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microRNA-181a-5p promotes fibroblast differentiation of mesenchymal stem
cells in rats with pelvic floor dysfunction
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� miR-181a-5p promotes fibroblast differentiation of BMSCs.
� miR-181a-5p promotes fibroblast differentiation of BMSCs by targeting MFN1.
� BMSCs containing miR-181a-5p improve PFD in SD rats by targeting MFN1 expression, thereby accelerating the fibroblast differentiation of BMSCs.
A R T I C L E I N F O
*Corresponding author.
E-mail address: sdudoctor_lijianchao@hotmail.com

https://doi.org/10.1016/j.clinsp.2024.100428
Received 24 October 2023; Revised 20 May 2024; Ac

1807-5932/© 2024 HCFMUSP. Published by Elsevie
4.0/)
A B S T R A C T

The use of stem cells capable of multilineage differentiation in treating Pelvic Floor Dysfunction (PFD) holds great
promise since they are susceptible to entering connective tissue of various cell types and repairing damaged tis-
sues. This research investigated the effect of microRNA-181a-5p (miR-181a-5p) on Bone Marrow Mesenchymal
Stem Cells (BMSCs) in rats with PFD. BMSCs were transfected and analyzed for their fibroblast differentiation
ability. miR-181a-5p, MFN1, and fibroblast-related genes were quantitatively analyzed. Whether MFN1 is a target
gene of miR-181a-5p was predicted and confirmed. The efficacy of BMSCs in vivo rats with PFD was evaluated by
measuring Leak Point Pressure (LPP), Conscious Cystometry (CMG), hematoxylin and eosin staining, and Masson
staining. The present results discovered that miR-181a-5p was up-regulated and MFN1 was down-regulated dur-
ing the differentiation of BMSCs into fibroblasts. Fibroblast differentiation of BMSCs was promoted after miR-
181a-5p was induced or MFN1 was suppressed, but it was suppressed after miR-181a-5p was silenced. miR-181a-
5p improved LPP and conscious CMG outcomes in PDF rats by targeting MFN1 expression, thereby accelerating
fibroblast differentiation of BMSCs. In brief, miR-181a-5p induces fibroblast differentiation of BMSCs in PDF rats
by MFN1, potentially targeting PDF therapeutics.
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Introduction

Pelvic Floor Dysfunction (PFD) is a disorder of abnormal anatomy or
function of pelvic organs due to weakening of the supporting tissues of
the pelvic floor and dislocation of pelvic organs.1 PFD can lead to vari-
ous diseases, such as pelvic organ prolapse, chronic pain syndromes, uri-
nary and fecal incontinence, defecation dysfunction, or lower urinary
tract sensory.2,3 Symptomatic and conservative treatment is the main-
stay of care for patients with PFD; surgery is considered only for those
who fail or refuse conservative treatment, but up to 20‒30% of patients
with recurrence will require re-surgery.4 Although artificial biomesh
during surgery can improve long-term recovery, and the mesh can also
cause pain, erosion, and scarring in about 30 percent of cases.5 There-
fore, alternative approaches are required to enhance tissue repair and
regeneration in PFD.
The use of stem cells capable of multilineage differentiation in treat-
ing PFD holds great promise since they are susceptible to entering con-
nective tissue of various cell types and repairing damaged tissues.6,7

Bone Marrow Mesenchymal Stem Cells (BMSCs) are easy to be isolated
and cultured, have strong differentiation ability, and secrete biological
active factors beneficial to tissue repair.8,9 Current studies have identi-
fied that transplantation of BMSCs can alleviate PFD in an experimental
model.10,11 For this reason, in-depth research on how BMSCs repair PFD
is required.

MicroRNAs (miRNAs) guide post-transcriptional repression by pair-
ing with the mRNAs of protein-coding genes, further regulating protein
production and cellular biological functions.12 miRNAs regulate key
pathways involved in stem cell function13 and interestingly, BMSCs
modified by miRNAs have recently demonstrated excellent therapeutic
results in PDF.14 miR-181a-5p is an important miRNA involved in
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Table 1
Primers.

Genes Primers (5′−3′)

U6 Forward: 5′-CTCGCTTCGGCAGCACA-3′
Reverse: 5′-AACGCTTCACGAATTTGCGT-3′

miR-181a-5p Forward: 5′-CGGCAACATTCAACGCTGT-3′
Reverse: 5′-GTGCAGGGTCCGAGGTATTC-3′

MFN1 Forward: 5′-AGCGGGATTGGTCACACAAC-3′
Reverse: 5′-CCTTCGGTCATAAGGTAGGCTT-3′

α�SMA Forward: 5′-AACTAAAGGAGCTGCTGACCC-3′
Reverse: 5′-TGTTGCTGTCCAAGTTGCTC-3′

Collagen I Forward: 5′-ATCAGCCCAAACCCCAAGGAGA-3′
Reverse: 5′-CGCAGGAAGGTCAGCTGGATAG-3′

β-actin Forward: 5′-AGGGAAATCGTGCGTGACAT-3′
Reverse: 5′-GAACCGCTCATTGCCGATAG-3′

Note: miR-181a-5p, microRNA-181a-5p; MFN1, Mitofusin 1;
α�SMA, α-Smooth Muscle Actin.
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orthopedic diseases, including femoral head necrosis,15 osteoarthritis,16

and osteoporosis,17 and miR-181a-5p could regulate BMSC apoptosis
and differentiation.17

It is speculated that miR-181a-5p alleviates PDF by inducing differ-
entiation in BMSCs. This research was designed based on a rat model of
PFD to evaluate the efficacy of BMSCs containing miR-181a-5p, aiming
to provide a clinical theoretical basis and guidance for stem cell therapy
of PFD.

Methods

Isolation and culture of BMSCs

All animal procedures followed the recommendations of the National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals
and ARRIVE guidelines. This study protocol was approved by the Mup-
ing District Hospital of Traditional Chinese Medicine (n°MP20190621).
Femurs of 6-month-old female Sprague-Dawley rats (200‒250g) were
made into a cell suspension with 5‒10 mL of ice-cold Iscove’s Modified
Dulbecco’s Medium (IMDM), centrifuged at 150 × g for 5 min, and resus-
pended in IMDM. The cell suspension was placed in Percol Separation
Solution (1.073 g/mL, Sigma-Aldrich), centrifuged at 400 × g, and main-
tained in IMDM containing 20% FBS and 1% streptomycin/penicillin
(Sigma-Aldrich). With the medium renewed after 24h, cells were grown
to 80% confluence and sub-cultured. Adherent fibroblast-like cells after
2 passages were BMSCs.18

BMSCs identification

BMSCs were trypsinized and resuspended in 4% FBS-PBS. FITC-
labeled anti-human CD44, CD90, CD73, and CD45 antibodies (eBio-
science, CA, USA) were utilized to identify BMSCs. Data acquisition and
analysis were conducted by flow cytometry using FACSDiva (Canto, BD
Biosciences, CA, USA) and FlowJo software (Tree Star, OR, USA),
respectively.14

MTT assay

BMSCs at passage 3 (2 × 104 cells/well) were cultured for 7d and
supplemented with MTT solution (20 μL, 5 mg/mL, Sigma-Aldrich) for
4h. Then, the dissolved sample collected by 150 μL of dimethyl sulfoxide
was conditioned to absorbance analysis at 490 nm on a microplate
(Thermo Fisher Scientific).

Adipogenic and osteogenic differentiation of BMSCs

BMSCs at passage 3 with 80% confluence were cultured in an adipo-
genic differentiation solution (High Glucose [HG]-DMEM containing
10% FBS, 10 μg/mL insulin [Sigma-Aldrich], 0.5 mM isobutylmethyl-
xanthine, 1 Mm dexamethasone, and 200 μM indomethacin) for 3d and
in an adipogenic differentiation solution (HG-DMEM plus 10% FBS and
10 μg/mL insulin) for 1d. The above procedure was repeated in a total
of 3 cycles, and BMSCs were maintained in an adipogenic differentiation
solution for 2d.

The osteogenic induction medium was prepared with 10% FBS, 1 μM
dexamethasone, 10 mM sodium β-phosphate, and 50 mg/L vitamin C
(Sigma-Aldrich) and refreshed every 72h. Adipogenic differentiation
and osteogenic differentiation required 14 days each. The resulting cells
were viewed after Oil red O staining and Alizarin red staining,19 respec-
tively.

Fibroblast differentiation of BMSCs

BMSCs at passage 3 (3 × 104 cells/mL) were cultured in HG-DMEM
containing 10% FBS, TGF-β1 at 15 ng/mL, bFGF at 20 ng/mL, and
2

dexamethasone at 0.1 μmoL/L). The medium was renewed every 24h.
The fibroblast differentiation process took 14 d.

RNA interference

BMSCs (8 × 104 cells/well) were RNA-modified using Lipofectamine
2000 (Invitrogen). The interference plasmids included miR-181a-5p
mimic, inhibitor, and control (miR-NC), as well as short hairpin RNA
(shRNA) and control (sh-RNA) targeting MFN1 (GenePharma, Shanghai,
China). miRNA transfection concentration was maintained at
20 nmoL/L. MFN1 shRNA (Sequence: CCGGGCTCCCATTGATTCCAA-
TACTCGAGTATTGGAATCATAATGGGAGC TTTTTG).

RT-qPCR

Total RNA from BMSCs was extracted with Trizol reagent (Invitro-
gen) and conditioned to reverse transcription of mRNA and miRNA
using PrimeScript RT kit (Takara, Tokyo, Japan) and miRNA First Strand
Synthesis kit (Takara, Japan), respectively. With the SYBR Green kit
(Thermo Fisher Scientific) and the Mx3005P QPCR system (Agilent
Technologies, CA, USA), PCR was implemented. β-actin and U6 were
regarded as internal references.20 The primer sequences are shown in
Table 1.

Immunoblot analysis

Total protein was extracted with 500 μL RIPA lysis buffer (Beyo-
time), loaded on 8% SDS-PAGE gels (Solarbio), transferred to PVDF
membranes (Invitrogen), and blocked with 5% skim milk. Rabbit anti-
bodies against α-SMA, collagen I, and MFN1 (1:1000, Abcam) were com-
bined with the membranes, which were then mixed with goat-rabbit
secondary antibody (1:10000) for 2 hours and detected by ECL kit
(34080, Thermo Fisher Scientific). For data quantification, ImageJ soft-
ware was utilized.21

Binding relation analysis

TargetScan software was utilized for target gene analysis. The 3′-
UTR region of MFN1 containing the target or mutated sequence of miR-
181a-5p was cloned into pGL4 (Promega, WI, USA) to construct MFN1-
wt-3′-UTR and MFN1-mut-3′-UTR. In BMSCs, miR-181a-5p mimics or
mimic NC, in combination with the generated plasmids was transfected,
followed by data analysis by a dual luciferase reporter assay (Promega).

Rat PFD model

After 14 days after vaginal dilation, PFD was induced by injection
with normal saline into the weakest area of the pelvis (female SD rats, 6-
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months old, n = 12 group). A solution (500 μL) containing 8 × 105

BMSCs not treated or pre-transfected with mimic-NC or miR-181a-5p
mimic was injected through the tail vein into PFD rats. Normal rats with-
out any intervention served as a control.22

For PFD induction, an 18F catheter was inserted into the rat vagina and
then secured with a 3‒0 silk single suture. A Foley balloon was attached to
a pressure transducer (0.15 kg) to compress the pelvic floor for 4h.

After 14d of vaginal dilation, the success of PFD modeling was
checked by conscious Cystometry (CMG) and Leak Point Pressure (LPP)
tests, which were also suitable for assessing the efficacy of BMSCs in
PFD rats after 7d of various treatments.18

CMG test

PFD rats were inserted with a bladder catheter (PE-50) which was
connected to a syringe pump (KD Scientific, PA, USA) and pressure
transducer (Grass Instruments, RI, USA). Normal saline was injected at a
rate of 5 mL/h. Urinary contractions were measured by force trans-
ducers (Grass instrument). The mean bladder baseline pressure, peak
bladder pressure, void volume, and urethral pressure increase were
recorded.14

LPP test

PFD rats were inserted with a bladder catheter which was connected
to a pressure transducer and flow pump. After intraperitoneal injection
of urethane (1.2 g/kg), the bladder was squeezed until emptied, pumped
with normal saline at 5 mL/h to 0.3 mL, and pressed until the bladder
Fig. 1. Isolation and identification of BMSCs. (A) CD44, CD73, CD90, and CD45 detec
adipogenic induction (400 ×); (D) Alizarin red staining of BMSCs after osteogenic diffe

3

and urethra leaked out of the saline. At the first leakage, abdominal pres-
sure was removed to record the peak pressure. LPP � peak bladder press
ure � baseline bladder pressure.14

Histopathology

After the tests, the completely resected urethra, vagina, fascia, and
bladder tissue were fixed with 4% paraformaldehyde overnight and
made into 5 μm sections for HE and Masson staining19 and were
observed under a light microscope.

Statistical analysis

SPSS 21.0 was feasible for data analysis. The Kolmogorov-Smirnov test
showed that the data were normally distributed, and the results were
expressed as mean ± standard deviation. One-way ANOVA, followed by
LSD-t was utilized to compare multiple groups. Enumeration data shown
as rate or percentage were assessed by the Chi-Square test; p was a two-
sided test, and p < 0.05 was considered statistically significant.

Results

BMSC identification

BMSCs were isolated by the whole bone marrow adhesion method
and identified by flow cytometry. CD44, CD73, and CD90 (mesenchymal
cell markers) positive staining and CD45 (hematopoietic cell marker)
negative staining were seen (Fig. 1 A). MTT assay showed that BMSCs
ted by flow cytometry; (B) Growth curve of BMSCs; (C) Oil red O of BMSCs after
rentiation (400 ×); * p < 0.05, n = 3.



Fig. 2. miR-181a-5p and MFN1 levels in BMSCs. (A) Morphology of BMSCs before and two weeks after fibroblast induction; (B/C) α�SMA and Collagen I expression
levels; (D) Quantitative miR-181a-5p and MFN1 mRNA expression; (E) Quantitative MFN1 protein expression; A‒F magnification: 100 ×; scale: 20 μm; * p < 0.05,
n = 3.
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were grown in an S-curve, from the incubation period (the first 2d) and
logarithmic growth phase (3rd day) to the peak (7th day) (Fig. 1 B). After
induction, the isolated BMSCs had bidirectional adipogenic and osteo-
genic differentiation (Fig. 1 C, D).

miR-181a-5p and MFN1 levels in BMSCs

At day 14 of fibroblast differentiation, BMSCs became more plump,
spindle-shaped, and possessed more cytoplasmic (Fig. 2 A). RT-qPCR
showed that fiber-related genes (α-SMA and Collagen I) were higher
after induction (Fig. 2 B, C), which indicated that BMSCs could differen-
tiate into fibroblasts. Interestingly, after fibroblast induction, miR-181a-
4

5p expression was up-regulated (Fig. 2 D), and MFN1 protein expression
was down-regulated (Fig. 2 E), while MFN1 mRNA expression was not
significantly different (Fig. 2 D).

miR-181a-5p promotes fibroblast differentiation of BMSCs

miR-181a-5p mimic was modified in BMSCs, leading to increased
miR-181a-5p expression, while the opposite was true after miR-181a-5p
inhibitor modification (Fig. 3 A). Expression of α-SMA and collagen I
was increased by miR-181a-5p up-regulation; expression of α-SMA
and collagen I was suppressed by miR-181a-5p down-regulation
(Fig. 3 B, C).



Fig. 3. miR-181a-5p mimic promotes fibroblast differentiation of BMSCs. (A) miR-181a-5p expression in BMSCs. (B/C) α-SMA and Collagen I in BMSCs after fibroblast
differentiation; * p < 0.05, n = 3.
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miR-181a-5p promotes fibroblast differentiation of BMSCs by targeting
MFN1

Bioinformatics analysis software revealed multiple complementary
binding sites between miR-181a-5p and the 3′UTR of MFN1 (Fig. 4 A).
Dual-luciferase reporter gene results are shown in Fig. 4 B. miR-181a-5p
effectively reduced the luciferase activity of MFN1-WT-3′UTR but not
that of MFN1-MUT 3′UTR. Next, in BMSCs stably transfected with miR-
181a-5p mimic, MFN1 mRNA expression was not altered, but its protein
expression was inhibited (Fig. 4 C, D). MFN1 protein expression was
lowered in BMSCs transfected with sh-MFN1; and miR-181a-5p inhibi-
tor-mediated increased protein expression of MFN1 was repressed by sh-
MFN1 (Fig. 4 E). In addition, MFN1 knockdown alone increased α-SMA
and Collagen I levels in BMSCs, while miR-181a-5p inhibitor-mediated
changes in the two proteins were partially mitigated by MFN1 knock-
down (Fig. 4 F, G).

BMSCs containing miR-181a-5p improve PFD in rats by targeting MFN1
expression and accelerating the fibroblast differentiation of BMSCs

The effect of BMSCs delivery of miR-181a-5p-mimic on PFD symp-
toms was explored. Baseline bladder pressure was found to be similar in
all rats before the experiment (Fig. 5 A), but PFD rats had lower urinary
output and peak bladder pressure (Fig. 5 B, C). In addition, PFD rats had
lower peak bladder pressure and LPP (Fig. 5 D, E). Overall, PFD was suc-
cessfully modeled in rats.

BMSCs or mimic-NC-modified BMSCs slightly elevated void volume
and peak bladder pressure and had little effect on LPP in PFD rats, and
miR-181a-5p mimic-modified BMSCs reduced void volume and
enhanced peak bladder pressure (Fig. 5 B, C) and increased peak bladder
pressure and LPP (Fig. 5 D, E). HE staining results showed that the mus-
cle fibers of the urethra and surrounding tissues of control rats were
5

densely arranged, and the muscle layer was intact and pink; while the
muscle layer of the urethra wall of PFD rats was damaged, thinned, dis-
ordered, loose, and atrophy; transplantation of BMSCs improved the
arrangement and density of muscle fibers and tightened the fascia mus-
cle layer and connective tissue; in addition, the structure of muscle fibers
was completely restored after treatment with miR-181a-5p mimic-
loaded BMSCs (Fig. 5 F). Masson staining displayed that the collagen
fibers were blue with uniform staining and larger staining area in control
rats; the collagen fibers in PFD rats were light-blue, loose, and disor-
dered, the proportion of connective tissue increased, and some blood
vessel walls were thickened due to transparency; after BMSC transplan-
tation, collagen staining was enhanced and arranged neatly; miR-181a-
5p mimic transfection in BMSCs enhanced collagen expression and
accelerated structural repair (Fig. 5 G). Finally, immunoblot analysis
showed that MFN1 protein expression level was increased in PFD rats,
while α-SMA and Collagen I levels indicated a significant decrease trend;
injection of BMSCs or mimic-NC-treated BMSCs slightly reduced MFN1
protein expression, while the effect of miR-181a-5p mimic-loaded
BMSCs was better; rats injected with BMSCs transfected with miR-181a-
5p mimic had enhanced fibroblast differentiation of BMSCs (Fig. 5 H, I).

Discussion

Since MSCs have shown great potential in soft tissue
reconstruction,23,24 studies have focused on the role of BMSC therapy in
PFD pathophysiology.10,25 In addition, certain miRNAs can positively
regulate BMSCs to promote tissue repair.26,27 Therefore, the purpose of
this study was to explore the effect of miR-181a-5p-modified BMSCs on
PFD.

BMSCs had proliferation potential and possessed adipogenic and
osteogenic differentiation abilities. Consistent with these results, former
studies have also elucidated these functions of BMSCs.28,29 Fibroblasts



Fig. 4. miR-181a-5p promotes fibroblast differentiation of BMSCs by targeting MFN1. (A) Bioinformatics website predicted the binding site between MFN1 and miR-
181a-5p; (B) Dual-luciferase reporter gene assay to evaluate the interaction between MFN1 and miR-181a-5p; (C/D) MFN1 expression in BMSCs stably transfected
with miR-181a-5p mimic; (E) MFN1 protein expression in BMSCs; (F/G) α-SMA and Collagen I expression in BMSCs after fibroblast differentiation; * p < 0.05, n = 3.
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can migrate to the wound area and proliferate, participate in wound con-
traction, extracellular matrix deposition, and tissue remodeling, and are
essential for wound healing.30,31 Furthermore, previous studies have
demonstrated that BMSCs can be internalized to regulate fibroblast
differentiation.32,33 This work found that BMSCs differentiated into
fibroblasts under certain induction conditions and BMSC transplantation
improved LPP and CMG outcomes in a rat model of PFD, which was also
observed in a previous study.34 Currently, the potential of BMSCs in soft
tissue repair and reconstruction has been a hot topic, and BMSCs in dam-
aged tissue can repair fascia in tissue-forming cells.35,36 As expected,
BMSCs further increased collagen expression, repaired tissue structure,
and tightened muscle and fascia connective tissue, demonstrating that
BMSC transplantation is effective in the treatment of PFD. miR-181a-5p
is ubiquitous in different tissues and cells and regulates various patho-
physiological processes by targeting mRNA. miR-181a-5p has rich
expression in mouse BMSCs.37 The present work indicated that fibro-
blast induction elevated miR-181a-5p expression. miR-181a-5p overex-
pression promoted fibroblast differentiation in BMSCs and enhanced
fibroblast-related gene expression. In vivo experiments further eluci-
dated that miR-181a-5p combined with BMSCs could further improve
PFD in rats. Fibrous scaffolds cooperated with connective tissue can
improve fibroblast differentiation of BMSCs,38 and miR-181a-5p tight-
ened connective tissue, which further suggests that miR-181a-5p can
promote the fibroblast differentiation of BMSCs. miR-181a-5p could reg-
ulate MFN1 gene expression in BMSCs at the post-transcriptional level,
6

and MFN1 protein expression was down-regulated after BMSCs fibro-
blast induction. MFN1, a mitochondrial outer membrane protein, medi-
ates mitochondrial fusion39 and is involved in the process in which miR-
181c attenuates oxidative stress-mediated BMSC injury.40 However, to
the authors’ knowledge, whether MFN1 mediates the process by which
miR-181a-5p promotes fibroblast differentiation of BMSCs remains
unclear. To this end, the study showed that MFN1 knockdown promoted
the fibroblast differentiation of BMSCs, and abolished the effect of miR-
181a-5p inhibition on the fibroblast differentiation of BMSCs. In addi-
tion, animal experiments reported that PFD rats injected with miR-181a-
5p-overexpressed BMSCs exhibited higher MFN1 protein expression,
suggesting that miR-181a-5p may act by targeting MFN1 expression.

Through this study, a novel regulatory mechanism for PFD therapy
was identified. Nonetheless, this study is only a preliminary experiment
of miR-181a-5p and MFN1 in fibroblast differentiation of BMSCs during
PFD, and further, in vivo rescue experimental studies are needed to con-
firm the present findings. Also, the specific mechanism of PFD treatment
is still unclear, and further empirical studies are still needed.

Conclusion

The present study found that BMSCs containing miR-181a-5p regu-
late MFN1 expression during PFD recovery. Up-regulation of miR-181a-
5p and down-regulation of MFN1 promoted fibroblast differentiation of
BMSCs. miR-181a-5p combined with BMSC injection further enhanced



Fig. 5. Animal model experiment. (A) Bladder baseline pressure in rats; (B) Void volume; (C) Bladder baseline pressure; (D) Peak bladder pressure; (E) LPP levels; (F)
HE-staining results; (G) Masson staining results; (H/I) Evaluation of α-SMA and Collagen I in rats; * p < 0.05, n = 6.
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the fibroblast differentiation of BMSCs and repaired tissue structure by
down-regulating MFN1, highlighting miR-181a-5p as a new target for
future PFD therapy.
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