onco-
gene or a tumor suppressor, but its role in the pathogenesis of Breast Cancer (BC) remains unclear.
Methods: Infiltrative breast ductal carcinoma as well as corresponding adjacent normal samples were collected
from 30 patients. Mimics and inhibitors of miRNA-218-5p or corresponding negative controls were transfected
into BC cells. miRNA-218-5p expression was detected by quantitative PCR. The effects of miRNA-218-5p on the
malignant behaviors of BC were assessed. Dual-luciferase reporter assay was employed to evaluate the binding of
miRNA-218-5p to LRIG1.
Results: BC tissues showed higher miRNA-218-5p expression as compared to the adjacent normal tissues. Ectopic
miRNA-218-5p expression accelerated the cell cycle, cell growth and migration of BC, while repressed cell apopto-
sis. Interestingly, ectopic miRNA-218-5p expression down-regulated LRIG1 expression, and miRNA-218-5p could
bind to LRIG1. Also, our study indicated that miRNA-218-5p up-regulated ErbB2 and EGFR expression by target-
ing LRIG1, suggesting that the LRIG1-mediated signaling pathway contributed to the pro-tumor effects of miRNA-
218-5p on BC.
Conclusion: MiRNA-218-5p up-regulates ErbB2 and EGFR expression by suppressing LRIG1 expression, thus pro-
moting the malignant behaviors of BC. miRNA-218-5p may exert a pro-tumor effect on BC and serve as a thera-
peutic target for BC treatment.
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Introduction

MicroRNAs, a group of non-coding RNAs ranging 19‒24 nucleotides,
are capable of controlling the expression of targeted genes by inducing
degradation or inhibiting the translation of mRNA. In recent years,
plenty of evidence has indicated that microRNAs are implicated in a
variety of cellular processes, such as proliferation, death, and metastasis
[1−3]. Moreover, microRNAs may also exert anti-tumor or protumor
effects, depending on their expressing patterns and downstream targets
involved [4,5]. Some studies have revealed that miRNA-218-5p may act
as an anticancer gene in various cancers, including renal cell carcinoma,
hepatocellular carcinoma, gastric, colorectal and bladder cancers [6
−10]. However, the exact underlying mechanism by which miRNA-218-
5p orchestrates the pathogenesis of Breast Cancer (BC) remains unclear.

Leucine-Rich-Repeats and Immunoglobulin Like domains 1 (LRIG1)
is widely expressed in many healthy tissues [11], and its expression is
down-regulated in a number of carcinomas such as BC, renal carcinoma
and cervical cancer [12−14]. LRIG is an inhibitor of some oncogenic
receptor tyrosine kinases, including ErbB family [14] as well as the Met
[15] and Ret receptor [16] members. The physiological significance of
LRIG1 has been underscored in LRIG1 knock-out mice which showed
up-regulated expression of ErbB and Met receptor [17−19].

This study aimed to investigate the role of miRNA-218-5p in the
malignant behaviors of BC. Our results showed that miRNA-218-5p
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expression was significantly elevated in BC tissues. miRNA-218-5p over-
expression accelerated cell growth and metastasis of BC, disrupted cell
cycle, and suppressed cell apoptosis by targeting LRIG1. These findings
indicate that miRNA-218-5p may confer a pro-tumor effect in BC.

Methods

Collection of human BC tissues

Pathologically confirmed infiltrative breast ductal carcinoma tissues
were collected from 30 patients from the Department of General Surgery
of the Shanghai Tenth People’s Hospital (Shanghai, China) and correspond-
ing adjacent normal tissues were obtained as controls. Patients did not
receive chemotherapy or radiotherapy before surgery. This study was
approved by the Ethics Committee of Shanghai Tenth People’s Hospital
(20KT156) and informed consent was obtained before the study. Reporting
guidelines are not applicable, because it is not a clinical study.

Cells and transfection

Human BC cell lines (MDA-MB-231, HCC1937, MCF-7, and MDA-MB-
468) were from the American Type Culture Collection. The Chinese Acad-
emy of Science (Shanghai, China) kindly provided MCF-10A cells. Cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, USA)
containing fetal bovine serum (FBS; 10%, Gibco), penicillin (100 U/mL),
and streptomycin (100 μg/mL, Enpromise, China) at 37°C with 5% CO2.

For transfection, cells in serum-free medium were seeded into a 6-
well plate (2 × 105 per well). When cell confluence reached 30%−40%,
1 μg of miRNA-218-5p mimics/inhibitor/corresponding negative con-
trol (GenePharma Co., Ltd., China) were independently transfected into
cells in the presence of lipofectamine transfection reagent (Invitrogen,
USA). Cells were maintained for an additional 48 hours prior to further
examination.

RNA extraction and RT-qPCR

A miRNA quick extraction kit (Tiangen, Beijing, China) was used to
extract miRNA from BC tissues and adjacent normal tissues. Trizol reagent
(Invitrogen, USA) was employed for isolation of total RNA RNA was
reverse transcribed via a reverse transcription PCR kit (TaKaRa, Japan). A
relative quantity of RNA was detected with a quantitative PCR (RT-qPCR)
kit (TaKaRa, Japan). GAPDH was used as an endogenous reference.

Western blotting

Whole-cell proteins were extracted with protein lysis buffer (Sigma-
Aldrich, USA) and quantified via a bicinchoninic acid assay (Pierce,
USA). The proteins were separated through 10% sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis and then transferred onto poly-
vinylidene difluoride membrane (EMD Millipore, USA). After blocking
in non-fat milk, the membranes were incubated with antibodies against
LRIG1-, ErbB2- or EGFR and then with horseradish peroxidase-conju-
gated secondary antibodies. Subsequently, an enhanced chemilumines-
cence detection kit (Millipore, USA) was employed for visualization. A
Bio-RAD scanning system was applied to analyze the immunoreactive
protein bands.

Proliferation assay

Cell-counting kit 8 (Invitrogen, Shanghai, China) was used to detect
cell proliferation according to the manufacturer’s instructions. Approxi-
mately 4−5h after transfection with miRNA-218-5p inhibitor, miRNA-
218-5p mimics, or negative control, cells were grown in 96-well plates
(3000 cells/well) in triplicate. Cell growth was detected at 0h, 24h, 48h,
and 72h. Then, the Optical Density (OD) was detected at 450 nm
through a microplate spectrophotometer.
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Migration assay

Cell migration was assessed via transwell assay (Corning, USA). In
brief, cells were suspended in serum-free DMEM (180 μL) and then
added into the upper chambers (6 × 104 per well). DMEM containing
FBS (10%, 600 μL) was added to the lower chambers. 16h later,
3% paraformaldehyde was added to fix cells on the polycarbonate mem-
branes, and cells were stained with 0.1% crystal violet for 15 min. A cot-
ton swab was used to collect cells in the upper chambers and migrate
cells adherent to the base of the chambers. Images were captured under
an inverted microscope (Thermo Fisher Scientific, USA) at 200 × and
five fields were randomly selected for further analysis.
Flow cytometry

For cell cycle examination, after transfection with miRNA-218-5p
inhibitor, miRNA-218-5p mimic or negative control, cells were col-
lected and rinsed. Subsequently, ice-cold ethanol (3 mL) was added
to cells, followed by incubation for over 30 min. After the addition
of propidium iodide (PI; 0.05 g/L), cells were incubated at room
temperature for 30 min, and then subjected to flow cytometry (Beck-
man coulter, USA).

Annexin V-FITC/PI cell apoptosis detection kit (BestBio, China) was
employed for the detection of cell apoptosis. After transfection for 48h,
cells were harvested, rinsed in PBS, and stained via Annexin V-FITC and
PI. The percentages of apoptotic cells were determined by flow cytome-
ter and analyzed using FlowJo software.
Immunohistochemistry

Paraffin-embedded tissues were sectioned (4 μm), deparaffinized and
re-hydrated. Endogenous oxidise activity was deactivated with 3% hydro-
gen peroxidase. After blocking, sections were incubated with primary anti-
bodies for 1h at 4°C, and then with secondary antibodies for 30 min at
room temperature. The sections were visualized with diaminobenzidine
chromogen (Dako, Inc, US). Immunoreactivity (membrane-positive stain-
ing) was scored as follows: 0, 1+ (negative), 2+ (equivocal), and 3+
(positive).
Dual-luciferase reporter assay

The 3′-UTR fragments of LRIG1 with predicted binding sites for
miRNA-218-5p were cloned via PCR with PrimerSTAR Max DNA poly-
merase (Takara, Japan) and following primers: F:5′-GCGGAGCTCAAC-
CAGAAGGCCAAGTC-3’, R:5′-GCGTCTAGAAAATGGACAAAGTGGGTGT
GG-3′. LRIG1 3′-UTR was then inserted in the pmirGLO vector (Prom-
ega, USA) between XbaI and SacI. MCF-7 cells were seeded in a 24-well
plate and grown with 1 μg of LRIG1 3′UTR reporter plasmid plus 30 nm
of miRNA-218-5p mimics or negative control. Then, cells were lysed
with PLB at 48h after incubation. The dual-luciferase reporter assay kit
(Promega, USA) was applied for the detection of renilla or firefly lucifer-
ase signals.
Statistical analysis

GraphPad Prism 5.0 software (GraphPad Software Inc., USA) was
used for statistical analysis. Comparisons between two groups were per-
formed with Student’s t-test, whereas comparisons among groups were
done with one-way analysis of variance. All experiments were carried
out in triplicate, and data are expressed as mean ± Standard Deviation
(SD). A value of p < 0.05 was considered statistically significant.



Figure 1. MiRNA-218-5p expression in BC tissues and cell lines. (A) MiRNA-218-5p expression in BC tissues and adjacent normal tissues (qRT-PCR). (B) MiRNA-218-
5p expression in BC cell lines (MCF-7, MDA-MB-468, MDA-MB-231, HCC1937) and normal MCF-10A cells (qRT-PCR). Expression of miRNA-218-5p normalized to that
of GAPDH (*p < 0.05, **p < 0.01).
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Results

MiRNA-218-5p expression in human breast cancer

The expression of miRNA-218-5p was detected in 30 BC tissues and
corresponding adjacent normal tissues via RT-qPCR. As shown in
Figure 2. MiRNA-218-5p promotes growth of BC cells. Detection of cell growth (CCK
D and F: MDA-MB-231) (*p < 0.05, **p < 0.01). Data are expressed as means ± SEM.
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Figure 1A, as compared to the adjacent normal tissues, the miRNA-218-
5p expression was markedly increased in BC tissues. In HCC1937, MDA-
MB-231, MCF-7, and MDA-MB-468 cells, miRNA-218-5p expression was
also detected. Results showed the miRNA-218-5p expression in BC cell
lines was markedly higher than in MCF-10A cells, an immortal mam-
mary epithelial cell line (Fig. 1B), which was consistent with findings
8 assay) (A‒B). Examination of cell metastasis (Transwell assay) (C and E: MCF7;



Figure 3. MiRNA-218-5p arrests BC cell cycle in S- and G2-phases. (A‒B) Detection of cell cycle after miRNA-218-5p mimics or miRNA-218-5p inhibitor transfecting
for 36h (flow cytometry). (C‒D) Percentages of cells in G1-, S- and G2-phases (*p < 0.05, **p < 0.01).

J. Chu et al. Clinics 78 (2023) 100302
from in vivo investigation. MCF-7 and MDA-MB-231 cells were used in
the following experiments.
MiRNA-218-5p promotes malignant behaviors of BC cells

To further investigate the effect of miRNA-218-5p on the malignant
behaviors of BC, cell proliferation and migration were examined by
CCK8 and Transwell assay, respectively. Results revealed that cell prolif-
eration was accelerated upon miRNA-218-5p overexpression (Fig. 2A),
while cell proliferation was suppressed upon miRNA-218-5p knockdown
(Fig. 2B). In addition, the migration of BC cells was accelerated after
miRNA-218-5p mimics transfection, while it was inhibited following
miRNA-218-5p inhibitor transfection (Fig. 2 C‒F). In summary, miRNA-
218-5p exerted proliferation-promoting and migration-promoting
effects on BC cells.
MiRNA-218-5p disrupts the cell-cycle progression of BC cells in different
phases

The effect of miRNA-218-5p on the cell cycle progression was further
investigated by flow cytometry. Results showed that miRNA-218-5p
mimics transfection-arrested cell cycle in the G2/M-phase (Fig. 3 A‒D).
On the other hand, attenuation of miRNA-218-5p significantly elevated
the proportion of cells in the S-phase and reduced that in the G2/M-
phase (Fig. 3 A‒D). These findings suggest miRNA-218-5p initiated
S-phase arrest.
4

MiRNA-218-5p inhibits BC cell apoptosis

The apoptosis of BC cells after miRNA-218-5p up-regulation or
down-regulation was further examined by flow cytometry. Results
revealed that cells with miRNA-218-5p up-regulation showed a signifi-
cantly lower proportion of late apoptotic cells as compared to the nega-
tive control (Fig. 4 A‒D). On the contrary, miRNA-218-5p down-
regulation increased apoptotic cells, both in early and late apoptosis
(Fig. 4 A‒D). In summary, these indicate that miRNA-218-5p can inhibit
BC cell apoptosis.

MiRNA-218-5p directly targets LRIG1

In order to investigate the mechanism by which miRNA-218-5p
inhibited cell apoptosis, the influence of miRNA-218-5p on the LRIG1
expression was examined. MiRNA-218-5p transfection declined the
LRIG1 mRNA expression, whereas miRNA-218-5p inhibitor transfection
increased LRIG1 mRNA expression (Fig. 5 E‒F). These results inhibit the
suppressive effect of miRNA-218-5p on the LRIG1 expression. Interest-
ingly, prediction with TargetScan Release 6.2 software showed two
miRNA-218-5p binding sites in LRIG1 3′-UTR (Fig. 5A), indicating that
LRIG1 may be a potential target of miRNA-218-5p. The binding sites in
Homo sapiens LRIG1 3′-UTR are shown in Fig. 5B. Then, luciferase
reporter plasmids with the Wild-Type 3’-UTR (WT-UTR) or mutant
miRNA-218-5p binding sites (mut-UTR) were constructed, aiming to
investigate the binding of miRNA-218-5p to LRIG1 (Fig. 5C). Results
showed miR-218-5p declined the luciferase activity of WT-UTR by up to
60%, without influence on mut-UTR luciferase activity (Fig. 5D). These



Figure 4. MiRNA-218-5p inhibits BC cell apoptosis at both early and late stages. (A‒B) Detection of apoptotic BC cells (flow cytometry). Proportion of cells in early and
late apoptotic stages after miRNA-218-5p up-regulation (or down-regulation). (C: MCF7; D: MDA-MB-231) (*p < 0.05, **p < 0.01).
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findings indicate miRNA-218-5p suppresses LRIG1 expression via
directly targeting LRIG1.

ERBB2 and EGFR in LRIG1-mediated signaling pathway are downstream
effectors of miRNA-218-5p

EGFR and ERBB2 are downstream effectors in LRIG1 signaling, and
therefore the expression of LRIG1, ERBB2, and EGFR was further
detected after miRNA-218-5p up-regulation or down-regulation. Results
indicated that miRNA-218-5p over-expression inhibited the mRNA
expression of LRIG1 (Fig. 6 A‒B), and this suppressive effect was further
confirmed by Western blotting and immunocytochemistry (Fig. 6 E‒F).
Furthermore, miRNA-218-5p was proven to elevate the protein expres-
sion of ERBB2 and EGFR (Fig. 6 A, C, and D). As LRIG1 is a target of
miRNA-218-5p, our results indicate ERBB2 and EGFR are downstream
effectors of miRNA-218-5p, at least partially induced by targeting LRIG1
(Fig. 6G).

Discussion

Studies have reported that miRNAs can exert anti-tumor or pro-
tumor effects, and the expression of some miRNAs is altered during the
development of tumors. [20−23] The dysfunction of miRNA in various
cancers indicates that modulating miRNA expression may become a new
5

therapeutic treatment for cancers. Up to now, miRNA-targeting therapy
has been employed by using miRNA sponges, antisense oligonucleotides,
or small-molecule inhibitors. Chemically synthesized miRNAs or oligo-
nucleotides targeting miRNAs have been proven to efficiently inhibit
cancer development. [24−27] At this time, several preclinical and clini-
cal trials on miRNA-targeting therapy shedding light on cancer treat-
ment are ongoing. [28−30]

MiRNAs are vital for the tumor development of BC. [31−33] This
study investigated the role of miRNA-218-5p in the pathogenesis of BC.
Our results showed miRNA-218-5p expression in human BC tissues was
markedly upregulated as compared to adjacent normal tissues. Similar
findings have been reported in other cancers, indicating that increased
miRNA-218-5p expression may be a common event in human cancers.
[34−36] In the subsequent experiment, mimics of miRNA-218-5p were
transfected into MCF-7 cells, and results showed that cell growth was
markedly accelerated and cell migration was significantly promoted. All
these findings indicate that miRNA-218-5p promotes the growth and
migration of BC cells. In addition, miRNA-218-5p inhibited the cell cycle
of BC cells. However, no marked difference was noted in apoptotic cells
between miRNA-218-5p and negative control.

To reveal the underlying mechanism by which miRNA-218-5p exerts
effects on cell growth, potential targets were searched in the miRNA
Base, target scan, and miRNA and a database. LRIG1 was predicted to be
a direct target of miRNA-218-5p, which was finally confirmed through



Figure 5. LRIG1 is a direct target of miRNA-218-5p. (A‒B) Bioinformatics analysis showed the potential target sites for miRNA-218-5p in LRIG1 3′-UTR. (C) Luciferase
reporter plasmids containing miRNA-218-5p binding sites at LRIG1 3′-UTR were constructed. (D) After co-transfection with LRIG1 WT-UTR, LRIG1 mut-UTR plus
miRNA-218-5p mimics or NC, the luciferase activity was analyzed. (E‒F) Forty-eight hours after transfection, the expression of miRNA-218-5p and LRIG1 was detected
(* p < 0.05, **p < 0.01).
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luciferase reporter assay. In addition, LRIG1 mRNA and protein expres-
sion was dramatically lower in the miRNA-218-5p overexpression group
than in the negative control group. These findings indicate that LRIG1 is
a downstream target of miRNA-218-5p.

Studies have reported that LRIG1 can regulate ErbB family RTKs on
cell surfaces. [37] In tamoxifen-treated luminal BCs, up-regulation of
LRIG1 suppresses RTK family expression and signaling, including EGFR
and ErbB2-4. [38] Our findings indicated that miRNA-218-5p up-regu-
lated ErbB2 and EGFR expression by targeting LRIG1, suggesting that
the LRIG1-mediated signaling pathway contributed to the effects of
miRNA-218-5p on the malignant behaviors of BC.

Conclusions

Collectively, our study reveals that miRNA-218-5p may disrupt the
cell cycle, induce cell growth and metastasis of BC cells via regulating
LRIG1. These findings indicate that miRNA-218-5p may exert a pro-
tumor effect on BC. Furthermore, LRIG1 is a downstream target of
6

miRNA-218-5p, and therefore decreasing miRNA-218-5p or upregulat-
ing LRIG1 may serve as new treatments for BC.
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Figure 6. MiRNA-218-5p enhanced ErbB2 and EGFR expression in BC cells via suppressing LRIG1. The expression of LRIG1, ErbB2 and EGFR in MCF-7 cells with
miRNA-218-5p up-regulation or down-regulation (Western blotting). (A) Representative images of Western blotting; (B: LRIG1; C: ErbB2, D: EGFR): Quantitative analy-
sis of protein expression. (E) LRIG1 expression in BC tissues (immunohistochemistry). (F) LRIG1 expression in BC tissues and corresponding adjacent normal tissues
(qRT-PCR). (G) Model of miRNA-218-5p function in BC cells (*p < 0.05, **p < 0.01).
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