cr
Ciência Rural
Cienc. Rural
0103-8478
1678-4596
Universidade Federal de Santa Maria
RESUMO:
As espécies pertencentes ao gêneroRhipicephalus (Boophilus) são carrapatos monoxenos de distribuição sazonal em regiões tropicais e subtropicais. Por muito anos, duas espécies de carrapatos foram consideradas comoRhipicephalus microplus.Contudo, estudos recentes reclassificaram esse carrapato em duas espécies: R. micropluseR. australis. Em razão de diversas semelhanças entre R. micropluse R. australis,distinguir essas duas espécies torna-se uma tarefa árdua, o que explica as mudanças de classificação dessas espécies nas últimas décadas. O reaparecimento da espécieR. australissurge com novas pesquisas, resultado de uma melhor caracterização dessas prováveis espécies crípticas. Evidências baseadas em análises das características morfológicas, na ausência de co-especificidade, em marcadores de microssatélites, no DNA ribossomal mitocondrial 12S e 16S, assim como no genoma mitocondrial, suportam a re-classificação deR. micropluscomo duas espécies distintas. Nesse sentido, populações deR. microplusda Austrália, Camboja, Nova Caledônia, Bornéo, Filipinas, Nova Guiné, Indonésia e Taiti foram recentemente renomeadas comoR. australis. Além disso, um melhor entendimento sobre a especiação e localização dessas duas espécies pode trazer avanços importantes para melhorar as estratégias de controle desses carrapatos.
INTRODUCTION:
Records of ticks date back to approximately 2,000 years, when they were considered anus-less animals by Pliny, the Elder (A.D. 23-79) (HILLYARD, 1996). Later, reverend Dr. Thomas Moufet (A.D. 1553-1604) noted that Ricinus means "filled with food abundantly and yet there is no passage for any excrement" (BOWMAN & SAUER, 2004). To answer the question from "where the first ticks were evolved?" DOBSON & BARKER (1999) suggested that ticks evolved in the part of the supercontinent Gondwana that became Australia, in the early Devonian era, around 390 Mya ago. Contrarily, KLOMPEN et al. (2000) suggested that the hard ticks evolved 120 Mya later, after Australia became relatively isolated.
Ticks are hematophagous acarines mainly distributed in two major families, Ixodidae(hard tick) and Argasidae (soft tick) (BLACK & PIESMAN, 1994), while only one tick species is present in the Nuttalliellidae family (GUGLIELMONE et al., 2010). Argasid ticks feed fast, but take in small volumes of blood in each meal, contrasting with Ixodid ticks, which have a longer-feeding process and ingest large amounts of blood. Ixodid ticks are unique among ectoparasites due to their long host attachment period (SAUER et al., 2000) and are divided into metastriate and prostriate ticks. Metastriate ticks include Rhipicephalus genera, characterized by relatively short mouthparts and secretion of copious amounts of cement or glue responsible for the firm attachment to its host. Prostriate ticks include the Ixodes genera, with longer and barbed mouthparts that are responsible for attachment to the host (FRANCISCHETTI et al., 2009).
Studies demonstrated differences of specific Rhipicephalus(Boophilus) spp. life cycle in different ecological zones, where varying degrees of climatic conditions affect each phase of the tick life cycle (LEGG, 1930; LONDT & ARTHUR, 1975) and changes in these factors can difficult precise establishing of the life cycles of R. microplusand R. australis.
In recent years, Boophilus spp. was reassigned to the genus Rhipicephalus(MURRELL & BARKER, 2003). Since, based on molecular and morphological studies, some Rhipicephalus species were found to be more closely associated to R. (Boophilus) species in comparison to Rhipicephalus species (MURRELL et al., 2000). Substantial morphological and molecular data have produced important evidence supporting the genus Rhipicephalus as paraphyletic to the genus Boophilus (MURRELL & BARKER, 2003; BARKER & MURRELL, 2004). To avoid misunderstanding and disbelief among researchers concerning name changes, Boophiluswas retained as a subgeneric epithet, and Boophilus
microplus became Rhipicephalus(Boophilus) microplus(GUGLIELMONE et al., 2010) or Rhipicephalus microplus.
The controversy about the classification of R. australis and R. microplusstarted in 1899, when the morphological description of Rhipicephalus
australis moved this tick from the group of rhipicephalines species (FULLER, 1899). However, differences in morphological features, reproductive parameters, and genetic constitution between R. microplusspecimens collected in America and Africa and individuals collected in Australia provide sufficient evidences to reclassify R. australis and R. microplusas different species (LABRUNA et al., 2009; ESTRADA-PEÑA et al., 2012). Based on such evidence, we reviewed the data supporting the current taxonomic position of R. microplusand R. australis as distinct species.
Current taxonomy
Morphological differences
R. microplus, earlier named Haemaphysalis micropla Canestrini, 1888, was not precisely distinguished from R. australis when this species was identified by Fuller (FULLER, 1899). However, SALMON & STILES (1901) classified R. australis as a distinct species, while NEUMANN (1901) regarded R. australis as a subspecies of R. microplus. Several studies initially supported the conspecificity between these two species (BEDFORD, 1932; ROBERTS, 1965). Overall differences in specimens collected in Australia, America, and Africa are allegedly strong enough to support R. australis as a distinct species (MINNING, 1934). Contrarily, UILENBERG (1962) concluded that these morphological variations did not validate the notion that R. australis is a distinct species; therefore the author synonymized it under the name B. microplus. Similarly, for LONDT & ARTHUR (1975) the morphological variation observed between Australian and South African R. microplusdo not afford to maintain these two tick populations as distinct species. Contrarily, recent studies suggest that both female and male adults of R. australis, besides this species' clearly smaller larva, differ from R. microplus by a combination of other morphological characters (ESTRADA-PEÑA et al., 2012).
Despite the features closely shared by R. australis and R. microplus, a clear set of morphological differences persists. Larvae of R. australis described as B. microplus using specimens collected in Australia are smaller, with a narrow dorsal scutum than R. microplus(CLIFFORD et al., 1961; ESTRADA-PEÑA et al., 2012). Adult R. australis can be recognized by ventro-medial spurs in male palpal segments, and the copious, plumose, pale white setae on the female dorsum. Variability in other features like adanal and coxal shields among different populations often lead to incorrect classifications. R. australis possess abundant longer and pale dorsal setae, and the median alloscutal setae are arranged in clusters of 4 to 6 rows. However, this feature may be lost in engorged females. R. microplusdorsal setae are smaller and slim, and medial alloscutal setae are compose by clusters of 2 to 3 rows (WALKER et al., 2003). As compared to R. microplus, the medial scutal setae in R. australis female are longer. The setae behind the eyes are visible in R. australis female but unapparent R. microplusfemale. The spur in the ventral surface of R. australis male is absent in R. microplusmale. Finally, in R. microplusmales possess numerous setae on the lateral margins of the ventral surface of the capitulum, which are smaller in R. australis(WALKER et al., 2003; ESTRADA-PEÑA et al., 2012).
Genetic differences
Crosses mating trials
Cross mating studies are a useful tool in the differentiation of tick species. For example, R. annulatus and R. microplusappear to be closely related within the subgenus Boophilus, as compared to other R. (Boophilus) species (BEATI & KEIRANS, 2001). R. microplusand R. annulatus cross-breeding has revealed that these two species lack conspecificity (GRAHAM et al., 1972; THOMPSON et al., 1981; DAVEY et al., 1983). A boundary in distributions of R. microplusand R. annulatus along the Texas-Mexico border suggests that these species reproduced without cross-breeding (LOHMEYER et al., 2011).
In the same way, genetic differences among R. microplusstrains found at specific bio-geographical and ecological areas led taxonomists to consider boophilid ticks from America/Africa as different species against those from Australia. The first evidence supporting the lack of genetic conspecificity between African and Australian R. micropluswas provided by SPICKETT & MALAN (1978), regarding these species as 'diverging taxa' under speciation process with recent history as distinct populations. Conversely, GUGLIELMONE et al., (2003) concluded that R. microplusfrom South Africa and Australia should be considered as distinct species. Crossbreeding of Australian and Argentinean or Mozambican population of boophilid ticks has led to infertile animals, differently of Argentinean and Mozambican population crosses, that resulted in fertile offspring. These observations support the conclusion that tick population from Mozambique and Argentina represent a single species, while tick from Australia is possibly a distinct species (LABRUNA et al., 2009). Furthermore, mating experiments between R. microplusfrom South Africa and R. australis from Australia produced infertile offspring (SPICKETT & MALAN, 1978), which suggests reproductive isolation between these two species.
Differences based on mitochondrial genome
In addition to morphological observations, mitochondrial 12S and 16S ribosomal DNA (rDNA) has been considered a promising tool to determine phylogenetic relationships among various tick species (MANGOLD et al., 1998; BEATI & KEIRANS, 2001; LABRUNA et al., 2009; ESTRADA-PEÑA et al., 2012; McCOOKE et al., 2015). Indeed, phylogenetic analysis based on rDNA also supports the lack of conspecificity among ticks (ESTRADA-PEÑA et al., 2012). In this way, rDNA phylogenies using sequences from a number of Australian populations lend strength to suggestion that two species is classified under the name R. microplus. Besides the absence of consistent data on specimens and the few number of populations employed for the molecular and cross-breeding by LABRUNA et al. (2009), the authors believe that the available information is sufficient to support the taxonomic separation of R. australis and R. microplus.
As discussed above, the phylogenetic relationships among R. (Boophilus) species were mostly carried out based on evolutionary relationships, relying on partial rDNA sequences (MURRELL et al., 2000, 2001, 2003; BEATI & KEIRANS, 2001; LABRUNA et al., 2009; ESTRADA-PEÑA et al., 2012). Molecular analysis (BEATI & KEIRANS, 2001) has confirmed the sister-species relationship between R. annulatus and R. microplus, as previously suggested based on morphology (FELDMAN-MUHSAM & SHECHTER, 1970). Phylogenetic evidence (MURRELL et al., 2001) about the genus Rhipicephalus also supports monophyly of the Boophilus clade; however, this evidence did not solve the relationships among R. (Boophilus) species. Moreover, the 'R. microplus' specimens used in that work were from Australia (R. australis), and did not include R. micropluss.s. Recent studies based on a wide geographic sampling range of R. microplusalso support monophyly of the subgenus Rhipicephalus(Boophilus), thus the reinstatement of R. australis (LABRUNA et al., 2009; ESTRADA-PEÑA et al., 2012). Intriguingly, R. microplusstrains collected in India and Nepal show high divergence from American and African R. microplusstrains (LABRUNA et al., 2009). However, the phylogenetic placement of Indian and Nepalese R. microplusstrains was not resolved, though Indian R. microplusclustered with R. annulatus in a 16S rRNA analysis (LABRUNA et al., 2009).
Mitochondrial genomes were investigated in tick phylogenetic relationships, and have been proved useful in solving tick lineages (BURGER et al., 2012, 2013, 2014a,b; WILLIAMS-NEWKIRK et al., 2015; McCOOKE et al., 2015). To date, a few mitochondrial genomes of rhipicephaline ticks have been sequenced, and include R. sanguineus (BLACK & ROEHRDANZ, 1998), R. simus (Xu et al., 2014) and 13 gene fragments of R. australismitochondrial genome (CAMPBELL & BARKER, 1999). Whole and incomplete mitochondrial genomes of R. annulatus,R. australis,R. kohlsi, R. geigyi, and R. microplusstrains from Brazil, Texas (USA) Cambodia and China were recently sequenced (BURGER et al., 2013; McCOOKE et al., 2015). Mitochondrial, cox1 and 16S rRNA phylogenetic analyses showed a species complex of R. annulatus, R. australis, and two clades of R. microplus. Morphologically related China and India R. micropluspopulation were found closed to R. annulatus than other specimens of R. microplusfrom Asia, South America, and Africa. Furthermore, cox1 and 16S rRNA nucleotide sequences afforded to resolve the phylogenetic relationships within the R. micropluscomplex more successfully, as compared to 12S rRNA or the nuclear marker ITS2 (CAMPBELL & BARKER, 1999; LEMPEREUR et al., 2010; BURGER et al., 2013).
Microsatellite markers
The genetic differences between R. micropluspopulations from the TEQA (tick eradication quarantine area) USA, Mexico, and Puerto Rico were first investigated using isozymes over three decades ago (SATTLER et al., 1986). Analysis of fifteen selected polymorphic loci demonstrated heterozygosity to arthropods and high genetic similarity among various strains, suggesting an undifferentiated gene pool in R. micropluspopulations prevalent in North America. Later, microsatellite polymorphism was investigated in tick populations from Argentina, Australia, India, Mozambique, and New Caledonia. Tissues of homologous and heterologous crosses were analyzed, and allele numbers and sizes were determined for each locus. The clustering analysis of microsatellite alleles from R. microplusoffspring crosses revealed that Australian homologous and heterologous crosses had lower similarity, in comparison to homologous and heterologous crosses between Mozambique and Argentinian strains (LABRUNA et al., 2009).
In New Caledonia, R. microplushas been found in close contact with sympatric hosts, on cattle and on a new host, the rusa deer (Cervus timorensis), divided into two differentiated genetic pools. In North America, the white-tailed deer (Odocoileus virginianus) and the red deer are also well-studied examples that illustrate this pattern of new sympatric hosts. This phenomenon may have occurred across the globe, in areas where this tick has established some degree of interaction with distinct host species in sympatry with livestock (KOFFI et al., 2006a; DE MEEUS et al., 2010; ARAYA-ANCHETTA et al., 2015). Using eight microsatellite loci, low genetic structure was found in specimens of R. australis in New Caledonia (KOFFI et al., 2006b). Analyses using 11 microsatellite markers revealed that the genetic differences between AustralianR. australis populations endemic in Queensland and New South Wale are not significant; however, the observed diversity among strains within each location proposes limitations to local gene flow (CUTULLÉ et al., 2009). A significant and small genetic structure was detected in ticks that infest rusa deer or domestic cattle (De MEEUS et al., 2010), which suggests that this sympatric adaptation resulted in host-specific populations. Recently, microsatellite markers were successfully used to detect genetic variation among R. microplusstrains in Texas (BUSCH et al., 2014). Undifferentiated tick collections were analyzed using 11 repeat loci, and it was not possible to identify any genetic divergence between R. microplussampled from white-tailed deer and specimens collected from cattle, even when the ticks were obtained from the same pastures (BUSCH et al., 2014). When parasitized by cattle ticks, these wild ungulates pose a major obstacle to eradication programs, since the difficulty to treat these animals with acaricides (POUND et al., 2010).
Differences in Bm86 gene sequences
Characterization employing an intron and DNA short tandem repeats (STRs) from Bm86 gene of Latin America and Australia R. micropluspopulations revealed significant differences within the Bm86 coding region between ticks from these regions (De La FUENTE et al., 2000). The intron sequence dissipated in the phylogenetic analysis, showing that individuals of the same strain do indeed vary. Moreover, polymorphism analysis at STR suggests differences within and between populations of R. microplus, which supports the molecular level of existence between R. micropluspopulations (De La FUENTE et al., 2000).
Ecological niche
Field data on regional distribution are necessary to clarify the actual distribution and the evolution of R. microplusandR. australis. It has been hypothesized that R. microplusoriginated in South and Southeast Asia (HOOGSTRAAL, 1985), later spreading to Madagascar and Southern Africa. Data required to shed more light on how and when R. microplusspread to Americas is scarce (LABRUNA et al., 2009), although it is reasonable that the tick was brought attached on livestock imported from India or Africa 4-5 centuries ago (BARRÉ & UILENBERG, 2010). Since R. microplusis specific to ungulates, the transportation of European cattle (Bos taurus) has spread it throughout the tropical and subtropical belt. As compared to tropical Bovidae, European bovines are almost incapable of eliciting efficient immune responses to R. microplusinfestations (FRISCH, 1999). Other factors that may have constrained the geographical distribution of R. microplusinclude climate variables and competition with other tick species (ESTRADA-PEÑA et al., 2006; CHEVILLON et al., 2013). Furthermore, it was suggested that R. australis was introduced in Australia and New Caledonia on livestock in 1829 (ANGUS, 1996), and 1942 (VERGES, 1944; DE MEEÛS et al., 2010), respectively. Today, R. australis is prevalent in Australia, Cambodia, Philippines, Indonesia, New Caledonia, Borneo, Malaysia, New Guinea and Tahiti (LABRUNA et al., 2009; ESTRADA-PENA et al., 2012; LOW et al., 2015). R. microplusis endemic between parallels 32°N and 32°S, where the major cattle breeding countries are, including newly reported ecological preferences in West Africa (MADDER et al., 2007; ESTRADA-PEÑA et al., 2006; LEGER et al., 2013). In addition, R. microplusand R. australis coexist in southeastern Asian countries (LOW et al., 2015). However, climate changes may further modify the potential geographical distribution of these parasites.
Implications in control methods
Economically, ticks are among the most potentially harmful parasites worldwide (PIESMAN & EISEN, 2008; GRISI et al., 2014). During infestation, ticks may transmit numerous pathogenic bacterial, viral, and protozoan organisms to the host (HAJDUSEK et al., 2013). The combination of the tick vectoring ability and the overall undermining of the host's health caused by blood uptake leads to high losses in livestock and pet industries (WILLADSEN, 2004). R. micropluswas introduced in the New World by tick-infested cattle brought by explorers and colonists (HOOGSTRAAL, 1985). Estimated losses caused by these ectoparasites during the first decade of the 19th century reached about US$63 billion (MOHLER, 1906). Therefore, due to the huge economic impact caused by R. microplus, the United States started a national campaign to eradicate Boophilus in 1906, and by 1943 this program was declared complete (GRAHAM & HOURRIGAN, 1977). Considering Brazil alone, which has the largest industrial cattle herd in the world; potential losses caused by R. microplusare estimated at US$3.24 billion yearly (GRISI et al., 2014). Tick control is a daunting challenge, because current control methods based on synthetic acaricides are becoming increasingly inefficient (RECK et al., 2014).
Effective new control strategies demand a precisely parasitological epidemiology, because these strategies are affected by the presence ofR. microplusin a given geographical area. Vaccination experiments demonstrated different degrees of susceptibility for Bm86-based vaccines by R. micropluspopulations, suggesting the existence of genetically distinct strains of R. microplus(COBON et al., 1995; GARCIA-GARCIA et al., 2000). The Bm86 vaccine developed from an Australian 'R. microplus' strain showed very low efficacy when used in Latin America, as compared to Bm95, a Bm86 homologue from the Argentinian R. microplusstrain, which showed higher vaccinal efficacy in this region (GARCIA-GARCIA et al., 2000). Likewise, a Bm86 formulation from Cuban R. microplusshowed higher protection levels in America, when compared with Bm86 from Australian 'R. microplus' (De La FUENTE et al., 2007). Consequently, it is important to clearly describe vaccination data regarding the tick strain analyzed, due to the observed species-specificity of protection levels. Moreover, risk areas for tick-borne disease also need re-analysis, given the potential differences in vector capability by these two tick species.
CONCLUSION:
The triumph of taxonomy at species level is an open tool for continuous and exciting discoveries. Better understanding of R. microplusand R. australis taxonomic structure is pivotal for control measures against these ticks. Further studies on population genetic of Rhipicephalus(Boophilus) spp. will more thoroughly explain the interactions among these parasites, the pathogens they vector, and their hosts. In addition, such studies will provide more in-depth information about tick movements, disease dispersal, and designing anti-tick control programs. Genetic variance studies among Rhipicephalus(Boophilus) spp. will better elucidate the identification of cryptic species. Mixed infestation, when the parasites are in close contact with sympatric alternative hosts (like deer, for instance) is a major hurdle for eradication programs. However, more detailed information about genetic differentiation and genetic population structure could provide tools to improve control strategies. As demonstrated in recent years, the lack of effective protection induced by the Bm86 vaccine can be partly explained considering the presence of different R. microplusstrains. These failed vaccine experiments can be explained if R. microplusis considered not a single, but two distinct species. Although R. australis is very similar to R. microplus, both the larvae and adults of each species have a clear set of species-specific characters. In conclusion, reported results confirm that two distinct species of ticks were named R. microplus.
ACKNOWLEDGMENT
This work was supported by grants from Higher Education Commission, Pakistan Science Foundation (Pakistan), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). We would like to thanks Dr. Carlos Termignoni for critical reading of this review.
REFERENCES:
ALI, A. et al. Probing the functional role of tick metalloproteases. Physiological Entomology, v.40, p.177, 188, 2015. Available from: <Available from: http://onlinelibrary.wiley.com/doi/10.1111/phen.12104/abstract
>. Accessed: Sept. 27, 2015. doi: 10.1111/phen.12104.
ALI
A.
Probing the functional role of tick metalloproteases
Physiological Entomology
40
177
188
177, 188
2015
Available from: http://onlinelibrary.wiley.com/doi/10.1111/phen.12104/abstract
Sept. 27, 2015
10.1111/phen.12104.
ANGUS, B.M. The history of the cattle tick Boophilus microplus in Australia and achievements in its control. International Journal for Parasitology, v.26, p.1341-1355, 1996. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0020751996001129
>. Accessed: Jun. 05, 2015. doi: 10.1016/s0020-7519(96)00112-9.
ANGUS
B.M.
The history of the cattle tick Boophilus microplus in Australia and achievements in its control.
International Journal for Parasitology
26
1341
1355
1996
Available from: http://www.sciencedirect.com/science/article/pii/S0020751996001129
Jun. 05, 2015
10.1016/s0020-7519(96)00112-9.
ARAYA-ANCHETTA, A. et al. Thirty years of tick population genetics: A comprehensive review. Infection Genetics and Evolution, v.29, p.164-179, 2015. Available from: <Available from: http://www. sciencedirect.com/science/article/pii/S1567134814004110
>. Accessed: Oct. 01, 2015. doi: 10.1016/j.meegid.2014.11.008.
ARAYA-ANCHETTA
A.
Thirty years of tick population genetics: A comprehensive review.
Infection Genetics and Evolution
29
164
179
2015
Available from: http://www. sciencedirect.com/science/article/pii/S1567134814004110
Oct. 01, 2015
10.1016/j.meegid.2014.11.008
BARKER, S.C.; MURRELL, A. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology, v.129, p.S15-S36, 2004. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938503
>. Accessed: Feb. 07, 2015. doi: 10.1017/S0031182004005207.
BARKER
S.C.
MURRELL
A.
Systematics and evolution of ticks with a list of valid genus and species names.
Parasitology
129
S15
S36
2004
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938503
Feb. 07, 2015
10.1017/S0031182004005207.
BARRÉ, N.; UILENBERG, G. Spread of parasites transported with their hosts: case study of two species of cattle tick. Revue scientifique et technique (International Office of Epizootics), v.29, p.149-160, 2010.
BARRÉ
N.
UILENBERG
G.
Spread of parasites transported with their hosts: case study of two species of cattle tick.
Revue scientifique et technique (International Office of Epizootics
29
149
160
2010
BEATI, L.; KEIRANS, J.E. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Journal of, Parasitology v.87, p.32-48, 2001. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/11227901
>. Accessed: Mar. 12, 2015. doi: 10.1645/0022-3395(2001)087[0032:AOTSRA]2.0.CO;2.
BEATI
L.
KEIRANS
J.E.
Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters
Journal of, Parasitology
87
32
48
2001
Available from: http://www.ncbi.nlm.nih.gov/pubmed/11227901
Mar. 12, 2015
10.1645/0022-3395(2001)087[0032:AOTSRA]2.0.CO;2.
BEDFORD, G.A.H. Asynoptic check-list and host-list of the ectoparasites found on South African Mammalia, Aves, and Reptilia. Journal of Veterinary Science and Animal Industry, v.7, p.69-110, 1932.
BEDFORD
G.A.H.
Asynoptic check-list and host-list of the ectoparasites found on South African Mammalia, Aves, and Reptilia
Journal of Veterinary Science and Animal Industry
7
69
110
1932
BLACK, W.C.; PIESMAN, J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodidae) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences USA, v.91, p.10034-10038, 1994.
BLACK
W.C.
PIESMAN
J.
Phylogeny of hard- and soft-tick taxa (Acari: Ixodidae) based on mitochondrial 16S rDNA sequences.
Proceedings of the National Academy of Sciences USA
91
10034
10038
1994
BLACK, W.C.; ROEHRDANZ, R.L. Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Molecular Biology and Evolution, v.15, p.1772-1785, 1998.
BLACK
W.C.
ROEHRDANZ
R.L.
Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes.
Molecular Biology and Evolution
15
1772
1785
1998
BOWMAN, A.S.; SAUER J.R. Tick salivary glands: function, physiology and future., Parasitology v.129, p.S67-S81, 2004. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938505
>. Accessed: Apr. 2, 2015. doi: 10.1017/S0031182004006468.
BOWMAN
A.S.
SAUER
J.R.
Tick salivary glands: function, physiology and future.
Parasitology
129
S67
S81
2004
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938505
Apr. 2, 2015
10.1017/S0031182004006468.
BURGER, T.D. et al. Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA gene sequences. Ticks and Tick-Borne Diseases, v.5, p.195-207, 2014b. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1877959X13001234
>. Accessed: Jul. 14, 2015. doi: 10.1016/j.ttbdis.2013.10.009.
BURGER
T.D.
Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA gene sequences
Ticks and Tick-Borne Diseases
5
195
207
2014b
Available from: http://www.sciencedirect.com/science/article/pii/S1877959X13001234
Jul. 14, 2015
10.1016/j.ttbdis.2013.10.009.
BURGER, T.D. et al. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics and Evolution, v.76, p.241-253, 2014a. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1055790314001171
>. Accessed: May 14, 2015. doi: 10.1016/j.ympev.2014.03.017.
BURGER
T.D.
Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species
Molecular Phylogenetics and Evolution
76
241
253
2014a
Available from: http://www.sciencedirect.com/science/article/pii/S1055790314001171
May 14, 2015
10.1016/j.ympev.2014.03.017.
BURGER, T.D. et al. Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus Haemaphysalis, and further elucidates the polyphyly of the genus Amblyomma with respect to Amblyomma sphenodonti and Amblyomma elaphense., Ticks and Tick-Borne Diseases v.4, p.265-274, 2013. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1877959X13000344
>. Accessed: Apr. 06, 2015. doi: 10.1016/j.ttbdis.2013.02.002.
BURGER
T.D.
Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus Haemaphysalis, and further elucidates the polyphyly of the genus Amblyomma with respect to Amblyomma sphenodonti and Amblyomma elaphense.
Ticks and Tick-Borne Diseases
4
265
274
2013
Available from: http://www.sciencedirect.com/science/article/pii/S1877959X13000344
Apr. 06, 2015
10.1016/j.ttbdis.2013.02.002
BURGER, T.D. et al. Phylogenetic analysis of ticks (Acari: Ixodidae) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Molecular Phylogenetic and Evolution, v.64, p.45-55, 2012. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1055790312001091
>. Accessed: Sept. 04, 2015. doi: 10.1016/j.ympev.2012.03.004.
BURGER
T.D.
Phylogenetic analysis of ticks (Acari: Ixodidae) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic
Molecular Phylogenetic and Evolution
64
45
55
2012
Available from: http://www.sciencedirect.com/science/article/pii/S1055790312001091
Sept. 04, 2015
10.1016/j.ympev.2012.03.004
BUSCH, J.D. et al. Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas and shared local infestations on cattle and deer. Parasites & Vectors, v.7, p.188, 2014. Available from: <Available from: http://parasitesandvectors.biomedcentral.com/
>. Accessed: May 17, 2015. doi: 10.1186/1756-3305-7-188.
BUSCH
J.D.
Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas and shared local infestations on cattle and deer
Parasites & Vectors
7
188
188
2014
Available from: http://parasitesandvectors.biomedcentral.com/
May 17, 2015
10.1186/1756-3305-7-188.
CAMPBELL, N.J.H.; BARKER, S.C. The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: five fold tandem repetition of a coding region., Molecular Biology and Evolution v.16, p.732-740, 1999.
CAMPBELL
N.J.H.
BARKER
S.C.
The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: five fold tandem repetition of a coding region
Molecular Biology and Evolution
16
732
740
1999
CHEVILLON, C. et al. Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae). Experimental and Applied Acarology, v.59, p.203-218. 2013. Available from: <Available from: http://link.springer.com/article/10.1007% 2Fs10493-012-9602-5
>. Accessed: Jun. 14, 2015. doi: 10.1007/s1 0493-012-9602-5.
CHEVILLON
C.
Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae)
Experimental and Applied Acarology
59
203
218
2013
Available from: http://link.springer.com/article/10.1007% 2Fs10493-012-9602-5
Jun. 14, 2015
10.1007/s1 0493-012-9602-5
CLIFFORD, C.M. et al. The larval Ixodid ticks of the eastern United States (Acarina: Ixodidae). Miscellaneous publications of the Entomological Society of America, v.2, p.213-237, 1961.
CLIFFORD
C.M.
The larval Ixodid ticks of the eastern United States (Acarina: Ixodidae
Miscellaneous publications of the Entomological Society of America
2
213
237
1961
COBON, G. et al. Vaccination against Boophilus microplus: the Australian field experience. In: FUENTE, J. de la (Ed.). Recombinant vaccines for the control of cattle tick. Havana: Elfos Scintiae, 1995. p.163-176.
COBON
G.
Vaccination against Boophilus microplus: the Australian field experience.
FUENTE
J. de la
Recombinant vaccines for the control of cattle tick
Havana
Elfos Scintiae
1995
163
176
CUMMING, G.S.; VUUREN D.V.P. Will climate change affect ectoparasite species ranges. Global Ecology and Biogeography, v.15, p.486-497, 2006. Available from: <Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1466-822X.2006.00241.x/abstract
>. Accessed: May 15, 2015. doi: 10.1111/j.1466-822 X.2006.00241.x.
CUMMING
G.S.
VUUREN
D.V.P.
Will climate change affect ectoparasite species ranges.
Global Ecology and Biogeography
15
486
497
2006
Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1466-822X.2006.00241.x/abstract
May 15, 2015
10.1111/j.1466-822 X.2006.00241.x
CUTULLÉ, C. et al. Population structure of Australian isolates of the cattle tick Rhipicephalus (Boophilus) microplus. Veterinary, Parasitology v.161, p.283-291, 2009. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0304401709000326
>. Accessed: Sept. 25, 2015. doi: 10.1016/j.vetpar.2009.01.005.
CUTULLÉ
C.
Population structure of Australian isolates of the cattle tick Rhipicephalus (Boophilus) microplus.
Veterinary, Parasitology
161
283
291
2009
Available from: http://www.sciencedirect.com/science/article/pii/S0304401709000326
Sept. 25, 2015
10.1016/j.vetpar.2009.01.005.
DAVEY, R.B. et al. Longevity and mating behavior in males and parthenogenesis in females in hybridized Boophilus ticks (Acari: Ixodidae). Journal of Medical Entomology, v.20, p.614-617, 1983.
DAVEY
R.B.
Longevity and mating behavior in males and parthenogenesis in females in hybridized Boophilus ticks (Acari: Ixodidae).
Journal of Medical Entomology
20
614
617
1983
DE LA FUENTE , J. et al. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Animal Health Research Reviews, v.8, p.23-38, 2007. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/17692140
>. Accessed: May 02, 2015. doi: 10.10 17/S1466252307001193.
DE LA FUENTE
J.
A ten-year review of commercial vaccine performance for control of tick infestations on cattle.
Animal Health Research Reviews
8
23
38
2007
Available from: http://www.ncbi.nlm.nih.gov/pubmed/17692140
May 02, 2015
10.10 17/S1466252307001193
DE LA FUENTE , J. et al. Molecular analysis of Boophilus spp. (Acari: Ixodidae) tick strains. Veterinary, Parasitology v.92, p.209-222, 2000. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/10962158
>. Accessed: May 12, 2015. doi: 10.1016/S0304-4017(00)00308-3.
DE LA FUENTE
J.
Molecular analysis of Boophilus spp. (Acari: Ixodidae) tick strains.
Veterinary, Parasitology
92
209
222
2000
Available from: http://www.ncbi.nlm.nih.gov/pubmed/10962158
May 12, 2015
10.1016/S0304-4017(00)00308-3.
DE MEEÛS, T. et al. Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia. Infection, Genetics and Evolution, v.10, p.976-983, 2010. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1567134810001693
>. Accessed: Apr. 16, 2015. doi: 10.1016/j.meegid.2010.06.005.
DE MEEÛS
T.
Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia.
Infection, Genetics and Evolution
10
976
983
2010
Available from: http://www.sciencedirect.com/science/article/pii/S1567134810001693
Apr. 16, 2015
10.1016/j.meegid.2010.06.005.
DOBSON, S.J.; BARKER, S.C. Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic., Molecular Phylogenetics and Evolution v.11, p.288-295, 1999. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/10191073
>. Accessed: Jun. 28, 2015. doi: 10.1006/mpev.1998.0565.
DOBSON
S.J.
BARKER
S.C.
Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic.,
Molecular Phylogenetics and Evolution
11
288
295
1999
Available from: http://www.ncbi.nlm.nih.gov/pubmed/10191073
Jun. 28, 2015
10.1006/mpev.1998.0565.
ESTRADA-PEÑA, A. et al. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages., Journal of Medical Entomology v.49, n.4, p.794-802, 2012. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/22897039
>. Accessed: Jan. 13, 2015. doi: 10.1603/ME11223.
ESTRADA-PEÑA
A.
Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages
Journal of Medical Entomology
49
4
794
802
2012
Available from: http://www.ncbi.nlm.nih.gov/pubmed/22897039
Jan. 13, 2015
10.1603/ME11223.
ESTRADA-PEÑA, A. et al. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America., Experimental and Applied Acarology v.38, p.219-235, 2006.
ESTRADA-PEÑA
A.
The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America
Experimental and Applied Acarology
38
219
235
2006
FELDMAN-MUHSAM, B.; SHECHTER, R. Some notes on the genus Boophilus (Ixodidae) with special reference to species found in Israel., Journal of Medical Entomology v.7, p.677-686, 1970. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/5501234
>. Accessed: Sept. 13, 2014. doi: 10.1093/jmedent/7.6.677.
FELDMAN-MUHSAM
B.
SHECHTER
R.
Some notes on the genus Boophilus (Ixodidae) with special reference to species found in Israel
Journal of Medical Entomology
7
677
686
1970
Available from: http://www.ncbi.nlm.nih.gov/pubmed/5501234
Sept. 13, 2014
10.1093/jmedent/7.6.677.
FRANCISCHETTI, I.M. et al. The role of saliva in tick feeding. Frontier Bioscience (Landmark Ed) , v.14, p.2051-2088, 2009.
FRANCISCHETTI
I.M.
The role of saliva in tick feeding. Frontier Bioscience (Landmark Ed)
14
2051
2088
2009
FRISCH, J. Towards a permanent solution for controlling cattle tick., International Journal for Parasitology v.29, p.57-71, 1999. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0020751998001775
>. Accessed: Sept. 12, 2014. doi: 10.1016/S0020-7519(98)00177-5.
FRISCH
J.
Towards a permanent solution for controlling cattle tick
International Journal for Parasitology
29
57
71
1999
Available from: http://www.sciencedirect.com/science/article/pii/S0020751998001775
Sept. 12, 2014
10.1016/S0020-7519(98)00177-5.
FULLER, C. Notes on the Queensland cattle tick and its relationship to the red water tick and the blue tick of Cape Colony (South Africa). Queensland Agricultural Journal, v.4, p.389-394, 1899.
FULLER
C.
Notes on the Queensland cattle tick and its relationship to the red water tick and the blue tick of Cape Colony (South Africa)
Queensland Agricultural Journal
4
389
394
1899
GARCIA-GARCIA, J.C. et al. Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen., Experimental and Applied Acarology v.23, p.883-895, 1999.
GARCIA-GARCIA
J.C.
Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen
Experimental and Applied Acarology
23
883
895
1999
GRAHAM, O.H. et al. Cross-mating experiments with Boophilus annulatus and B. microplus (Acarina: Ixodidae)., Journal of Medical Entomology v.9, p.531-537, 1972. Available from: <Available from: http://jme.oxfordjournals.org/content/9/6/531.long
>. Accessed: Jan. 15, 2014. doi: 10.1093/jmedent/9.6.531.
GRAHAM
O.H.
Cross-mating experiments with Boophilus annulatus and B. microplus (Acarina: Ixodidae)
Journal of Medical Entomology
9
531
537
1972
Available from: http://jme.oxfordjournals.org/content/9/6/531.long
Jan. 15, 2014
10.1093/jmedent/9.6.531.
GRAHAM, O.H.; HOURRIGAN, J.L. Eradication programs for the arthropod parasites of livestock., Journal of Medical Entomology v.13, p.629-658, 1977. Available from: <Available from: http://www.ncbi.nlm.nih.gov /pubmed/328882
>. Accessed: May 12, 2014. doi: 10.1093/ jmedent/13.6.629.
GRAHAM
O.H.
HOURRIGAN
J.L.
Eradication programs for the arthropod parasites of livestock
Journal of Medical Entomology
13
629
658
1977
Available from: http://www.ncbi.nlm.nih.gov /pubmed/328882
May 12, 2014
10.1093/ jmedent/13.6.629
GRISI, L. et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinaria, v.23, p.150-156, 2014. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/25054492
>. Accessed: May 25, 2015. doi: 10.1590/S1984-29612014042.
GRISI
L.
Reassessment of the potential economic impact of cattle parasites in Brazil.
Revista Brasileira de Parasitologia Veterinaria
23
150
156
2014
Available from: http://www.ncbi.nlm.nih.gov/pubmed/25054492
May 25, 2015
10.1590/S1984-29612014042.
GUGLIELMONE, A. et al. Ticks (Acari: Ixodidae) of the Neotropical Zoogeographic Region. The Netherlands: Atalanta Houten, 2003. (Special Publication, International Consortium on) Ticks and Tick-Borne Diseases.
GUGLIELMONE
A.
Ticks (Acari: Ixodidae) of the Neotropical Zoogeographic Region
The Netherlands
Atalanta Houten
2003
Ticks and Tick-Borne Diseases
GUGLIELMONE, A.A. et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodidae) of the world: a list of valid species names. Zootaxa, v.2528, p.1-28, 2010. Available from: <Available from: http://www.mapress.com/zootaxa/2010/f/z02528p028f.pdf
>. Accessed: Jan. 23, 2014.
GUGLIELMONE
A.A.
The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodidae) of the world: a list of valid species names.
Zootaxa
2528
1
28
2010
Available from: http://www.mapress.com/zootaxa/2010/f/z02528p028f.pdf
Jan. 23, 2014
HAJDUSEK, O. et al. Interaction of the tick immune system with transmitted pathogens. Frontiers in Cellular and Infection Microbiology, v.3, p.26, 2013. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/23875177
>. Accessed: Mar. 23, 2014. doi: 10.3389/fcimb.2013.00026.
HAJDUSEK
O.
Interaction of the tick immune system with transmitted pathogens.
Frontiers in Cellular and Infection Microbiology
3
26
26
2013
Available from: http://www.ncbi.nlm.nih.gov/pubmed/23875177
Mar. 23, 2014
10.3389/fcimb.2013.00026.
HILLYARD, P.D. Ticks of North-West Europe: keys and notes for identification of the species. Shrewsbury: Linnean Society of London and the Estuarine and Coastal Sciences Association by Field Studies Council, 1996. 178p.
HILLYARD
P.D.
Ticks of North-West Europe: keys and notes for identification of the species
Shrewsbury
Linnean Society of London and the Estuarine and Coastal Sciences Association by Field Studies Council
1996
178
HOOGSTRAAL, H. Argasid and nuttalliellid ticks as parasites and vectors. Advances in, Parasitology v.24, p.135-238, 1985. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/3904345
>. Accessed: May 23, 2014. doi: 10.1016/S0065-308X(08)60563-1.
HOOGSTRAAL
H.
Argasid and nuttalliellid ticks as parasites and vectors.
Advances in, Parasitology
24
135
238
1985
Available from: http://www.ncbi.nlm.nih.gov/pubmed/3904345
May 23, 2014
10.1016/S0065-308X(08)60563-1.
KLOMPEN, J.S.H. et al. Systematics and biogeography of hard ticks, a total evidence approach. Cladistics, v.16, p.79-102, 2000. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0748300799901263
>. Accessed: Nov. 19, 2014. doi: 10.1006/clad.1999.0126.
KLOMPEN
J.S.H.
Systematics and biogeography of hard ticks, a total evidence approach
Cladistics
16
79
102
2000
Available from: http://www.sciencedirect.com/science/article/pii/S0748300799901263
Nov. 19, 2014
10.1006/clad.1999.0126.
KOFFI, B.B. et al. Characterization of polymorphic microsatellite loci within a young Boophilus microplus metapopulation. Molecular Ecology, v.6 p.502-504, Notes 2006b. Available from: <Available from: http://agritrop.cirad.fr/533705/
>. Accessed: May 12, 2015. doi: 10.1111/j.1471-8286.2006.01295.x.
KOFFI
B.B.
Characterization of polymorphic microsatellite loci within a young Boophilus microplus metapopulation.
Molecular Ecology
6
502
504
2006b
Available from: http://agritrop.cirad.fr/533705/
May 12, 2015
10.1111/j.1471-8286.2006.01295.x.
KOFFI, B.B. et al. Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management., Molecular Ecology v.15, p.4603-4611, 2006a. Available from: <Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2006.03098.x/abstract
>. Accessed: Jan. 16, 2015. doi: 10.1111/j.1365-294X.2006.03098.x.
KOFFI
B.B.
Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management.
Molecular Ecology
15
4603
4611
2006a
Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2006.03098.x/abstract
Jan. 16, 2015
10.1111/j.1365-294X.2006.03098.x.
LABRUNA, M.B. et al. Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evolutionary Biology, v.9, p.46-58, 2009. Available from: <Available from: http://www.biomedcentral.com/1471-2148/9/46
>. Accessed: Jan. 12, 2014.
LABRUNA
M.B.
Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus.
BMC Evolutionary Biology
9
46
58
2009
Available from: http://www.biomedcentral.com/1471-2148/9/46
Jan. 12, 2014
LEGER, E. et al. Changing distributions of ticks. causes and consequences., Experimental and Applied Acarology v.59, p.219-244, 2013. Available from: <Available from: http://link.springer.com/article/10.1007%2Fs10493-012-9615-0
>. Accessed: Dec. 23, 2014. doi: 10.1007/s10493-012-9615-0.
LEGER
E.
Changing distributions of ticks. causes and consequences.
Experimental and Applied Acarology
59
219
244
2013
Available from: http://link.springer.com/article/10.1007%2Fs10493-012-9615-0
Dec. 23, 2014
10.1007/s10493-012-9615-0.
LEGG, J. Some observations on the life history of the cattle tick (Boophilus australis). Proceeding of Royal Society Queensland, v.41, p.121-32, 1930.
LEGG
J.
Some observations on the life history of the cattle tick (Boophilus australis)
Proceeding of Royal Society Queensland
41
121
132
1930
LEMPEREUR, L. et al. Development and validation of a PCR-RFLP test to identify African Rhipicephalus (Boophilus) ticks. Acta Tropica, v.114, p.55-58, 2010. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0001706X10000070
>. Accessed: Sept. 13, 2014. doi: 10.1016/j.actatropica.2010.01.004.
LEMPEREUR
L.
Development and validation of a PCR-RFLP test to identify African Rhipicephalus (Boophilus) ticks.
Acta Tropica
114
55
58
2010
Available from: http://www.sciencedirect.com/science/article/pii/S0001706X10000070
Sept. 13, 2014
10.1016/j.actatropica.2010.01.004.
LOHMEYER, K.H. et al. Distribution of Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae) infestations detected in the United States along the Texas/Mexico Border., Journal of Medical Entomology v.48, p.770-774, 2011. Available from: <Available from: http://jme.oxfordjournals.org/content/48/4/770.long
>. Accessed: Oct 16, 2015. doi: 10.1603/ME10209.
LOHMEYER
K.H.
Distribution of Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae) infestations detected in the United States along the Texas/Mexico Border.
Journal of Medical Entomology
48
770
774
2011
Available from: http://jme.oxfordjournals.org/content/48/4/770.long
Oct 16, 2015
10.1603/ME10209.
LONDT, J.G.H.; ARTHUR, D.R. The structure and parasitic life cycle of Boophilus microplus (Canestrini, 1888) in South Africa (Acarina: Ixodidae). Journal of the Entomological Society of South Africa, v. 38 p.321-340, 1975.
LONDT
J.G.H.
ARTHUR
D.R.
The structure and parasitic life cycle of Boophilus microplus (Canestrini, 1888) in South Africa (Acarina: Ixodidae)
Journal of the Entomological Society of South Africa
38
321
340
1975
LOW, V. et al. Molecular characterization of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assemblages throughout the world., Parasites & Vectors v.8, p.341, 2015. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482097/
>. Accessed: May 16, 2015. doi: 10.1186/s13071-015-0956-5.
LOW
V.
Molecular characterization of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assemblages throughout the world.
Parasites & Vectors
8
341
341
2015
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482097/
May 16, 2015
10.1186/s13071-015-0956-5.
MADDER, M. et al. Rhipicephalus (Boophilus) microplus ticks found in West Africa., Experimental and Applied Acarology v.43, p.233-234, 2007. Available from: <Available from: http://link.springer.com/article /10.1007%2Fs10493-007-9110-1
>. Accessed: May 27, 2014. doi: 10.1007/s10493-007-9110-1.
MADDER
M.
Rhipicephalus (Boophilus) microplus ticks found in West Africa.
Experimental and Applied Acarology
43
233
234
2007
Available from: http://link.springer.com/article /10.1007%2Fs10493-007-9110-1
May 27, 2014
10.1007/s10493-007-9110-1.
MANGOLD, J.J. et al. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). ParasitologyResearch, v.84, p.478-484, 1998. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/9660138
>. Accessed: Jan. 12, 2014. doi: 10.1007/s004360050433.
MANGOLD
J.J.
Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae)
Parasitology
84
478
484
1998
Available from: http://www.ncbi.nlm.nih.gov/pubmed/9660138
Jan. 12, 2014
10.1007/s004360050433.
McCOOKE, J.K. et al. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads. Gene, v.571, p.135-141, 2015. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/26117172
>. Accessed: Oct. 29, 2015. doi: 10.1016/j.gene. 2015.06. 060.
McCOOKE
J.K.
The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads.
Gene
571
135
141
2015
Available from: http://www.ncbi.nlm.nih.gov/pubmed/26117172
Oct. 29, 2015
10.1016/j.gene. 2015.06. 060
MEEUS, T. et al. Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia., Infection Genetics and Evolution v.10, p.976-983, 2010. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1567134810001693
>. Accessed: Jan. 19, 2015. doi: 10.1016/j.meegid.2010.06.005.
MEEUS
T.
Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia
Infection Genetics and Evolution
10
976
983
2010
Available from: http://www.sciencedirect.com/science/article/pii/S1567134810001693
Jan. 19, 2015
10.1016/j.meegid.2010.06.005.
MINNING, W. Beitrage zur Systematik und Morphologie der Zeckengattung Boophilus curtice. Z. Zeitschrift für Parasitenkunde, v.7, p.1-43, 1934.
MINNING
W.
Beitrage zur Systematik und Morphologie der Zeckengattung Boophilus curtice. Z.
Zeitschrift für Parasitenkunde
7
1
43
1934
MOHLER, J.R. Texas or tick fever and its prevention. Farm Bulletin of United States Department of Agriculture, v.238, p.1-44, 1906.
MOHLER
J.R.
Texas or tick fever and its prevention
Farm Bulletin of United States Department of Agriculture
238
1
44
1906
MURRELL, A. et al. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography., Molecular Phylogenetics and Evolution v.21, p.244-258, 2001. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1055790301910188
>. Accessed: Jul. 23, 2014. doi: 10.10 06/mpev.2001.1018.
MURRELL
A.
A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography.
Molecular Phylogenetics and Evolution
21
244
258
2001
Available from: http://www.sciencedirect.com/science/article/pii/S1055790301910188
Jul. 23, 2014
10.10 06/mpev.2001.1018
MURRELL, A. et al. Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic., Molecular Phylogenetics and Evolution v.16, p.1-7, 2000. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S1055790300907620
>. Accessed: Sept. 27, 2014. doi: 10.1006/mpev.2000.0762.
MURRELL
A.
Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic.
Molecular Phylogenetics and Evolution
16
1
7
2000
Available from: http://www.sciencedirect.com/science/article/pii/S1055790300907620
Sept. 27, 2014
10.1006/mpev.2000.0762.
MURRELL, A. et al. The value of idiosyncratic markers and changes to conserved tRNA sequences from the mitochondrial genome of hard ticks (Acari: Ixodida: Ixodidae) for phylogenetic inference. Systematic Biology, v.52, p.296-310, 2003. Available from: <Available from: http://sysbio.oxfordournals.org/content/52/3/296.long
>. Accessed: Jan. 12, 2015. doi: 10.1080/10635150390196957.
MURRELL
A.
The value of idiosyncratic markers and changes to conserved tRNA sequences from the mitochondrial genome of hard ticks (Acari: Ixodida: Ixodidae) for phylogenetic inference.
Systematic Biology
52
296
310
2003
Available from: http://sysbio.oxfordournals.org/content/52/3/296.long
Jan. 12, 2015
10.1080/10635150390196957.
MURRELL, A.; BARKER, S.C. Synonymy of Boophilus curtice, 1891 with Rhipicephalus koch, 1844 (Acari: Ixodidae). Systematic, Parasitology v.56, p.169-172, 2003. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/14707501
>. Accessed: May 12, 2014. doi: 10.1023/B:SYPA.0000003802.36517.a0.
MURRELL
A.
BARKER
S.C.
Synonymy of Boophilus curtice, 1891 with Rhipicephalus koch, 1844 (Acari: Ixodidae).
Systematic, Parasitology
56
169
172
2003
Available from: http://www.ncbi.nlm.nih.gov/pubmed/14707501
May 12, 2014
10.1023/B:SYPA.0000003802.36517.a0.
NEUMANN, L.G. Revision de la famille des Ixodides Mem. Bulletin de la Société zoologique de France, v.14, p.249-372, 1901.
NEUMANN
L.G.
Revision de la famille des Ixodides Mem
Bulletin de la Société zoologique de France
14
249
372
1901
OLWOCH J.M. et al. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort Journal of Veterinary Research, v.74, p.45-72, 2007. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/17708153
>. Accessed: Sept. 21, 2014. doi: 10.4102/ojvr.v74i1.139.
OLWOCH
J.M.
Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa.
Onderstepoort Journal of Veterinary Research
74
45
72
2007
Available from: http://www.ncbi.nlm.nih.gov/pubmed/17708153
Sept. 21, 2014
10.4102/ojvr.v74i1.139.
PIESMAN, J.; EISEN, L. Prevention of tick-borne diseases. Annual Reviews of Entomology, v.53, p.323-343, 2008. Available from: <Available from: http://www.annualreviews.org
>. Accessed: Dec. 12, 2014. doi: 10.1146/annurev.ento.53.103106.093429.
PIESMAN
J.
EISEN
L.
Prevention of tick-borne diseases.
Annual Reviews of Entomology
53
323
343
2008
Available from: http://www.annualreviews.org
Dec. 12, 2014
10.1146/annurev.ento.53.103106.093429.
POUND, J.M. et al. Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in south Texas: a review and update. Journal of Economic Entomology, v.103, p.211-218, 2010. Available from: <Available from: http://jee.oxfordjournals.org/
>. Accessed: Sept. 27, 2015. doi: 10.1603/EC09359.
POUND
J.M.
Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in south Texas: a review and update.
Journal of Economic Entomology
103
211
218
2010
Available from: http://jee.oxfordjournals.org/
Sept. 27, 2015
10.1603/EC09359.
RECK, J. et al. First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides. Veterinary, Parasitology v.20, p.128-136, 2014. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/24560364
>. Accessed: May 23, 2015. doi: 10.1016/j.vetpar.2014.01.012.
RECK
J.
First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides.
Veterinary, Parasitology
20
128
136
2014
Available from: http://www.ncbi.nlm.nih.gov/pubmed/24560364
May 23, 2015
10.1016/j.vetpar.2014.01.012.
ROBERTS, F.H.S. The taxonomic status of the species of the genera Rhipicephalus koch and Boophilus curtice (Acarina: Ixodidae) occurring in Australia. Australian Journal of Zoology, v.13, p.491-523, 1965. Available from: <Available from: http://www.publish.csiro.au/paper/ZO9650491.htm
>. Accessed: Dec. 05, 2014. doi: 10.1071/ZO9650491.
ROBERTS
F.H.S.
The taxonomic status of the species of the genera Rhipicephalus koch and Boophilus curtice (Acarina: Ixodidae) occurring in Australia
Australian Journal of Zoology
13
491
523
1965
Available from: http://www.publish.csiro.au/paper/ZO9650491.htm
Dec. 05, 2014
10.1071/ZO9650491.
SALMON, D.E.; STILES, C.W. The cattle ticks (Ixodoidea) of the United States. In: ANNUAL REPORT OF THE UNITED STATE, 17, 1901, Washington: Department of Agriculture, Bureau of Animal Industry, 1901. p.380-491.
SALMON
D.E.
STILES
C.W.
The cattle ticks (Ixodoidea) of the United States.
ANNUAL REPORT OF THE UNITED STATE, 17
1901
Washington
Department of Agriculture, Bureau of Animal Industry
1901
380
491
SATTLER, P.W. et al. Genetic similarity and variability between natural populations and laboratory colonies of North American Boophilus (Acari: Ixodidae). Journal of, Parasitology v.72, p.95-100, 1986. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/3712179
>. Accessed: Dec. 12, 2014. doi: 10.2307 /3281799.
SATTLER
P.W.
Genetic similarity and variability between natural populations and laboratory colonies of North American Boophilus (Acari: Ixodidae).
Journal of, Parasitology
72
95
100
1986
Available from: http://www.ncbi.nlm.nih.gov/pubmed/3712179
Dec. 12, 2014
10.2307 /3281799
SAUER, J.R. et al. Salivary glands in ixodid ticks: control and mechanism of secretion. Journal of Insect Physiology, v.46, p.10691078, 2000. Available from: <Available from: http://www.sciencedirect.com/science/article/pii/S0022191099002103
>. Accessed: Dec. 23, 2014. doi: 10.1016/S0022-1910(99)00210-3.
SAUER
J.R.
Salivary glands in ixodid ticks: control and mechanism of secretion.
Journal of Insect Physiology
46
10691078
10691078
2000
Available from: http://www.sciencedirect.com/science/article/pii/S0022191099002103
Dec. 23, 2014
10.1016/S0022-1910(99)00210-3.
SPICKETT, A.M.; MALAN, J.R. Genetic incompatibility between Boophilus decoloratus (Koch, 1844) and Boophilus microplus (Canestrini, 1888) and hybrid sterility of Australian and South African Boophilus microplus (Acarina: Ixodidae)., Onderstepoort Journal of Veterinary Research v.45, p.149-153, 1978.
SPICKETT
A.M.
MALAN
J.R.
Genetic incompatibility between Boophilus decoloratus (Koch, 1844) and Boophilus microplus (Canestrini, 1888) and hybrid sterility of Australian and South African Boophilus microplus (Acarina: Ixodidae)
Onderstepoort Journal of Veterinary Research
45
149
153
1978
THOMPSON, G.D. et al. Hybrid sterility in cattle ticks. Experientia, v.37, p.127-128, 1981. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/571591
>. Accessed: Dec. 21, 2014. doi: 10.1007/BF01963186.
THOMPSON
G.D.
Hybrid sterility in cattle ticks.
Experientia
37
127
128
1981
Available from: http://www.ncbi.nlm.nih.gov/pubmed/571591
Dec. 21, 2014
10.1007/BF01963186.
TONNESEN, M.H. et al. Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo province, South Africa., Experimental and Applied Acarology v.32, p.199-208, 2004. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/15139085
>. Accessed: Jan. 15, 2015. doi: 10.1023/B:APPA.0000021789.44411.b5.
TONNESEN
M.H.
Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo province, South Africa
Experimental and Applied Acarology
32
199
208
2004
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15139085
Jan. 15, 2015
10.1023/B:APPA.0000021789.44411.b5
UILENBERG, G. Boophilus (Uroboophilus) fallax Minning, 1934 synonyme de Boophilus microplus (Canestrini, 1887) (Ixodidae). Revue d'elevage et de Medecine Veterinaire des Pays Tropicaux, v.15, p.387-398,1962.
UILENBERG
G.
(Uroboophilus) fallax Minning, 1934 synonyme de Boophilus microplus (Canestrini, 1887) (Ixodidae).
Revue d'elevage et de Medecine Veterinaire des Pays Tropicaux
15
387
398
1962
VERGES J. Les tiques du Betail. Methodes d'eradication. Noumea: Imprimeries reunies, 1944. 72p.
VERGES
J.
Les tiques du Betail
Methodes d'eradication. Noumea
Imprimeries reunies
1944
72
WALKER, A.R. et al. Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh, 2003. 221p.
WALKER
A.R.
Ticks of domestic animals in Africa: a guide to identification of species.
Bioscience Reports
2003
221
WILLADSEN, P. Anti-tick vaccines., Parasitology v.129, p.S367-S387, 2004. Available from: <Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938519
>. Accessed: Dec. 07, 2014. doi: 10.1017/S003118200300 4657.
WILLADSEN
P.
Anti-tick vaccines.
Parasitology
129
S367
S387
2004
Available from: http://www.ncbi.nlm.nih.gov/pubmed/15938519
Dec. 07, 2014
10.1017/S003118200300 4657
XU, Z. et al. Complete mitochondrial genome of Rhipicephalus simus. Mitochondrial DNA: The Journal of DNA Mapping, Sequencing, and Analysis. p 888-889. Accessed from: <http:// www.tandfonline.com/>. Accessed: Feb. 10, 2016. doi: 10.3109/19401736. 2014.919490.
XU
Z.
Complete mitochondrial genome of Rhipicephalus simus.
Mitochondrial DNA: The Journal of DNA Mapping, Sequencing, and Analysis.
888
889
http:// www.tandfonline.com/
10
02
2016
10.3109/19401736. 2014.919490
1
CR-2015-1416
Autoria
Abid Ali
*
*Corresponding author: Abid Ali, email: uop_ali@yahoo.com.
Institute of Biotechnology and Genetic Engineering, University of Agriculture, 25130, Peshawar, Khyber Pakhtunkhwa, PakistanUniversity of AgriculturePakistanPeshawar, Khyber Pakhtunkhwa, PakistanInstitute of Biotechnology and Genetic Engineering, University of Agriculture, 25130, Peshawar, Khyber Pakhtunkhwa, Pakistan
Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.Universidade de São Paulo (USPBrazilRibeirão Preto, SP, BrazilEscola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.
Luís Fernando Parizi
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilCentro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Beatriz Rossetti Ferreira
Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.Universidade de São Paulo (USPBrazilRibeirão Preto, SP, BrazilEscola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.
Itabajara da Silva Vaz Junior
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilCentro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilFaculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilInstituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Institute of Biotechnology and Genetic Engineering, University of Agriculture, 25130, Peshawar, Khyber Pakhtunkhwa, PakistanUniversity of AgriculturePakistanPeshawar, Khyber Pakhtunkhwa, PakistanInstitute of Biotechnology and Genetic Engineering, University of Agriculture, 25130, Peshawar, Khyber Pakhtunkhwa, Pakistan
Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.Universidade de São Paulo (USPBrazilRibeirão Preto, SP, BrazilEscola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilCentro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilFaculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.Universidade Federal do Rio Grande do Sul (UFRGSBrazilPorto Alegre, RS, BrazilInstituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
Como citar
Ali, Abid et al. Uma revisão sobre duas espécies distintas de|Rhipicephalus: R. micropluse|R. Australis. Ciência Rural [online]. 2016, v. 46, n. 7 [Acessado 3 Abril 2025], pp. 1240-1248. Disponível em: <https://doi.org/10.1590/0103-8478cr20151416>. Epub 19 Abr 2016. ISSN 1678-4596. https://doi.org/10.1590/0103-8478cr20151416.
Universidade Federal de Santa MariaUniversidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 -
Santa Maria -
RS -
Brazil E-mail: cienciarural@mail.ufsm.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.