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INTRODUCTION

Quality and yield of a vineyard are 
related to canopy biomass and leaf vigor. Along the 
vegetative cycle, leaf vigor is an important indicator 
of plant health status (BERGSTRÄSSER et al., 2015; 
LACAR et al., 2002). In this perspective, remote 
detection techniques have been applied in studies 
based on plant spectral patterns, aiming to analyze 
vegetative development, phenological dynamics, 
management practices and a diversity of stresses 
due to biotic and abiotic attacks, either focused in 

vineyards (LOGGENBERG et al., 2018; THUM et al., 
2020) or in other plant species (ZHANG et al., 2013). 

One of the most important parameters for 
the assessment of the vegetative conditions of plants 
is chlorophyll content; for example, chlorophyll 
levels are important indicators to the monitoring of 
nitrogen content in leaves (ARGENTA et al., 2004). 
From the various chlorophyll types, chlorophyll a 
and chlorophyll b are fundamental constituents of 
the photosynthetic apparatus in most plant species; 
chlorophyll a is essential in photochemistry, while 
chlorophyll b is necessary for stabilizing the major 
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ABSTRACT: Quality and yield of a vineyard are related to canopy biomass and leaf vigor, and proximal techniques have been used as 
alternatives to conventional methods to estimate these parameters. Knowledge on chlorophyll content is crucial to plant health assessments. 
However, chlorophyll indices can also be extracted from reflectance spectra obtained for an ample range of applications. In this perspective, 
relations between chlorophyll indices obtained by direct measurements and derived from field radiometry were investigated, with the aim to 
assess the accuracy of predicted chlorophyll content. The investigation was performed on Cabernet Sauvignon vines, being based on direct 
chlorophyll surveys, vine leaf spectroradiometry and the derivation of Hyperspectral Vegetation Indices (HVIs), with data acquisition being 
performed on two stages of the vegetative cycle. Direct chlorophyll data was compared with predicted indices using two machine learning 
algorithms: Partial Least-Squares Regression (PLSR) and Random Forest Regressor (RFR), using data from reflectance spectra and derived 
HVIs. The higher correlations between measurements and predictions were obtained for Chl a and Chl a/Chl b modeled by the RFR algorithm, 
with R2 values as high as 0.8 and Root Mean Squared Errors as low as 0.093. With respect to HVIs, the Photochemical Reflectance Index (PRI) 
calculated for the second acquisition date, corresponding to leaves reaching senescence was the one which produced the highest percentage 
of prediction explanations. This study can bring a significant contribution to the development of non-invasive techniques to vine monitoring.
Key words: hyperspectral, vineyards, partial least-squares regression, random forest regressor.

RESUMO: A qualidade e a produtividade de um vinhedo estão relacionadas com a biomassa do dossel e o vigor foliar, e técnicas de 
sensoriamento próximo têm sido utilizadas como alternativas aos métodos convencionais para estimar esses parâmetros. O conhecimento do 
teor de clorofila é fundamental para as avaliações fitossanitárias. No entanto, índices de clorofila também podem ser extraídos de espectros de 
refletância obtidos para uma ampla gama de aplicações. Nesta perspectiva, foram investigadas as relações entre os índices de clorofila obtidos 
por medidas diretas e derivados de radiometria de campo, com o objetivo de avaliar a acurácia do teor de clorofila previsto. A investigação 
foi realizada em plantas da variedade Cabernet Sauvignon, baseando-se em levantamentos diretos de clorofila, espectrorradiometria foliar e 
na derivação de Índices de Vegetação Hiperespectrais (HVIs), sendo a aquisição de dados realizada em duas fases do ciclo vegetativo. Os 
resultados das estimativas mostraram que os maiores coeficientes de determinação expressando a correlação entre medições e predições foram 
obtidas para Chl a e Chl a/Chl b modeladas pelo algoritmo RFR, com valores de R² tão altos quanto 0,8 e erros quadráticos médios tão baixos 
quanto 0,093. Com relação aos HVIs, o Photochemical Reflectance Index (PRI) calculado para a segunda data de aquisição, correspondente às 
folhas que atingiram a senescência, foi o que produziu o maior percentual de explicações de predição. Em conclusão, sugere-se que este estudo 
pode trazer uma contribuição significativa para o desenvolvimento de técnicas não invasivas de monitoramento de vinhedos.
Palavras-chave: hiperespectral, vinhedos, partial least-squares regression, random forest regressor.
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light-harvesting chlorophyll-binding proteins, the 
ratio of chlorophyll a to b being in the range 2.5 to 5 
(TANAKA & TANAKA, 2011). This ratio generally 
changes during the vegetative cycle, one of the main 
factors for change being the available illumination, 
which has variations as the vegetative season advances 
(SESTAK, 1963; BENERAGAMA & GOTO, 2011) 
with a trend towards smaller ratios.  Determination 
of chlorophyll levels are conventionally done by 
laboratory techniques applied on field-collected 
samples; however, as the characteristic plant green 
shades are due to  the reflected light after interaction 
of illuminating radiation with leaf photosynthesizing 
pigments, chlorophyll amounts can be estimated by 
non-destructive methods (FASSNACHT et al., 2015; 
ORDÓÑEZ et al., 2018; STEELE et al., 2008) like 
reflectance analysis at hyperspectral resolutions, 
allowing to map with improved performance the 
spectral properties of plant leaves at visible and 
near infrared wavelengths, studying color changes, 
hemispherical reflectance and subtle variations in leaf 
tissues (ZHAO et al., 2014). Chlorophyll levels are 
also sensitive to water stress and to soil type (MITRA 
et al., 2018). Data from plant spectroscopy can be 
used to predictive models, supplying estimations 
of plant physiological and morphological traits as 
an alternative to conventional methods. In terms of 
remote sensing, the use of hyperspectral sensors to 
the detection of variations in leaf pigmentation is 
an improvement compared to multispectral data, as 
more detailed information becomes available.

Ample use has been made of spectroscopy 
to estimate vine descriptors (POWER et al., 2019). 
However, in hyperspectral data the large number 
of spectral bands tends to have a negative impact 
on the metrics expressing the performance of 
estimating models, a problem which is addressed 
by the use of dimensionality reduction techniques 
(LOGGENBERG et al., 2018; SAHEB ETTABAA 
& BEN SALEM, 2017) where machine learning 
algorithms perform a crucial role. Through machine 
learning models to data analysis, it is possible to 
regularize and reduce the number of wavelengths 
necessary to build structured spectral libraries. 
Models Partial Least Squared Regression (PLSR) and 
Random Forest Regression (RFR) are examples of 
robust algorithms to the characterization and analysis 
of spectral data, dimensionality reduction and 
parameters prediction using non-invasive methods 
(CHENG & SUN, 2017; EL-HENDAWY et al., 
2019; KAWAMURA et al., 2017).

Furthermore, the arrival of new methods 
for data acquisition by in situ proximal remote 

sensing increased the potential to monitoring plant 
phenological dynamics during the growing cycle. 
Therefore, the objectives of this study were: a) 
to analyze the relationships between chlorophyll 
parameters and plant reflectance at visible (VIS, 
from 380nm to 700nm), near infrared (NIR, from 
700nm to 1400nm) and short-wave infrared (SWIR, 
from 1400nm to 2500nm) wavelengths, derived 
from hyperspectral proximal data measured at leaf 
level, in commercial vineyards; b) to compare the 
performance of two machine learning models, PLRS 
and RFR for prediction of chlorophyll parameters; and 
c) to reveal the wavelengths more relevant to these 
tasks. It was expected that this study would bring a 
significant contribution to the development of non-
invasive techniques to vine monitoring, contributing 
to vineyard management by allowing fast, low-cost, 
real-time interventions by the producer. 

MATERIALS   AND   METHODS

Study area
As study area the Luiz Argenta Winery 

was chosen, due to its easy access and favorable 
topography. This estate is in a viticultural region 
called Vinhos dos Altos Montes (High Hills Wines), 
a geographical denomination (“Indicação de 
Procedência”) located in north-east of Rio Grande 
do Sul State in south Brazil. Coordinates are 29º 01’ 
23.37” S and 51º11’02.23” O, being at a larger wine 
region called “Serra Gaúcha”. The area with vines 
covers about forty-eight hectares with several Vitis 
vinifera grape varieties, with focus in the production 
of quality wines. All measurements were performed 
during the 2017/2018 season. 

The number of grape varieties selected for 
this study was limited to only one variety, therefore 
avoiding possible confusing factors arising from 
intrinsic differences between varieties. Due to the 
relatively large number of parcels of Cabernet 
Sauvignon scattered along the terrain, allowing a 
diversity of local environmental conditions, this 
variety was chosen for the study; it is important to note 
that the choice of variety is not a crucial factor for this 
study, which could be performed with another variety, 
the criterion being to be widely available across the 
study area. Specific parcels of Cabernet Sauvignon 
were selected considering ease of access, topography, 
uniformity, and availability of information on soils, 
which in this case stay over basaltic to dacitic/ryolitic 
volcanic flows (acidic terms), which are the prevailing 
geological unit at Serra Gaúcha viticultural region. Six 
vine plots were studied, and following the estate use 
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they were called 4a, 4b, 16a, 16b, 19a, and 19b. Vines 
were planted in trellis driving system, on Paulsen 1103 
rootstocks, distance between rows were 2.8m following 
east-west orientation (plots 4a, 4b, 16a, 16b) or north-
south (19a, 19b), and distance between plants were 
1.45m. These vineyards had conventional management 
with treatments on an approximate weekly basis. All 
plants used for the study were marked prior to the 
beginning of measurements. 

To follow the evolution of spectral 
behavior of plants, measurements were performed in 
phases 81 and 83 of the vegetative cycle according 
to the BBCH scale (LORENZ et al., 1995) The first 
data acquisition was done in December 16, 2017, 
during the stage of the phenological cycle known as 
véraison, meaning the phase during which the berries 
acquire dark pigmentation.  The second acquisition 
took place on February 27, 2018, during the final 
ripening and harvest.

Data acquisition and treatment
Chlorophyll and radiometric in situ measurements 

All measurements in this study took place 
during a four-hour interval between 10AM and 2PM, 
to ensure uniformity of plant conditions leading to 
uniformity in acquired data; reasons for this protocol 
are presented in more detail in THUM et al. (2020), 
added to the fact that earlier measurements tend to 
be done over humid leaves, affecting leaf spectral 
features. A sample of twenty-four plants was selected, 
being four plants per parcel, located in the two central 
rows of each vine plot.

Chlorophyll and radiometric data were 
acquired in succession, beginning with transmittance 
measurements at 635nm, 660nm and 880nm using a 
Falker CFL1030 (Porto Alegre, Brazil) chlorophyll 
meter (SCHLICHTING et al., 2015), providing 
chlorophyll a, b and total chlorophyll content 
mediated by calibration using a white reference. 
These acquisitions were followed, for the same leaf, 
by spectroradiometric measurements using a Malvern 
Panalytical Spectral Devices (ASD, Westborough, 
MA, USA) FieldSpec® 3 spectroradiometer, which 
has spectral sensitivity between 350nm and 2500nm. 
A typical spectrum provides 2151 reflectance values 
between 0.0 and 1.0 at intervals of one nanometer, 
a calibration being made through measurements of 
a reference plate taken at regular time intervals. For 
each plant fours leaves were measured, and each 
leaf was measured twice, in different points of the 
adaxial face. All measurements were made with an 
attached Leaf Clip probe, which carries an internal 
halogen light source and an internal reference plate 

of Spectralon® (Labsphere, Inc., North Sutton, 
NH, USA). Every 15 minutes calibrations with 
white reference and optimization were performed, 
following the protocols described by PITHAN et al. 
(2021) and THUM et al. (2020). The total number 
of spectroradiometric measurement was 192 (24 
plants x four leaves, twice); of these, 12 acquisitions 
were discarded for various reasons, and the final 
radiometric data base had 180 measurements. 

All reflectance field data was recorded in 
ASD format, and managed in computer environment 
in Python language, where proprietary codes were 
created to spectra treatment, helped by public 
libraries. Exploratory data analysis was done using 
Panda’s libraries. A frequent issue when acquiring and 
analyzing spectra collected by the equipment used in 
this study comes from the fact that data acquisition 
is done by a succession of three sensors, where the 
first one operates between 350nm and 1000nm, the 
second from 100 nm to 1800nm, with the third sensor 
being sensitive from 1800nm to 2500nm. Due to 
differences in sensitivity between these three sensors, 
the raw spectra shows discontinuities in the measured 
reflectance, seen as steps, at 1000nm and 1800nm. 
This issue is managed through smoothing procedures, 
and presently routines from the Specdal library with 
the jump correction function were used; likewise, 
noisy lines were smoothed by applying the Savitzky-
Golay filter treatment.

Hyperspectral vegetation indices
Hyperspectral Vegetation Indices (HVIs) 

are defined using reflectance values at wavelengths 
selected according to customized, specific purposes, 
being therefore tuned to express characteristic plant 
metabolical functions. Using only a few selected 
wavelengths, HVIs, may avoid a hyperspectral data 
redundancy problem through the use of the more 
informative wavelengths, which are sensitive to plant 
characteristics such as cellular structure and biochemical 
and physiological processes. Many HVIs have been 
defined in the literature, and in this study we used 19 
HVIs, calculated from the use of specific, discrete 
wavelengths, which were: Anthocyanin Reflectance 
Index 1 (ARI1) (GITELSON et al, 2001); Anthocyanin 
Reflectance Index 2 (ARI2) (GITELSON et al, 2001); 
Cellulose Absorption Index (CAI) (NAGLER et al., 
2003); Chlorophyll Absorption in Reflectance Index 
(CARI); Carotenoid Reflectance Index 1 (CRI1) 
(GITELSON et al., 2002); Carotenoid Reflectance 
Index 2 (CRI2) (GITELSON et al., 2002); Leaf Water 
Vegetation Index 2 (LWVI-2) (GALVÃO et al., 2005); 
Modified Chlorophyll Absorption in Reflectance 
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Index (MCARI) (YANG et al., 2006); Normalized 
Difference Nitrogen Index (NDNI) (SERRANO et 
al., 2002); Normalized Difference Vegetation Index 
(NDVI) (ROUSE et al., 1974); Normalized Difference 
Water Index (NDWI) (GAO, 1996)); Photochemical 
Reflectance Index (PRI) (PEÑUELAS et al, 1995); 
Pigment Specific Normalized Difference 1 (PSND1) 
(BLACKBURN, 1998); Pigment Specific Normalized 
Difference 2 (PSND2) (BLACKBURN, 1998); Plant 
Senescence Reflectance Index (PSRI) (MERZLYAK 
et al., 1999); Plant Senescence Reflectance Index 
2 (PSR2) (MERZLYAK et al., 1999); Structure 
Insensitive Pigment Index (SIPI) (PEÑUELAS 
et al., 1995); Vogelmann Red Edge 1 (VOG1) 
(VOGELMANN et al., 2007); and Water Index (WI) 
(PEÑUELAS et al., 1997).

Modeling process and prediction assessment
In this process we generated three data sets 

and applied the spectral dimension reduction process 
for each one. The three data sets were composed by: i) 
2151 variables (only reflectance bands), ii) 19 HVIs, 
and iii) 2170 variables (reflectance bands + HVIs). 
The prediction response variable is represented by 
the chlorophyll parameters Chl a, Chl b, Chl a + Chl 
b, and Chl a/Chl b). We conducted the normalization 
process for each dataset with the Normalize function, 
to equalize the descriptors variation scale. The 
machine learning models used for the prediction 
analysis were the Partial Least Squares Regression 
(PLSR) and the Random Forest Regressor (RFR).

The PLSR is employed in sensor 
calibration and in spectral analysis associated 
with infrared and hyperspectral spectroscopy. It is 
a linear model, easy to fit and which presents low 
computational complexity (CHENG & SUN, 2017), 
being effective for selecting wavelengths employing 
score coefficients (MIRZAEI et al., 2019). Leaf 
traits and soil properties have been measured non-
invasively through PLSR factors, for selection 
of spectral variables and estimation of physical-
chemical parameters (EL-HENDAWY et al., 2019; 
THUM et al., 2020; ZHANG et al., 2017). The 
problems of high collinearities among wavelengths 
were solved by maximizing the covariance between 
measured and predicted (VISCARRA ROSSEL et 
al., 2006). Moreover, many authors used this model 
for reducing the dimensionality of wavelengths 
both at leaf and canopy levels (ABBASI et al., 
2020; MIRZAEI et al., 2019). 

The second algorithm, Random Forest 
Regressor, is a method based on predictions made 
in decision trees (estimators) randomly selected 

(BREIMAN, 2001). Empirically, it is possible to 
select the number of estimators, as tree depth, to 
develop the sample bagging, then extracting an Out 
of Bag (OOB) percentage (PALMER et al., 2007). 
To the final model an average of the results of the 
individual iterations was done. The selection of the 
wavelengths with greater impact was made from the 
importance of variables, calculated by the Gini index 
(NEMBRINI et al., 2018), which is a way, in the RFR 
model, to address the size of the relation between the 
wavelengths and the measured parameters.

Summing up the steps described above, 
the methodological approach used is this study was 
as follows, being also presented in figure 1:
1. In each one of the six vineyards, four plants 
were selected, and at each plant we selected a full-
developed leaf, opposed to a grape cluster, under 
full solar illumination, located in the mean third of 
canopy, in a branch near the main vine trunk; being six 
parcels, a total of twenty-four leaves were selected.
2. Chlorophyll and radiometric measurements were 
performed at two phases of the vegetative cycle. 
These acquisitions produced, for each leaf and phase, 
a set of chlorophyll indices and a spectrum with 2151 
reflectance values.
3. Using reflectance values for the required wavelengths, 
nineteen different hyperspectral vegetation indices 
(HVI) were calculated for each leaf.
4. As one of our aims were to predict chlorophyll 
concentrations from radiometric data, three sets of 
input data were assembled to be applied by the two 
models to be tested (RFR and PLSR). These three 
data sets were composed by: i) reflectance bands, 
with 2151 variables, Reflectance input data set, ii) 
hyperspectral vegetation indices, with 19 variables, 
HVI input data set; and iii) reflectance bands + HVIs, 
with 2170 variables.
5. Observed and predicted chlorophyll values 
were compared, and correlation accuracies were 
expressed, for each set of input data, by the 
following parameters: coefficient of determination 
(R²), coefficient of determination with cross 
validation (R² (CV)), Root Mean Squared Error 
(RMSE), Root Mean Squared Error with cross 
validation (RMSE (CV)).

Validation of results was made using the 
method known as k-fold cross-validation. In this 
application, the data set is divided in k subsets, known 
as folds, and the model is trained and evaluated 
k times. At each iteration, a different fold is used 
as a test set, while the remaining sets are used for 
training; therefore, each fold is used as a test set only 
once. After k iterations, the performances from each 
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fold are combined to produce an average estimate 
of the model performance. This method in general 
provides a more accurate estimate of the model 
performance, when compared to a conventional, 
single division of the data base in training and 
testing sub sets. This study was made from 180 
spectroradiometric acquisitions, and validation 
was performed with the cross-validation machine 
learning algorithm, using five k-folds; in this case, 
the algorithm made five combinations with groups 
of 36 acquisitions (180/5), testing and combining 
these five combinations. Processing was done in 
Python, using library packages Pandas, Numpy, 
Scipy, Sk-learn and Matplotlib.

RESULTS   AND   DISCUSSION

Chlorophyll parameters  
Variations in chlorophyll levels at the 

studied Cabernet Sauvignon parcels are shown in 
figure 2. Variations in Chl a were in general larger 
than variations in Chl b, with parcel 16a presenting the 
largest variation in Chl a at the first acquisition date, 
while parcels 4b and 16b showed large variations in 
Chl a at the second acquisition date. Levels of Chl 
b increased in the second acquisition date, a trend 
reported by BENEGARAMA & GOTO (2011).

Concerning ratios between chlorophylls, it 
can be observed in figure 2 that the ratio Chl a/Chl b 

Figure 1 - Flowchart showing the main steps of this study.
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had a systematic decrease from the first observing date 
to the second, in agreement with what was reported 
by BIELCZYNSKI et al. (2017), considering also 
that solar illumination in the first date (December 16) 
was more intense than in second data (February 27); 
however, total levels Chl a + Chl b did not follow this 
trend, even if, in general, chlorophyll levels tend to 
rise toward more advance phases of the phenological 
cycle. Parcels 16a (first acquisition), 16b (first), 19a 
(first and second) and 19b (first) presented medians 
of about 3.0, an indication of plants under high 
luminosity conditions what is confirmed by the open 
landscape at the site. Parcels 19a and 19b presented 
vines with smaller, open canopy, being noted that 
19a is located at the highest elevation, with exposed, 
rocky soils and little vegetation between rows. The 

highest Chl a and Chl b concentrations were found at 
parcels 4a (second), 4b (first) and 16a (first).

Correlational spectral analysis
The correlograms for the reflectance 

spectra and the HVIs at both acquisition dates are 
presented at figure 3. Graphs a) and b) suggest a 
decrease of the correlation between the more distant 
wavelengths, and higher correlations between 
neighboring wavelengths, at the NIR spectral range. 
Graph b) presents positive and negative correlations 
between indices. Changes in leaf characteristics along 
the cycle lead to a decrease in water content, with a 
reduction in photosynthetic activity and changes in 
leaf colors, effects due to senescence which affects 
the spectrum (BOYER et al., 1988).

Figure 2 - Chlorophyll measurements for the six studied plots at first acquisition date (blue) and second (brown). 
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Prediction of chlorophyll parameters 
The metrics which qualify the chlorophyll 

predictions from the PLSR model, for the three input 
sets and two acquisition dates, with a total of twenty-
four results, are presented in table 1. As an average, 
each sub-model had used from two to eight Principal 
Components (PC) as input data for the prediction. 
The estimate model for Chl b on the second date was 
the data set reduced by PCA with the largest number 
of wavelengths (892) in the analysis; conversely, the 
models for Chl a and Chl a/Chl b had the smaller 
number of wavelengths used on the PCs, being nine 
and eight, respectively.

As the model’s difficulty to predict 
chlorophyll levels increased, so increased the 
number of input variables; with the cycle’s 
progress toward senescence, leaves have smaller 
photosynthetic activity, and leaf chlorophyll 
content gets smaller leading to color change 
to yellow-orange shades (BOYER et al., 1988; 
JENSEN, 2006). It was noted that those models 
using to chlorophyll parameters with larger number 
of input PCs presented a better performance as 
expressed by prediction metrics.

The estimate of Chl b from the Reflectance 
data set was the one which obtained the largest R2 

(0.622) at the second acquisition date. Predictions 
using only the HVI data set presented lower 
performances, with R2 < 0.468. However, using the 
whole input data set, Reflectance + HVI, the PLSR 
model performed well for Chl a, Chl b and Chl a+ 
Chl b, with R2 values above 0.60 for the second 
acquisition date. Metrics expressed by R2 with 
cross validation (R2(CV)) were smaller than 0.462, 
suggesting insufficient entries to model validation. 
Finally, Chl a/Chl b obtained the smallest RMSE 
at both dates, between 0.183 and 0.250, and similar 
values for RMSE (CV).

Going now to the Random Forest 
Regressor (RFR) model, R2 values larger than 0.874 
were obtained, regardless of the input set (Table 2). 
Using the Index input dataset, parameter Chl a/Chl 
b) got RMSE values between 0.085 and 0.097 for 
the two measuring dates, these being the smaller 
errors among all measured parameters. These 
results indicated that the RFR model presented 
higher predictive accuracy that the PLSR model. In 
general, the predictive metrics with cross validation 
presented values which were smaller than the 
training ones, with R²(CV) around 0.113 and 0.391 
and RMSE(CV) from 0.228 to 3.579. It is to be 
noted that this poorer performance for PLSR was 

Figure 3 - Spearman Correlation Coefficient Rank (r), applied to wavelengths (350nm - 
2500nm) of hyperspectral leaf reflectance and to HVIs, for acquisition dates: 
Dec. 16, 2017 (a and c) and Feb. 27, 2018 (b and d).
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not reported in other studies, as, for example, by LI 
et al. (2019), who arrived to R2 values as high as 
0.86, and by LIU et al. (2019), who reported even 
higher accuracies from PLSR application.

For the PLSR coefficients the impact of 
each wavelength in the estimates of chlorophyll 
parameters are presented in figure 4. Wavelengths 
selected by the model were concentrated at red 
and red-edge spectral regions, between 670nm to 
760nm; however, information at blue and green 

regions (from 550nm to 520nm) was also important. 
Parameters Chl a and Chl a/Chl b) presented the 
lesser number of wavelengths in the spectral 
modeling, with the red and red-edge spectral regions 
presenting high sensitivity to chlorophyll content; in 
these spectral regions, reflectance depends linearly 
on leaf chlorophyll content (STEELE et al., 2008). 
For other parameters, the model used data from 
several spectral regions, from the visible to SWIR. 
A significant increase of wavelengths inserted at 

 
Table 1 - Metrics used for the predictions conducted with the PLSR model for the three input databases and on the two acquisition 

dates. The parameters used in the analyses are principal components number (PC), Wavelengths numbers (WN), coefficient 
of determination (R²), coefficient of determination with cross validation (R² (CV)), root mean square error (RMSE), root 
mean square error with cross validation (RMSE (CV)). 

 

  Parameters ------PC------ ------WN------ -------R²------- ----R²(CV)---- ----RMSE---- -RMSE(CV)- 

   1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 
Reflectance Chl a 3 5 9 141 0.294 0.551 0.214 0.415 1.995 1.748 2.104 1.994 
 Chl b 8 8 332 892 0.585 0.622 0.359 0.432 1.025 1.254 1.274 1.537 
 Chl (a+b) 3 6 391 360 0.380 0.579 0.296 0.462 3.073 2.952 3.274 3.336 
 Chl (a/b) 7 4 8 157 0.576 0.528 0.471 0.391 0.183 0.214 0.205 0.243 
HVI  Chl a 2 5 6 7 0.286 0.468 0.228 0.336 2.006 1.902 2.086 2.125 
 Chl b 3 4 5 5 0.404 0.411 0.317 0.274 1.228 1.565 1.315 1.738 
 Chl (a+b) 3 5 4 6 0.345 0.446 0.278 0.311 3.157 3.385 3.316 3.775 
 Chl (a/b) 3 4 6 9 0.365 0.352 0.204 0.115 0.225 0.250 0.251 0.293 
Reflect +HVI Chl a 2 8 273 120 0.293 0.639 0.239 0.383 1.996 1.567 2.070 2.047 
 Chl b 2 6 103 203 0.409 0.630 0.354 0.399 1.224 1.241 1.248 1.581 
 Chl (a+b) 2 8 9 121 0.333 0.659 0.292 0.380 3.188 2.656 3.283 3.581 
 Chl (a/b) 3 4 254 271 0.415 0.500 0.312 0.369 0.215 0.220 0.234 0.247 

 
 
 
 
 

 

Table 2 - Predictions performance metrics for the Random Forest Regressor model for the three input databases on the two acquisition 
dates. The parameters used in the analyses are coefficient of determination (R²); coefficient of determination with cross 
validation (R² CV); root mean square error (RMSE); root mean square error with cross validation (RMSE (CV)). 

 

  -------Parameters------- -----------R²----------- ------R²(CV)------ ----------RMSE---------- ----RMSE(CV)---- 

    1st 2nd 1st 2nd 1st 2nd 1st 2nd 
Reflectance Chl a 0.874 0.893 0.113 0.242 0.844 0.853 2.230 2.271 

 Chl b 0.897 0.901 0.290 0.337 0.510 0.643 1.341 1.661 
 Chl (a+b) 0.877 0.897 0.293 0.288 1.312 1.458 3.403 3.836 
 Chl (a/ b) 0.899 0.956  0.258 0.293 0.090 1.250 0.243 1.100  

HVI Chl a 0.876 0.909 0.157 0.365 0.836 0.786 2.180 2.078 
 Chl b 0.911 0.905 0.391 0.355 0.475 0.629 1.242 1.638 
 Chl (a+b) 0.894 0.915 0.282 0.387 1.269 1.327 3.307 3.561 
 Chl (a/b) 0.910 0.902 0.307 0.258 0.085 0.097 0.235 0.268 

Reflect+HVI Chl a 0.899 0.905 0.231 0.353 0.793 0.803 2.082 2.097 
 Chl b 0.909 0.908 0.375 0.373 0.480 0.617 1.258 1.614 
 Chl (a+b) 0.898 0.913 0.304 0.380 1.247 1.338 3.255 3.579 
 Chl (a/b) 0.906 0.911 0.342 0.339 0.087 0.093 0.228 0.253 
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the Principal Components happened at the second 
acquisition date.

The importance of the Gini index to 
vegetation indices and wavelengths is expressed at 
figure 5. The index is used to select the variables more 
relevant to prediction in the RFR model, and presently, 

given the HVIs input data set, at first acquisition the 
most important HVIs were CAI, NDWI and PSR2. 
For data from the second acquisition date, indices CAI 
and PRI were the most important. For the Reflectance 
data set, the important wavelengths were concentrated 
in the blue to yellow regions (450nm to 580nm) for 

Figure 4 - Selected wavelengths (highlighted in yellow) with the best coefficients of the PSLR 
components, at the observed spectral domain (350nm-2500nm), in each prediction; 
column a corresponds to the first acquisition date, and column b to the second. 
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first acquisition date, while for the second acquisition 
date, besides the blue region, information from near 
infrared, around 1350nm, was also important. 

CONCLUSION

The results presented in this investigation 
suggested that chlorophyll content can be predicted 

from hyperspectral data. Collinearity between 
wavelengths presented some stability in specific 
spectral regions, later in the vegetative cycle, when the 
second data acquisition took place; at this stage, the 
observed indices tend to be more stable. Parameters 
Chl a and Chl a/Chl b) were in general the ones with 
less wavelengths used as input data sets in prediction 
models PLSR and RFR . The PRI index was the most 

Figure 5 - Gini Importance to the HVIs(a) and wavelengths(b) in modeling of each chlorophyll parameter measured in 
the field.
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important vegetation index in all calibrations done 
using the RFR model, while PLSR model included 
a larger variable number at second acquisition. 
Compared to RFR, results from PLSR were relatively 
poor; the number of measurements was apparently 
adequate for application of RFR, but possibly results 
from PLSR would improve with more observations.

Forthcoming studies may focus on deeper 
investigations chlorophyll detection and content 
prediction, correlating spectroradiometric data with 
data from remote sensors at high resolutions, both 
in space and time. Besides, data on physiological 
parameters bring more information of environmental 
effects on leaf characteristics, and extending the 
analysis presently reported to other grape varieties 
will help to a better understanding on the spectral 
behavior due to genetic factors.
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