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INTRODUCTION

Soybean [Glycine max (L.) Merrill] is 
the fourth most widely grown crop in the world and 
it is a source of oil, protein, and raw material for 
biodiesel production (SILVA et al., 2017). Currently, 
Brazil consolidates as the mainly world soybean 
producer and exporter (USDA, 2020), even though 
other countries, such as EUA, China, and India, 
are representative in soybean production. Actually, 
the soybean is spread cultivated from low to high 
latitudes (LIU et al., 2017). In this scenario, the 
genotype × environment (G×E) interaction plays an 

essential role in phenotypic expression and can lead 
to difficulties in genetic selection.

The G×E interaction is characterized by 
the differential response of genotypes to a change in 
environment (ALVES et al., 2020). The environment 
influences on the phenotypic expression, in order to 
provide the G×E interaction, is one of the biggest 
challenges that breeders deal with in plant breeding. As 
a result, a specific environment can affect the genetic the 
selection; however, in practice, the genetic material 
generally is recommended to several environments.

The mixed models is the main method 
for evaluating G×E interaction (LI et al., 2017)the 
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ABSTRACT: The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in 
genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of 
mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield 
trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted 
through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test 
(LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very 
high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability.
Key words: REML/BLUP, plant breeding, genotype × environment interaction, genetic selection, Glycine max.

RESUMO: A interação genótipo × ambiente (G × E) desempenha um papel essencial na expressão fenotípica e pode provocar dificuldades 
na seleção genética. Assim, o presente estudo teve como objetivo estimar parâmetros genéticos e comparar diferentes estratégias de seleção 
no contexto de modelos mistos para melhoramento da soja. Para isso, foram utilizados dados referentes à avaliação de 30 genótipos em dez 
ambientes, referentes à característica produtividade de grãos. Os componentes de variância foram estimados pela máxima verossimilhança 
restrita (REML) e os valores genotípicos foram preditos pela melhor previsão imparcial linear (BLUP). Efeitos significativos dos genótipos e 
interação G × E foram detectados pelo teste da razão de verossimilhança (LRT). Correlação genotípica baixa foi obtida entre os ambientes 
indicando interação G × E do tipo complexa. A acurácia seletiva foi muito alta, indicando alta confiabilidade. Os resultados mostraram que 
os genótipos de soja mais produtivos apresentam alta adaptabilidade e estabilidade.
Palavras-chave: REML/BLUP, Glycine max, interação genótipo × ambiente, melhoramento de plantas, seleção genética.
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environment, and the differential sensitivity of certain 
genotypes to different environments, also known 
as genotype by environment (G × E. This method 
has features to model the heterogeneity of genetic 
variances and correlations between environments, 
as well as to model spatial trends in individual trials 
(BERNARDO, 2020)summarized the alternatives 
available at that time and noted that all of these 
approaches could be classified as multiplicative 
models. Recently, mixed model approaches have 
become popular for the analysis of series of variety 
trials. There are numerous reasons for their use, 
including the ease with which incomplete data (not 
all varieties in all trials. The ability of genotypes 
to respond differently over a wide range of 
environmental conditions may be an essential factor 
in a breeding program. In this context, the study 
of stability and adaptability becomes relevant. A 
genotype is considered stable when it presents slight 
variations in the general deviation when evaluated 
under various environmental conditions, and is 
considered adapted when it has responsiveness to 
environmental improvement (RESENDE, 2004). 

In the context of mixed models, 
simultaneous selection for productivity, stability 
and adaptability can be performed by harmonic 
mean of relative performance of genetic values 
method, HMRPGV (RESENDE, 2004). Currently, 
the HMRPGV method has been applied in several 
crops for breeding purpose (GONÇALVES et al., 
2014; ALVES et al., 2018genetic selection is carried 
out based on several traits, which can be genetically 
correlated. In this case, selection bias may occur 
if these traits are analyzed individually. Thus, the 
present work aimed to evaluate the applicability 
and efficiency of multiple-trait best linear unbiased 
prediction (BLUP; SOUZA et al., 2020). This 
procedure allows the simultaneous selection via 
the three parameters mentioned and presents the 
following advantages: (i) it considers the genotypic 
effects as random and therefore provides genotypic 
and non-phenotypic adaptability and stability; (ii) it 
allows analyzes with unbalance data; (iii) it enables 
to use a non-orthogonal designs; (iv) it allows to 
deal with variance heterogeneity; (v) it allows to 
consider correlated errors within environments; (vi) 
it provides already discounted (penalized) genotypic 
values of the instability; (vii) it does not depend on 
the estimation and interpretation of other parameters; 
(viii) it eliminates the noise of the G×E interaction 
as it considers the heritability of these effects; (ix) 
it generates results on the magnitude or scale of the 
evaluated trait itself; and, (x) it allows to compute the 

genetic gain with the selection by the three attributes 
simultaneously (RESENDE, 2007).

Obtaining reliable estimates of genetic 
parameters based on their evaluation of phenotypic 
adaptability and stability are paramount in conducting 
soybean breeding programs. These estimates assist the 
selection process and serve as a theoretical reference 
in cultivars recommendation. Thus, the present study 
aimed to estimate genetic parameters and to compare 
different selection strategies in the context of mixed 
models for soybean breeding.

MATERIALS   AND   METHODS

Thirty improved lines soybean, belonging 
to the 6-7 relative maturity group, were evaluated at 
10 municipalities, allocated in the soybean macro-
region 2 (micro-regions 201, 202 and 204), in the 
2013/2014 harvest. The experiments were conducted 
in a randomized block design with three replications. 
Each plot consisted of four lines of 5 m, spaced 0.5 
m between lines and between plots. At maturity, the 
two central lines were harvested, totalizing an area 
of 5 m2. The trait evaluated was the grain yield (kg 
ha-1), correcting to 13% of moisture. Seed control 
and pest control management followed the technical 
recommendations for soybean cultivation at each site.

The variance components were estimated 
through restricted maximum likelihood, REML 
(PATTERSON & THOMPSON, 1971) and genotypic 
values were predicted through best linear unbiased 
prediction, BLUP (HENDERSON, 1975). The 
statistical model associated with the evaluation of 
genotypes in randomized complete block design in 
several sites, with one observation per plot, was given 
by the following equation:
                                  ,
where y is the vector of phenotypic data, f is the vector 
of replication-environment combinations (assumed 
to be fixed), which contemplates the effects of 
environment and replication within environment, 
added to the overall mean, g is the vector of the 
genetic effects (assumed to be random) (             ), 
where         is the genotypic variance), i is the vector 
of G×E interaction effects (random) (             ), 
where          is the G×E interaction variance), and e is 
the vector of residuals (random) (               ), where R 
represents a matrix of residual variances). Capital 
letters X, Z, and T represent the incidence matrices 
for f, g, and i, respectively.

Models with Identity variance (IDV) and 
diagonal (DIAG) residual error variance structures 
(RESENDE et al. 2014), as presented below,
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                                                                  , and

were tested by the Bayesian information criterion, 
BIC (SCHWARZ, 1978), given by:
                                                          ,                                                                          
where LogL is the logarithm of the restricted 
maximum likelihood function, p is the number of 
estimated parameters, n is the number of observations, 
and r(x) is the rank of the incidence matrix of fixed 
effects. The significance of the random effects of the 
statistical model was tested by the LRT (RAO, 1973) 
using chi-square statistics with one degree of freedom 
and a probability level of 1%. 

Phenotypic variance (           ), heritability 
of the total genetic effects (  ), coefficient of 
determination of G×E interaction effect (   ), the 
genotypic correlation across environments (    ), 
and selective accuracy (       ) , were obtained by the 
following expressions (RESENDE et al., 2014):

                        and

where          is the residual variance and  is the prediction 
error variance.

For the adaptability and stability analyses 
the following statistics were used: harmonic mean of the 
genetic values (HMGV), associated with the concept 
of stability; relative performance of the genetic values 
(RPGV), associated with the concept of adaptability; and 
HMRPGV, associated with the concepts of adaptability, 
stability, and productivity, simultaneously.

The predicted genetic value (GVij) which 
is the genetic value of genotype i at environment j, 
HMGV, RPGV, and HMRPGV, of each genotype, 
were obtained by the following expressions:

                                   and

where gi is the genetic effect of the genotype i, n is the 
number of environments (n = 10), and mj is the mean 
productivity in environment j.

The direct selection were obtained by: mj + gi 
+ geij , where  mj is the mean productivity in environment 
j,  is the effect of genotype i, and geij is the effect of 
genotype i × environment j interaction). Further, the 
indirect selection for all environments were measured 
by: (i) µ. + gi., (where: µ. is the general productivity 
mean and gi. is the effect of genotype i); (ii) considering 
stability and productivity (HMGV), (iii) adaptability and 
productivity (RPGV); and, (iv) stability, adaptability 
and productivity simultaneously (HMRPGV). The 
selection gain (SG) and SG in percentage, from direct 
and indirect selection, were obtained by the following 
expressions:(RESENDE, 2015):

where  is the genotypic value, p is the number of 
selected genotypes, Ms is the productivity mean of 
selected genotypes, and M0 is the mean productivity 
of the evaluated population. The SG was calculated 
considering a selection intensity of 20% (six genotypes).
The concordances between the selection strategies 
were calculated using the Kappa coefficient (K) 
(COHEN, 1960), given by:
  

where: A is the number of matching selected 
genotypes, C is the number of selected genotypes due 
to chance (C = bD, where b is the selection intensity) 
and D is the number of selected genotypes (six).

The variance components, genetic and 
non-genetic parameters, and genotypic values 
obtained using the Selegen-REML/BLUP software 
(RESENDE, 2016). The model accounting for 
different residual variance structures were tested 
using ASReml software (GILMOUR et al., 2015).

RESULTS   AND   DISCUSSION

Traditional analyses of multi-environment 
trials, such as additive main effects and multiplicative 
interaction (AMMI) (GAUCH, 1992) and genotype 
+ G×E biplot (GGE biplot) (YAN et al., 2000)
environment (E, are based on the analysis of variance 
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(ANOVA), thus assuming fixed genotype effect and 
IDV residual variance (homoscedasticity) (LI et al., 
2017). In the context of mixed model methodology 
(REML/BLUP), besides the effect of genotypes being 
advantageously treated as random, the needed of 
homoscedasticity can be circumvent, that is, REML/
BLUP deal with DIAG residues (SMITH et al., 2005). 
This methodology allows; therefore, to model the 
G×E interaction, using for this purpose, different (co)
variances structures. Thus, it is important to consider 
the structure of residual variance (for example, 
identity variance and diagonal) to select the model 
that provides the best fit (SMITH et al., 2005).

In this sense, several criteria for model 
selection were proposed, especially BIC (SCHWARZ, 
1978). With this criterion, is implicit that there is a 
model that describes the relationship between the 
variables involved and the criterion tries to maximize 
the probability of choosing the true model. Thus, the BIC 
indicates the selection of parsimonious models, that is, 
the model that involves the fewest possible parameters 
to be estimated and that explains the behavior of the 
response variable well (RESENDE et al., 2014)the 
Akaike (AIC. In this study, the BIC values for grain 
yield trait were 11606.40 and 11620.32 for models 
with IDV and DIAG residual variance, respectively. 
Therefore, the best model was the one with IDV 
residual variance (lowest BIC). Thus, this model 
was adopted to estimate variance components and to 
genotypic values. Simply put, this result means that 
the residuals having the same scatter.

The variance components have a great 
importance in plant breeding, since the population and 
breeding strategy to be used depend on information that 
can be obtained from these components (RESENDE, 
2015). According to the LRT, the random effects of 
the model (genetic and G×E interaction effects) were 
significant (p<0.01) for the grain yield trait (Table 1). 
The significance of the estimation of genetic and G×E 

interaction effects via LRT demonstrates the existence 
of genetic variability and presence of G×E interaction. 
Similar results are reported for the grain yield trait 
in soybean crop (SHAW et al., 2016, WHALEY & 
ESKANDARI, 2019).

The determination coefficients indicate the 
amount of each effects where explained in relation 
to phenotypic variance. For instance, genotypic and 
G×E interaction effects explained, respectively, 
18% (heritability) and 22% of phenotypic variance 
(Table 1). According to the classification presented 
by RESENDE (2015), the heritability of individual plots 
in the broad sense, that is, the total genetic effect (0.18) 
was of moderate magnitude. The weak genotypic 
correlation across environments (0.45) indicates the 
presence of complex type G×E interaction, which is 
problematic for the breeder. Thus, efficient selection 
methods are needed to capitalize on the favorable 
effects or circumvent the adverse effects of the G×E 
interaction (RESENDE et al., 2014). The higher 
the accuracy in evaluating a genotype, the greater the 
reliability of its predicted genotypic value. According 
to RESENDE & DUARTE (2007), the accuracy 
obtained in this study (0.90) is classified as very 
high, therefore, this result indicated a scenario very 
favorable to selection and recommendation.

As observed and expected, direct selection 
(uj + gi+ geij) (Table 2) has always led to greater 
gains with selection. However, when selecting via 
uj + gi+ geij (where G×E interaction is captured) 
recommendations are restricted to each environment 
(GONÇALVES et al., 2014). The selection via HMGV, 
RPGV, and HMRPGV led to equal gains among 
them and similar those obtained via u. + gi. (Table 2). 
In this way, the results showed that most productive 
soybean genotypes have high adaptability and stability. 
The HMGV classifies genotypes by genotypic values 
and stability, the lower the standard deviation of genotypic 
performance between environments, the higher the 

 

Table 1 - Deviance, likelihood ratio test (LRT), variance components, and determination coefficients for the grain yield trait evaluated in 
30 soybean genotypes in ten environments. 

Effect Deviance LRT Variance component Determination coefficient 

Genotype 11641.30 55.22** 43889.85±14240.27 0.18±0.05 
G×E interaction 11638.30 52.23** 53205.46±9405.88 0.22±0.04 
Residue - - 147229.36±8645.61 - 
Complete model 11586.10 - 244324.67 - 
 

**Significant at 1% probability by chi-square test. The null hypothesis was that the complete and reduced models do not differ from each 
other. 
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HMGV value. Thus, selection based on this statistic 
implies simultaneous selection for productivity and 
stability (RESENDE & DUARTE 2007). Therefore, 
indirect selection via HMGV is the most suitable 
strategy for known unfavorable environments, since 
for this type of environment genotypes with high 
stability are desirable.

The RPGV classifies genotypes by genetic 
values expressed as a ratio of the overall mean of each 
environment (RESENDE, 2007). Thus, selection 
based on this RPGV implies simultaneous selection 
for productivity and adaptability (RESENDE, 2007). 
RPGV selection is the most appropriate strategy for 
known favorable environments because the selected 
genotypes have greater responsiveness with the 
improvement of the environment. Finally, HMRPGV 
combines HMGV and RPGV statistics and implies 
simultaneous selection for productivity, stability and 
adaptability; and therefore encompasses favorable 
and unfavorable environments. According to the 
Kappa coefficient, the concordances between the 
selection strategies ranged from -0.04 to 1.00 (Figure 
1). The HMGV, RPGV, and HMRPGV methods 
showed perfect agreement with each other. Moderate 
to near perfect agreement in ranking genotype was 
found among the environments 1, 2, 3, 5, 7, and 9 with 
the HMGV, RPGV, and HMRPGV methods. For 
environment 10, insignificant concordances, except 
with the environment 8, were observed.

From the six genotypes selected via 
HMGV, RPGV, and HMRPGV five were among the 

six genotypes selected via u.+gi., so these methods 
showed high agreement. This result demonstrated the 
efficiency of the HMGV, RPGV, HMRPGV, and u. 
+ gi. methods in the selection of soybean genotypes. 
GONÇALVES et al. (2014), evaluating sugarcane 
clones, found that four of the five clones selected via 
u. + gi. were the same selected by the HMGV, RPGV, 
and HMRPGV methods and, by the three methods, the 
same clones were selected. COLOMBARI-FILHO et 
al. (2013), evaluating elite rice genotypes, reported 84% 
of coincidence in the selection by the  u. + gi. and HMRPGV 
methods, and verified that the elite genotypes selected 
via HMRPGV were the same ones selected via RPGV. 
These authors concluded that the HMRPGV method is 
an appropriate tool for the selection of stable, adapted 
and high yield potential rice genotypes.

COLOMBARI-FILHO et al. (2013), 
evaluating genetic progress, showed a significant 
increase in stability and adaptability of rice genotypes 
developed during the period from 1996 to 2010. 
According to those authors, this fact is due to the 
introduction of new genotypes in the germplasm bank 
of the Embrapa breeding program, provided by the 
USA and France, in 1996. This allowed new crosses; 
and consequently, with the selection over the years 
it provided more adapted and stable genotypes. The 
company GDM seeds, holder of the soybean genotypes 
under evaluation in this study, originated in 1982, 
in Argentina. Today, the company also manages 
soybean breeding programs in several countries in 
South America, US and Canada. With its growth, 

 

Table 2 - Selection gains (SG): direct for each environment (E); and indirect via 𝑢𝑢. +𝑔𝑔𝑖𝑖., harmonic mean of genetic values (HMGV), 
relative performance of the genetic values (RPGV), and harmonic mean of the relative performance of the genetic values 
(HMRPGV). 

Environment SG (kg ha-1) SG (%) 

E1 331.10 15.72 
E2 327.37 6.83 
E3 282.23 15.67 
E4 274.95 4.74 
E5 301.03 10.70 
E6 418.88 6.87 
E7 286.87 8.37 
E8 229.82 8.24 
E9 361.94 20.41 
E10 307.31 5.36 
𝑢𝑢. +𝑔𝑔𝑖𝑖. 197.65 5.32 
HMGV 190.90 5.14 
RPGV 190.90 5.14 
HMRPGV 190.90 5.14 
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there were introductions of new genotypes to the 
germplasm bank and high selection intensities, making 
it possible to obtain genotypes with high adaptability, 
stability and productivity, simultaneously.

CONCLUSION

The genetic parameters are easily estimated 
by mixed model methodology, being the very high 
accuracy values an indicative of model reliability in 
the genotypes ranking. The most prominent strategy 
for selection accounting for soybean productivity, 
stability, and adaptability is the HMRPGV.
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