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INTRODUCTION

Canola is considered the third most 
important oilseed in the world, accounting for 
approximately 14% of the world production of edible 
oils (USDA, 2021). In Brazil, canola cultivation stands 

out owing to its high production potential and plant 
traits, and it is of great interest for crop expansion due 
to its drought tolerance and the possibility of using 
it in rotation with soybean, corn, wheat, and beans 
(TOMM, 2007). However, investments in research 
for the development of management technologies in 
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ABSTRACT: This study measured the effect of the association between agronomic traits related to the yield of canola grains grown at different 
sowing dates through path analysis. Another objective was to obtain a method to predict the oil content in the grains, fitting a multivariate 
model through near-infrared (NIR) spectroscopy analysis. The experiment was conducted in the field using a randomized block design in plots 
subdivided by time, with four plots (sowing dates), six subplots (canola hybrids), and four replicates. In each hybrid, phenological observations 
were performed, and the grain yield was determined. The data were subjected to analysis of variance in the R environment using the F test 
at 5% probability. The oil content in the grains was determined by the traditional chemical method, and based on the NIR spectral signature 
of the grain samples, partial least squares regression (PLS-R) was established to estimate the oil content in the canola grains. The sowing 
dates influenced the production components and oil content of the grains of all hybrids. The trait number of grains in five plants (0.6857) and 
their height (0.4943) had greater estimates of positive correlations with grain yield, as well as higher values of positive direct effects on yield 
(0.2494 and 0.1595, respectively). The NIR technique combined with PLS-R was able to predict the oil content in the grains, resulting in good 
predictive models (R2 of 0.86 and root mean square error (RMSE) of 1.56 in external validation).
Key words: Brassica napus L. var. oleifera, oleaginous, association between traits, genetic breeding, NIR.

RESUMO: Objetivou-se mensurar o efeito da associação entre caracteres agronômicos relacionados à produtividade de grãos de canola cultivada 
em diferentes épocas de semeadura, através da análise de trilha. Assim como também objetivou-se obter um método para predizer o teor de 
óleo nos grãos, ajustando um modelo multivariado através da análise por espectroscopia na região do infravermelho próximo. O experimento 
foi conduzido em campo, utilizando-se o delineamento de blocos ao acaso, em parcelas subdivididas no tempo, sendo quatro parcelas (épocas 
de semeadura) e seis subparcelas (híbridos de canola), com quatro repetições. Em cada híbrido foram realizadas observações fenológicas e 
determinada a produtividade de grãos. Os dados foram submetidos à análise de variância em ambiente R pelo teste F, a cinco de probabilidade. 
O teor de óleo nos grãos foi determinado pelo método químico tradicional, e com base na assinatura espectral no infravermelho próximo de 
amostras dos grãos foi estabelecida regressão dos mínimos quadrados parciais (PLS-R) para estimar o teor de óleo nos grãos de canola. As épocas 
de semeadura influenciaram os componentes de produção e o teor de óleo dos grãos de todos híbridos. Os caracteres número de grãos em cinco 
plantas (0,6857) e altura (0,4943) apresentaram maiores estimativas de correlação positiva com a produtividade de grãos, assim como os maiores 
valores de efeito direto positivo sobre a produtividade, 0,2494 e 0,1595 respectivamente. Entretanto, o ciclo total (-0,7848), juntamente com dias 
em florescimento (-0,4520) apresentou correlação significativa negativa com a produtividade. A técnica NIR associada à PLS-R foi capaz de 
predizer o teor de óleo nos grãos, resultando em bons modelos preditivos (R2 de 0,86 e RMSE de 1,56 na validação externa) que podem ser usados 
com sucesso na análise da qualidade das amostras após colheita e nos programas de melhoramento genético.
Palavras-chave: Brassica napus L. var. oleífera, oleaginosas, associação entre caracteres, melhoramento genético, NIR.
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the cultivation of canola have been scarce. Thus, it is 
necessary to improve the technical recommendations, 
as well as investments in genetic breeding programs, 
in order to provide significant gains in yield and 
consequent expansion of the cultivated area.

Thus, within breeding programs, 
the breeding of the main trait is sought while 
simultaneously maintaining or improving the 
expression of other traits. Thus, it is important to 
know the relationship between traits (LOPES et al., 
2002) and study these correlations jointly with path 
analysis (WRIGHT, 1921), enabling the identification 
of traits that can be used as indirect selection criteria 
for yield (CARVALHO et al., 2002), which is a 
complex trait of low heritability.

In the case of postharvest evaluations in 
these plant breeding programs, it is necessary to seek 
alternative methods to the conventional process used 
to quantify oil content because it is a time-consuming 
method that uses large amounts of chemical 
products (CHENG et al., 2017). Near-infrared 
(NIR) spectroscopy has emerged as an ideal tool for 
tracking traits (FONT et al., 2006). The NIR spectrum 
provides information about the chemical composition 
of the samples, such as the oil content (PASQUINI, 
2003). All this information, obtained in a short period 
of time, allows for immediate processing of the grain 
samples after harvest and thus results in selection of 
quality materials (PETISCO et al., 2010), making the 
tool very advantageous in accelerating evaluations. 
However, to quantify such properties through NIR 
spectroscopy, it is necessary to develop multivariate 
models (PASQUINI, 2003).

In this context, studies of canola culture 
are crucial to expanding its cultivation. Given the 
above, this study seeks to provide a foundation for 
future genetic breeding programs of the crop in 
the search for more productive genotypes under 
Cerrado conditions, enabling the expansion of canola 
cultivation in the country. Furthermore, the study 
aims to accelerate evaluations of the oil content of 
different genotypes in breeding programs and obtain 
an alternative tool to the conventional chemical 
process in order to quantify the oil content in the 
grains rapidly and nondestructively.

Thus, this study measured the effect of the 
association between agronomic traits related to the 
yield of canola grains grown at different sowing dates 
with regard to the direct and indirect effects obtained 
by path analysis. In addition, a multivariate model 
fit that was able to predict the oil content in grains 
through NIR spectroscopy analysis.

MATERIALS   AND   METHODS

Site of experimentation and hybrids
The canola crop was grown in a no-tillage 

system in a clayey-red–yellow latosol in a region 
where the climate classification according to Köppen 
is the Cwa type (rainy temperate) with dry winters and 
rainy summers, with an average annual temperature 
of 20.4 °C and average annual rainfall of 1433.3 mm.

Six commercial canola hybrids (ALHT 
B4, Diamond, Hyola 433, Hyola 571 CL, Hyola 575 
CL, and Nuola 300) were used, which were chosen 
according to the availability/dominance of such 
genotypes in the market. Prior to sowing, a germination 
test was performed to evaluate germination and vigor.

Conducting the experiment and experimental design
A randomized block experimental design 

was used in subdivided plots, with four plots (sowing 
dates: February 15, February 28, March 20, and April 
9) and six subplots (canola hybrids), presenting four 
replicates. The experimental area was created in the 
no-tillage system, with subplots of five rows (spacing 
of 0.20 m) 5 m in length, totaling 5 m2, and an evenly 
distributed population of 40 plants/m2.

Traits evaluated
Based on criteria adopted in Canada and 

Australia (CANOLA COUNCIL OF CANADA, 
2020), phenological observations were performed, 
and the following variables were evaluated: a) onset 
of flowering: date when 50% of the plants had at least 
one flower; b) end of flowering: date when no flowers 
remained, except in atypical plants; c) plant height: 
average height of five representative plants of each 
plot, measured at harvest, considered from the base 
to the upper end of the branches with siliques; and d) 
maturation date: date when 50% of the seeds changed 
to a dark color in the siliques, located in the middle of 
the main raceme of the plants.

Thus, the days in flowering (DIF) and 
total cycle (TC) of these plants were evaluated. The 
number of plants per area (stand) was evaluated at 
harvest by counting all plants in the useful area. 
In addition, grain yield was evaluated based on 
the harvest of three central rows of plants 4 m in 
length, excluding 0.5 m from the edges of the 
border, totaling 2.4 m² of usable area. The harvest 
was performed manually, and the plants were kept 
in bags to dry in the air until reaching approximately 
10% moisture. In five representative plants of each 
plot, the number of siliques (NS), number of grains, 
(NG), and number of grains per silique (NGS) were 
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counted. Next, the grain samples were cleaned with 
the aid of a set of sieves, and the weight of 100 
grains (P100, g) was measured.

For the analysis of the oil content in the 
grains, the uniform seed samples were dried in an 
oven with forced air ventilation at 65 °C for 48 h 
to standardize the moisture. After drying, the seeds 
were milled with the husks, and the oil content was 
determined. The bran of the seeds was packaged in 
paper cartridges at 2 g per cartridge in duplicate per 
experimental unit. For the extraction, the methodology 
described in IUPAC (1979) was adopted using the 
Soxhlet system.

Near-infrared (NIR) spectroscopy
The biological material used in the study 

consisted of samples of grains from the different 
sowing dates cultivated in the given experiment, 
and to give greater robustness to the adjusted model, 
grains from the hybrids Hyola 50, Hyola 61, Hyola 
76, Hyola 433, ALHT B4, Hyola 571, Hyola 575, 
and Diamond, from the 2018 harvest of Embrapa 
Agroenergy, were also included, totaling eight 
different canola genotypes.

Spectral acquisition was performed in a 
Bruker MPA spectrometer, together with the computer 
program Opus version 7.5. The spectra were obtained 
from diffuse reflection mode in the range of 12,500 to 
3,600 cm-1, with a spectral resolution of 8 cm-1. The 
spectrum of each sample was obtained by the mean 
of 16 scans, performed in three different portions of 
each grain sample.

Statistical analysis
The yield and phenology trait data were 

subjected to analysis of variance in the R environment 
(R CORE TEAM 2017) using the F test at 5% 
probability, as reported by STEEL et al. (1997) when 
using subdivided plots.

Multivariate statistics for spectral data
Regarding the spectral data collected 

from the canola grains, multivariate analyses 
were performed using Unscrambler® (version 9.7) 
software. Principal component analysis (PCA) was 
initially adopted to explore the data and evaluate 
the spectral similarity between the genetic materials 
studied.

To estimate the canola oil content using 
spectral data, multivariate models were fitted using 
the partial least squares regression (PLS-R) method, 
relating the NIR spectral data obtained and the oil 
content previously determined by the traditional 

chemical method. The number of latent variables 
adopted was chosen based on the lowest standard 
error of validation and the highest coefficient of 
determination of the validation (R2cv).

The models were validated by cross-
validation and independent (external) validation 
methods. Cross-validation was performed by 
the random method, considering 96 data points 
from 32 grain samples. In this type of validation, 
one calibration data point is removed at a time, 
the model is constructed, the retained sample is 
estimated, and the process is repeated for all other 
data. The independent validation was based on two 
datasets, using 24 samples (72 data points) for the 
calibration lot and 8 samples (24 data points) for 
the validation lot.

The calibrations were performed using 
original spectra and spectra treated mathematically 
with the first derivative, aiming to improve the signal/
noise ratio. To calibrate the models to estimate the 
oil content of the samples, the selection of spectral 
ranges was determined by the Martens uncertainty 
test (WESTAD & MARTENS, 2000). Thus, the 
spectral range adopted in this study was from 3600 
cm-1 to 9000 cm-1. The anomalous samples (outliers) 
were detected using the student x leverage residual 
plot and were removed from the models.

The models were evaluated by the 
coefficient of determination (R2cv and R2p), the root 
of the mean standard error (RMSECV and RMSEP), 
and by graphical representation.

Path analysis
Path analysis was performed using Genes 

software (CRUZ, 2013). The correlation matrices 
between the involved traits were estimated, and 
their significance was evaluated by the Mantel 
test. Multicollinearity was tested based on the 
condition number of the matrix (MONTGOMERY 
& PECK, 1981). This method considers the number 
of conditions (NC) obtained by the ratio of the 
highest eigenvalue to the lowest eigenvalue of the 
correlation matrix.

The analysis was performed from a chain 
causal diagram, with the objective of unfolding 
the correlations into direct and indirect effects of 
explanatory variables on the main variable: grain 
yield. The decomposition of the correlation between 
the explanatory variables and the basic variable 
was given by CRUZ (2006). The coefficient of 
determination of the model and the effect of the 
residual variable on the main variable was also 
obtained in this analysis.
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RESULTS   AND   DISCUSSION

Path analysis
Based on the test suggested by 

MONTGOMERY & PECK (1981), moderate 
multicollinearity (100 < NC < 1000) occurred. With 
this issue, one way to minimize the problem is the 
removal of redundant traits. When analyzing the 
correlations between the traits, a high correlation 
was observed between the number of grains in five 
plants and the number of siliques (0.96). Therefore, 
it was decided to remove the number of siliques as a 
trait. Subsequently, when performing the test again, 
weak multilinearity was observed. Accordingly, the 
estimates of the coefficients of simple or phenotypic 
correlations evaluated for the seven traits of agronomic 
importance for canola culture are presented in table 1.

In general, the values of the correlations with 
YIELD ranged from 0.0339 to 0.6857, with the traits 
NG (0.6857) and HT (0.4943) showing higher estimates 
of positive and significant correlation (Table 1). Such 
positive values were higher than those estimated for the 
other traits evaluated in this study, suggesting that these 
traits contributed to increased canola yield.

Conversely, the traits TC (-0.7848) and 
DIF (-0.4520) were negatively associated with 
YIELD and most of the other traits, indicating that 
a reduction in the cycle and the flowering phase 
in canola could result in higher yields. Different 
results obtained by COIMBRA et al. (2004) showed 
a positive association between the total cycle and 
grain yield. KRÜGER et al. (2014) observed that 
the variable duration of flowering had a negative 
relationship with grain yield in the three spacings 
studied, as noted in the present study.

Canola genotypes with short cycles have 
become an excellent economic alternative since 
the crop can benefit from the final rainy periods, 
reducing the need for irrigation and favoring the 
crop’s incorporation into the production system. 
However, despite the higher demand for early hybrids 
because they enable better management of time and 
resources (ROSA et al., 2020), according to TOMM 
et al. (2010), medium- and late- cycle genotypes 
tend to have higher yield potential, precisely because 
they have a longer period to take greater advantage 
of environmental resources and to perform more 
photosynthesis. They have more time to compensate 
for conditions that might limit their production.

However, a high correlation does not 
imply a cause and effect relationship between the 
variables analyzed (VENCOVSKY & BARRIGA, 
1992). As a result, path analysis was performed to 
study the unfolding of these correlation coefficients in 
direct and indirect effects of traits on a basic variable 
(CRUZ & CARNEIRO, 2006).

The estimates of the direct and indirect 
effects of the explanatory variables on the YIELD 
trait are shown in table 2. The sum of the direct and 
indirect effects yields the correlation coefficient. 
The sum of the direct effects multiplied by their 
respective correlations results in the coefficient of 
determination (R2), and the root of the difference (1- 
R2) results in the residual variable effect (PE), which 
equals 0.6974 and 0.5501, respectively, indicating 
that the explanatory variables partially determined 
the variation in the basic variable (YIELD). 
However, it is worth noting; that although, the 
coefficient of determination was not considered low, 
the residual effect was somewhat high.

Table 1 - Correlation coefficients among seven agronomic traits evaluated in canola hybrids in Lavras - MG in 2019. Lavras - MG, 2021.  
 

Trait NG NGS HT TC DIF ST YIELD 

NG 1 0.4426* 0.3001 -0.7614* -0.2949 0.1644 0.6857* 
NGS  1 -0.0893 -0.3404 -0.2132 0.0339 0.1361 
HT   1 -0.4033* -0.3356 0.2014 0.4943* 
TC    1 0.6074* -0.5476* -0.7848* 
DIF     1 -0.5936* -0.4520* 
ST      1 0.3346 
YIELD       1 

 
*Significant at the 5% level by the Mantel test 
YIELD: yield, kg ha-1; NG: number of grains in five plants; NGS: number of grains per silique; HT: height, m; TC: total cycle, days; 
DIF: days in flowering, days; ST: stand, number of plants/ha. 
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The traits that, in general, resulted in 
estimates of a positive direct effect on grain yield 
were NG (0.2494) and HT (0.1595). Although, of 
low magnitude, they showed significant positive 
correlation estimates. VENCOVSKY & BARRIGA 
(1992) stated that if the correlation coefficient is 
positive but the direct effect is nonsignificant or 
negative, this correlation is caused by indirect effects, 
so in the selection process, these effects should be 
considered simultaneously. Thus, in the selection 
practiced for these traits, they can directly contribute 
to the increase in grain yield. The indirect variable 
TC, which has the greatest indirect effect on NG and 
HT, should be considered simultaneously.

Studies performed by ROCHA et al. (2019) 
stated that when decomposing the direct and indirect 
effects of the production components regarding the 
grain yield of canola genotypes, there was a greater 
effect of the variables number of grains per silique 
and oil yield, with a positive direct influence on grain 
yield. COIMBRA et al. (2004) found that the plant 
population per unit area and number of grains per 
plant had the greatest direct effects on the grain yield 
variable and that the number of grains per silique had 
the greatest secondary effect.

In turn, the remaining traits (NGS, TC, 
DIF, and ST) had negative direct effect estimates 
regarding grain yield. For TC, in addition to having 
the highest estimate (-0.6157) and a high negative 
phenotypic correlation with YIELD, it still has a 
value greater than that observed in the residual effect, 
demonstrating that this trait can be used in indirect 
selection. According to VENCOVSKY & BARRIGA 

(1992), when the correlation between a causal trait 
and the main trait is equal or similar to its direct effect 
in sign and magnitude, the indirect selection of the 
causal trait will be efficient since this correlation 
expresses the true association between such traits.

It is noteworthy that the DIF variable, 
despite having a low direct negative effect, has a 
significant negative correlation with yield, suggesting 
that a reduction in the flowering period could 
contribute to increased yield in canola. However, 
flowering is the most critical phase that influences 
grain yield (DIEPENBROCK, 2000); thus, this trait 
inspires caution.

It is important to note that in the present 
study, under initial planting conditions at different 
sowing times, higher initial temperatures were 
observed, which might have led to a shortening of 
the cycle and a shorter duration of flowering without 
very significant losses in yield. The sowing date has 
a decisive effect on the duration of the vegetative 
phase and flowering (ROSA et al., 2020), showing 
a strong influence from the air temperature (LUZ et 
al., 2012). EDWARDS & HERTEL (2011) confirmed 
this information by observing that canola under 
temperatures in the range of 20 °C produced a new 
leaf every six to ten days. Conversely, at temperatures 
greater than 27 °C, there was a reduction in this time 
to four days.

Therefore, under the earlier planting 
conditions in the region with a high-altitude tropical 
climate, with the goal of avoiding water deficits and 
the coincidence of flowering with low temperatures, 
the strategy of selecting canola hybrids with a shorter 

Table 2 - Direct and indirect effects of the explanatory variables on grain yield for the evaluation of canola hybrids in Lavras/MG in the 
2019 agricultural year. Lavras - MG, 2021. 

 

------------------------------------------------------------------------Effect on YIELD----------------------------------------------------------------------- 

 Variable via NG via NGS via HT via TC via DIF via ST TOTAL 
 NG 0.2494 -0.0780 0.0479 0.4688 0.0136 -0.0160 0.6857 
 NGS 0.1104 -0.1762 -0.0142 0.2096 0.0098 -0.0033 0.1361 
 HT 0.0748 0.0157 0.1595 0.2483 0.0155 -0.0196 0.4943 
 TC -0.1899 0.0600 -0.0643 -0.6157 -0.0280 0.0532 -0.7848 
 DIF -0.0735 0.0376 -0.0535 -0.3740 -0.0461 0.0576 -0.4520 
 ST 0.0410 -0.0060 0.0321 0.3372 0.0274 -0.0971 0.3346 
---------------------------------------------COEFFICIENT OF DETERMINATION (R2)----------------------------------------- 0.6974 
---------------------------------------------EFFECT OF RESIDUAL VARIABLE ((PE)------------------------------------------ 0.5501 

 
YIELD: yield, kg ha-1; NG: number of grains in five plants; NGS: number of grains per silique; HT: height, m; TC: total cycle, days; 
DIF: days in flowering, days; ST: stand, number of plants/ha. 
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cycle can be used when seeking higher yields, and as a 
form of adaptation to productive windows. However, 
further studies are needed to verify the extent to 
which such a reduction in the total cycle is feasible 
so that there is no loss in grain yield and oil content.

When analyzing the negative indirect 
effects via the variables, such behavior was observed 
in NG via NGS and via ST; NGS via HT and ST; HT 
via ST; TC via NG, HT, and DIF; DIF via NG, HT, 
and TC; and ST via NGS. These observations reduced 
the direct effect of these traits, as well as the total 
effect of the other traits on yield. Thus, if an increase 
in these traits occurred, it could cause a reduction in 
other traits, even if they expressed a direct effect on 
grain yield.

However, it is noteworthy that the high 
effect of the residual variable (0.5501) indicated 
that the set of six variables does not fully explain 
the variation in yield since its value exceeds most 
estimates of direct and indirect effects. Thus, the 
observed variation in yield is also due to other 
traits not measured in the present study (CRUZ & 
CARNEIRO, 2006), such as silique length, silique 
mass, and number of branches, as well as effects 
associated with the experimental error arising from 
random variations.

Near-infrared (NIR) spectroscopy
Table 3 shows the oil content in the 

grains of canola hybrids, determined by traditional 
chemical methods in the laboratory by adopting 
the methodology described in IUPAC (1979) for 

extraction. These values were used as references to 
construct the NIR calibration model.

The oil content in the grains varied between 
hybrids and between sowing dates (Table 3). This 
behavior was expected because the oil concentration 
of canola seeds is influenced by the genotype (TOMM 
et al., 2009b) and by environmental factors (LONG et 
al., 2012), such as temperature and rainfall (TOMM 
et al., 2009a).

The mean spectra collected via the 
integration sphere consisted of the grains of hybrids of 
each production environment shown in table 3. Since 
the presence of considerable noise was observed in 
the range of 12,500 to 9000 cm-1, making it difficult to 
obtain useful information for the analyses, this range 
was eliminated, and the range of 9000 to 4000 cm-1 
was used to construct the model.

Based on the spectral signatures of the 
samples of canola grains, calibrations and validations 
(cross and external) were performed using PLS-R 
multivariate calibration. Table 4 shows the statistics 
of the models created by PLS-R and cross-validation.

In the present study, able 4 shows that 
the use of the 96 original spectral data with 5 latent 
variables (chosen by the program due to the lower 
residual variance) resulted in a less efficient model, 
obtaining an R2c of 0.64 and an R2cv of 0.45, with 
high RMSE values. Low values for the coefficient 
of determination were also reported by KAUR et al. 
(2017), who obtained an R2c of 0.4147, an R2cv of 
0.3932, an RMSEC of 1.7105, and an RMSECV of 
1.7394 in the development of equations to estimate 

Table 3 - Oil content in the grains of different canola hybrids, determined by traditional chemical methods in the laboratory. Lavras - 
MG, 2021. 

 

-------------------------------------------------------------------------Oil content (%)------------------------------------------------------------------------- 

Hybrid ---------------------------Sowing dates (2019 harvest)------------------------ 2018 harvest of Embrapa Agroenergy 
 15/02 28/02 20/03 09/04  
Nuola 29.79 30.83 29.07 27.74 - 
Hyola 433 30.29 31.75 28.97 24.16 36.09 
Hyola 571 28.94 30.88 29.21 27.56 31.39 
Hyola 575 29.22 31.95 28.07 25.34 34.60 
ALHT B4 30.32 35.72 28.32 24.92 35.28 
Diamond 22.98 24.62 27.93 24.75 35.48 
Hyola 50 - - - - 26.75 
Hyola 61 - - - - 29.84 
Hyola 76 - - - - 35.27 
Mean 28.59 30.96 28.60 25.75 33.08 
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the oil content in seeds of Brassica napus. However, 
the authors observed better results when working 
with Brassica juncea, which had an R2c of 0.8335, 
an R2cv of 0.7410, an RMSEC of 0.9226, and an 
RMSECV of 1.1560.

According to FERREIRA et al. (1999), 
when verifying the quality of the calibration set, 
it is necessary to ensure that the samples form a 
homogeneous set and to remove data considered 
outliers. Thus, from the student x leverage residuals 
graph, three anomalous samples (outliers) that could 
reduce the quality of the model were identified and 
removed. After removing these three outliers (Model 
2), cross-validation with 93 original spectral data 
resulted in the best model, increasing the R2c to 0.84 
and R2cv to 0.80 and reducing RMSEC to 1.426 

and RMSECV to 1.635 (Table 4). However, for this 
model, 7 latent variables were used, resulting in the 
lowest residual variance (Figure 1A). For screening 
purposes, good models should have R2c ≥ 0.85, R2cv 
≥ 0.80, RMSEC ≤ 5, and RMSECV ≤ 10, where 
RMSECV is the most significant parameter and where 
low values indicate better implementation potential 
(SANDAK et al., 2016). Among the cross-validation 
models, this model has the lowest RMSECV.

Another way of presenting the results 
is through a graph with the values obtained in 
the laboratory and predicted by the NIR spectra 
(Figure 1B). This figure shows the distribution of 
the calibration (blue) and validation (red) points of 
the best model for the canola oil content. A strong 
association is observed between the values measured 

Figure 1 - Student x leverage residuals graph of the canola grain spectra (A), without three outliers, regression graph of 
the cross-validation with values obtained in the laboratory and predicted by NIR spectra for oil the content 
(B), blue color refers to calibration points and red validation, both in percentage (Model 2 of Table 4).

 

Table 4 - Calibration and cross-validation of the canola oil content by PLS-R based on NIR spectra. 
 

Models Database Treatment R²c RMSEC R²cv RMSECV LV 

1 96 osd 0.64 2.127 0.45 2.655 5 
2 93 osd 0.84 1.426 0.80 1.635 7 
3 96 1d 0.79 1.618 0.53 2.449 7 
4 93 1d 0.85 1.385 0.70 1.993 7 

 
R²c - coefficient of determination for calibration; RMSEC - root of the mean standard error for calibration; R²cv - coefficient of 
determination for cross-validation; RMSECV - root of the mean standard error for cross-validation; LV- latent variable; osd - original 
spectral data; 1d - first derivative. 
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and those predicted by the model, indicating the 
possibility of using the NIR technique to estimate the 
oil content in canola grains.

SEN et al. (2018) used modified partial 
least squares (MPLS) regression to develop new NIR 
calibration models and predict the oil content and 
other constituents in two Brassica oleaginous species, 
and they found a higher value of R2c (0.992) but the 
lowest value of R2cv (0.743) for Brassica napus. 
However, better results were reported by WAN et al. 
(2018) when exploring the possibility of determining 
the canola oil content using NIR technology, with R2c, 
R2cv, RMSEC, and RMSECV values of 0.98, 0.97, 
0.65, and 0.64, respectively. Similarly, BARTHET 
et al. (2020) developed calibrations for a portable 
spectrometer to determine the composition of canola 
seeds in terms of oil and other compounds, finding 
an R2c of 0.988, R2cv of 0.961, RMSEC of 0.27, and 
RMSECV of 0.49.

During model construction, it is common 
to pretreat the spectral data, such as by using the 
first derivative, to remove distortions and errors 
in the NIR spectra (PASQUINI, 2018). Thus, it 
is observed in table 4 that when treating all the 
data with the first derivative (Model 3), there was 
some breeding in the statistics, reducing the mean 
square error of the calibration and validation in 
relation to the data without treatments (osd) and 
increasing the values of R2c and R2cv to 0.79 
and 0.53, respectively. When applying the first 
derivative to the 93 data points (removing outliers 
- Model 4), the statistics did not improve because 
despite the reduction in RMSEC and increase in 
R2c, there was also a reduction in R2cv to 0.70 
and an increase in RMSECV to 1.993 (Table 4). 
According to Neto et al. (2017), a lower RMSE 

indicated that the model will be more accurate and 
that the dataset will be less dispersed.

According to PASQUINI (2003), the use 
of external validation is recommended because using 
it generate more realistic results that are independent 
of any data used in the construction of the model. For 
this external set of samples, the performance of the 
model is usually evaluated by the root mean square 
error prediction (RMSEP) (PASQUINI, 2003), and 
the lower the RMSEP is, the better the accuracy 
of the model (PASQUINI, 2018). Table 5 shows 
the statistics of the models established by PLS-R 
regression and external validation, in which the first 
column shows the dataset used to validate the model.

Table 5 shows that by manually selecting 
and using the last 24 raw spectral data points (samples 
73 to 96, corresponding to Embrapa grains - Model 5) 
for external validation, good calibration was obtained, 
with an R2c of 0.81 and RMSEC of 1.270 but a low 
R2p of 0.36 and a high RMSEP of 4.479, resulting in 
an inadequate validation. This low precision reported 
might be due to the conditions of the last samples, from 
Embrapa, which might have differed from those used 
in the calibration (sowing days). Proper conditioning of 
the samples before measurement is very important to 
minimize this undesirable variation between samples 
(SANDAK et al., 2016). However, it is difficult to keep 
all measurement conditions and parameters constant, and 
the robustness of the calibration model is influenced by 
several external factors, such as temperature, humidity, 
and other uncertain variables (XU et al., 2019).

To improve the model, 24 raw spectral 
data points were randomly selected for external 
validation (Table 5), resulting in a reduction in the 
calibration quality (R2c of 0.68 and RMSEC of 1.904) 
and breeding validation, with R2p increasing to 0.67 

Table 5 - Calibration and external validation of the canola oil content by PLS-R based on NIR spectra. 
 

Model Data validation Treatment R²c RMSEC R²p RMSEP LV 

5 Embrapa osd 0.81 1.270 0.36 4.479 7 
6 24 random osd 0.68 1.904 0.67 2.329 7 
7 23 random osd 0.83 1.406 0.86 1.561 7 
8 24 random 1d 0.86 1.285 0.75 2.053 8 

 
R²c - coefficient of determination for calibration; RMSEC - root of the mean standard error for calibration; R²p - coefficient of 
determination for external validation; RMSEP - root of the mean standard error for external validation; LV - latent variables; osd - 
original spectral data; 1d - first derivatives. 
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and RMSEP decreasing to 2.329; however, Model 6 
was still not satisfactory.

Therefore, to further improve the model, 
the first derivative was applied to the 24 random raw 
spectral datasets for external validation (Table 5). 
There was an increase in the number of latent variables 
to 8, unlike the other models that used 7. However, 
there was also an increase in the values of R2c and 
R2cv to 0.86 and 0.73, respectively. Moreover, there 
was a reduction in RMSEC and RMSEP to 1.285 and 
2.053, respectively. Despite the higher R2 values, the 
RMSE values were not very low, rendering Model 8 
inefficient in predicting the canola grain content.

Subsequently, two outliers were identified 
through student x leverage residual analysis with 
the 24 random raw spectral data that could be 
causing the reduced model efficiency. By removing 
these two outliers, excluding one data point from 
calibration and another from validation (Model 7), 
external validation was performed with 23 random 
raw spectral data points, which resulted in the best 
model, with R2c and R2p increasing to 0.83 and 0.86, 
respectively, and RMSEC and RMSEP decreasing 
to 1.406 and 1.561, respectively (Table 5). Figure 
2A shows that 7 latent variables were used in the 
model fit. Furthermore, in figure 2B, the results 
are presented in a graph with the values obtained 
in the laboratory and predicted by the NIR spectra, 
showing an intense association between the values 
measured and those predicted by the model.

These values are close to thosereported by 
SIDHU et al. (2012), who evaluated NIR calibration 
models to predict the oil content from 3 g of canola 
seeds, obtaining an R2c of 0.82, R2p of 0.84, RMSEC 
of 1.39, and RMSEP of 0.61.

ROSSATO et al. (2013) sought to establish 
a calibration equation and estimate the efficiency of 
NIR spectroscopy to evaluate the canola oil content 
in southern Brazil; the authors found different results 
from the present study, with an R2 of 0.92, RMSEC 
of 0.78, and RMSEP of 1.22. Higher values were also 
obtained by PETISCO et al. (2010), who reported 
an R2c of 0.98, R2p of 0.98, RMSEC of 0.51, and 
RMSEP of 0.54. These outcomes might be due to the 
inclusion of greater variability in the study, which 
used intact seeds of four varieties of Brassica (B. 
napus ES Hydromel, B. napus ES Nectar, B. napus 
ES Betty and B. carinata Line C-101) collected in 
two different crop years.

Despite the better models of the present 
study, presenting lower R² values than most 
approaches reported in the literature, are considered 
satisfactory and show good predictability. R² values 
between 0.66 and 0.81 indicated approximate 
quantitative predictions, values between 0.82 and 
0.90 showed good prediction and values greater than 
0.91 indicated optimal calibration for the models 
(WILLIAMS et al., 2019).

Therefore, the best model is independent 
validation using 23 random raw spectral data, with an 

Figure 2 - Student x leverage residuals plot of the spectra of canola grains (A) without two outliers; regression plot of 
random external validation with values obtained in the laboratory and predicted by the NIR spectra for the oil 
content (B), blue color refers to calibration points and red validation, both in percentage (Model 7 of Table 5).
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R2 of 0.83 during calibration and an R2 of 0.86 during 
validation. Moreover, the RMSE is lower than those 
obtained during calibration with cross-validation, 
corresponding to 1.56% of the sample range, which 
indicated low scattering and accurate predictions for 
the dataset. Thus, Model 7 is satisfactory because it 
is possible to predict the oil content in thousands of 
samples with an error of only 1.56%.

Accordingly, Model 7 can be successfully 
used to predict the oil content in canola grains and 
to analyze the quality of samples after harvest, thus 
performing hybrid selection more rapidly. In the 
future, this approach can be updated, adding samples 
from different environments, which can further 
increase the range of variation in the oil content 
present in the genotypes, ensuring greater application 
and robustness to the multivariate model. Thus, the 
development of NIR equations is the first step to replace 
the traditional chemical process used to quantify oil 
with nondestructive methods and later the use of NIR 
spectroscopy in breeding programs (SEN et al., 2018).

CONCLUSION

Two traits, i.e., the number of grains in five 
plants (0.6857) and their heights (0.4943), had higher 
estimates of positive correlations with grain yield, as 
well as higher values of positive direct effects on yield 
of 0.2494 and 0.1595, respectively. The TC (-0.7848), 
along with DIF (-0.4520), showed a significant 
negative correlation with the yield variable, with 
the cycle having highly negative effect on yield 
(-0.6157). Therefore, such traits in the canola crop 
deserve greater attention when practicing selection in 
breeding programs to increase grain yield, especially 
the crop cycle.

The present study also allowed for the 
development of good predictive models for the oil 
content in canola grains by NIR spectroscopy, in 
which the best model had an R2 of 0.86 and RMSE of 
1.56 in external validation.

ACKNOWLEDGEMENTS 

We would like to thank the “Fundação de Amparo e 
Pesquisa do Estado de Minas Gerais” (FAPEMIG), for funding the 
research project. And was financed in part by the Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil - Finance 
code 001. And also Embrapa Agroenergia for supplying the grains.

DECLARATION   OF   CONFLICT   OF   
INTEREST

We have no conflict of interest to declare.

AUTHORS’   CONTRIBUTIONS

All authors contributed to the study conception and 
design. Material preparation, data collection and analysis were 
performed by [Guilherme Vieira Pimentel], [Adriano Teodoro 
Bruzi], [Alexsandro Carvalho Santiago] and [Paulo Ricardo 
Gherardi Hein]. The first draft of the manuscript was written by 
[Alexsandro Carvalho Santiago] and all authors commented on 
previous versions of the manuscript. All authors read and approved 
the final manuscript.

REFERENCES

BARTHET, V. J., PETRYK, M. W. P., SIEMENS, B. Rapid 
nondestructive analysis of intact canola seeds using a handheld 
near-infrared spectrometer. Journal of the American Oil 
Chemists’ Society, v.97, p.577-589, 2020. Available from: 
<https://doi.org/10.1002/aocs.12335>. Accessed: Nov. 18, 2021. 
doi: 10.1002/aocs.12335.

CANOLA council of Canada. Canola Grower’s Manual, 2021. 
Available from: <http://www.canolacouncil.org/publication-
resources/print-resources/crop-production-resources/archived-
crop-production-publications/canola-growers-manual/>. 
Accessed: Oct. 20, 2021.

CARVALHO, C. G. P. et al. Correlation and path analyses 
in soybean lines sowed at different sowing dates. Pesquisa 
Agropecuária Brasileira, v.37, p.311-320, 2002. Available from: 
<https://www.scielo.br/j/pab/a/M6SxFv8HWY5MZCyKjnR4Vhf
/?format=pdf&lang=pt>. Accessed: Dec. 10, 2021. doi: 10.1590/
S0100-204X2002000300012.

CHENG, J. et al. NIR hyperspectral imaging with multivariate 
analysis for measurement of oil and protein contents in peanut 
varieties. Analytical Methods, v.9, p.6148-6154, 2017. Available 
from: <https://doi.org/10.1039/C7AY02115A>. Accessed: Jun. 17, 
2021. doi: 10.1039/C7AY02115A.

COIMBRA, J. L. M. et al. Path analysis of grain yield components 
in canola genotypes. Ciência Rural, v. 34, p.421-1428, 2004. 
Available from: <https://www.scielo.br/j/cr/a/NZHBTQYR7FbY
p4hNScPvtzP/?lang=pt&format=pdf>. Accessed: Aug. 11, 2021. 
doi: 10.1590/S0103-84782004000500015.

CRUZ, C. D. Programa GENES: estatística experimental e 
matrizes. Viçosa: UFV, 2006. 285 p. 

CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biométricos 
aplicados ao melhoramento genético. Viçosa: UFV, 2006, 585 p. 

CRUZ, C. D. GENES: a software package for analysis 
in esperimental statistics and quantitative genetics. Acta 
Scientiarum, v.35 (3), p.271-276, 2013. Available from: < 
https://doi.org/10.4025/actasciagron.v35i3.21251>.  Accessed: 
Oct. 02, 2021. doi: 10.4025/actasciagron.v35i3.21251.

DIEPENBROCK, W. Análise de rendimento de colza oleaginosa 
de inverno (Brassica napus L.): uma revisão. Field Crops 
Research, v.67, p.35-49, 2000. Accessed: Dec. 02, 2021.  doi: 
f10.1016/S0378-4290(00)00082-4

EDWARDS, J., HERTEL, K. Canola growth and development. 
Australia: Department of Primary Industries, 2011, 87 p.



Path analysis and near-infrared spectroscopy in canola crop.

Ciência Rural, v.53, n.6, 2023.

11

FERREIRA, M. M. C. et al. Quimiometria I: calibração multivariada, 
um tutorial. Química Nova, v.22, p.724-731, 1999. Available from: 
<https://doi.org/10.1590/S0100-40421999000500016>. Accessed: 
Dec. 08, 2021. doi: 10.1590/s0100-40421999000500016. 

FONT, R. et al. The use of near-infrared spectroscopy (NIRS) in 
the study of seed quality components in plant breeding programs. 
Industrial Crops and Products, v.24, p.3007-313, 2006. Available 
from: <https://doi.org/10.1016/j.indcrop.2006.06.012>. Accessed: 
Nov. 15, 2021. doi: 10.1016/j.indcrop.2006.06.012.

IUPAC - International Union of Pure and Applied Chemistry. 
Standard methods for the analysis of oils, fats and derivatives, 
1979, p.136.

KAUR, B. et al. Development of near-infrared reflectance 
spectroscopy (NIRS) calibration model for estimation of oil 
content in Brassica juncea and Brassica napus. Food Analytical 
Methods, v.10, p.227-233, 2017. Available from: <https://doi.
org/10.1007/s12161-016-0572-9>. Accessed: Dec. 20, 2021. doi: 
10.1007/s12161-016-0572-9.

KRÜGER, C. A. M. B. et al. Relations of environments variables 
and subperiods in yield and content oil in canola. Ciência 
Rural, v.44, p.1671-1677, 2014. Available from: <https://doi.
org/10.1590/0103-8478cr20121331>. Accessed: Nov. 22, 2021. 
doi: 10.1590/0103-8478cr20121331.

LONG, D. S. et al. In-stream measurement of canola (Brassica 
napus L.) seed oil concentration using in-line near infrared 
reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 
v.20, p.387-395, 2012. Available from: <https://doi.org/10.1255/
jnirs.993>. Accessed: Nov. 12, 2021. doi: 10.1255/jnirs.993.

LOPES, A. C. D. A. et al. Variability and correlations among 
traits in soybean crosses. Scientia Agricola, v.59, p.341-
348, 2002. Available from: <https://doi.org/10.1590/S0103-
90162002000200021>. Accessed: Nov. 28, 2021. doi: 10.1590/
S0103-90162002000200021.

LUZ, G. L. D. et al. Baseline temperature and cycle of canola 
hibrids. Ciência Rural, v.42, p.1549-1555, 2012. Available from: 
<https://doi.org/10.1590/S0103-84782012000900006>. Accessed: 
Nov. 28, 2021. doi: 10.1590/S0103-84782012000900006.

MONTGOMERY, D. C.; PECK, E. A. Introduction to linear 
regression analysis. New York: J. Wiley, 1981, 504 p.

NETO, A. J. S. et al. Non-destructive prediction of pigment content 
in lettuce based on visible–NIR spectroscopy. Journal of the 
Science of Food and Agriculture, v.97, p.2015-2017. Available 
from: <https://doi.org/10.1002/jsfa.8002>. Accessed: Dec. 23, 
2021. doi: 10.1002/jsfa.8002.

PASQUINI, C. Near infrared spectroscopy: fundamentals, practical 
aspects and analytical applications. Journal of the Brazilian 
Chemical Society, v.14, p.198-219, 2003. Available from: <https://
doi.org/10.1590/S0103-50532003000200006>. Accessed: Oct. 20, 
2021. doi: 10.1590/S0103-50532003000200006.

PASQUINI, C. Near infrared spectroscopy: A mature analytical 
technique with new perspectives - A review. Analytica Chimica 
Acta, v.1026, p.8-36, 2018. Available from: <https://doi.
org/10.1016/j.aca.2018.04.004>. Accessed: Dec. 03, 2021. 
doi: 10.1016/j.aca.2018.04.004.  

PETISCO, C. et. al. Measurement of quality parameters 
in intact seeds of Brassica species using visible and near-
infrared spectroscopy. Industrial Crops and Products, v.32, 
p.139-146, 2010. Available from: <https://doi.org/10.1016/j.
indcrop.2010.04.003>. Accessed: Oct. 10, 2021. doi: 10.1016/j.
indcrop.2010.04.003.

R Core Team (2017). R: a language and environment for statistical 
computing. Vienna (Austria): R Foundation for Statistical 
Computing. Available from: <https://www.R-project.org/>. 
Accessed: Aug. 05, 2021.

ROCHA, L. de S. et al. Análise de trilha para produtividade de 
grãos em canola no Cerrado. In: 7° Congresso da rede brasileira 
de tecnologia e inovação de biodiesel. Florianópolis: Embrapa 
Agroenergia. (2019).

ROSA, W. B., et al. Influence of sowing times on subperiods and 
agronomic performance of canola hybrids. Brazilian Journal of 
Development, v.6, p.65774-65788, 2020. Available from: <https://
doi.org/10.34117/bjdv6n9-126>. Accessed: Nov. 13, 2021. doi: 
10.34117/bjdv6n9-126.

ROSSATO, R. et al. Predicting rapeseed oil content with 
near‑infrared spectroscopy. Pesquisa Agropecuária Brasileira, 
v.48, p.1601-1605, 2013. Available from: <https://doi.org/10.1590/
S0100-204X2013001200010>. Accessed: Dec. 09, 2021. doi: 
10.1590/S0100-204X2013001200010.

SANDAK, J. et al. Assessing trees, wood and derived products 
with near infrared spectroscopy: hints and tips. Journal of Near 
Infrared Spectroscopy, v.24, p.485-505, 2016.  Available from: 
<https://doi.org/10.1255/jnirs.1255>. Accessed: Sept. 10, 2021. 
doi: 10.1255/jnirs.1255.

SEN, R. et al. Near-infrared reflectance spectroscopy calibrations 
for assessment of oil, phenols, glucosinolates and fatty acid 
content in the intact seeds of oilseed Brassica species. Journal of 
the Science of Food and Agriculture, v.98, p.4050-4057, 2018. 
Available from: <https://doi.org/10.1002/jsfa.8919>. Accessed: 
Sept. 03, 2021. doi: 10.1002/jsfa.8919.

SIDHU, H. K. et al. Nondestructive analysis of single plant canola 
(Brassica napus) seeds using near infra-red spectroscopy. American 
Society of Agricultural and Biological Engineers, 2012. Available 
from: <https://elibrary.asabe.org/abstract.asp?aid=41762>. 
Accessed: Dec. 17, 2021. doi: 10.13031/2013.41762.

STEEL, R. G. D.; et al. Principles and Procedures of Statistics: A 
Biometrical Approach. New York: MacGraw-Hill Book Company, 
1997, 688 p. 

TOMM, G. O. Indicativos tecnológicos para produção de canola 
no Rio Grande do Sul. Passo Fundo: Embrapa Trigo, 2007. 32p. 
(Sistema de Produção INFOTECA-E).

TOMM, G. O. et al. Tecnologia para a produção de canola no 
Rio Grande do Sul. Passo Fundo: Embrapa Trigo, 2009a. 86p. 
(Documentos INFOTECA-E).

TOMM, G. O. et al. Panorama atual e indicações para aumento 
de eficiência da produção de canola no Brasil. Passo Fundo: 
Embrapa Trigo, 2009b. 34p. (Documentos INFOTECA-E). 

TOMM, G.O. et al. Efeito de épocas de semeadura sobre o 
desempenho de genótipos de canola de ciclo precoce e médio. 



12

Ciência Rural, v.53, n.6, 2023.

Santiago et al.

Passo Fundo: Embrapa Trigo, 2010. (Boletim de Pesquisa e 
Desenvolvimento INFOTECA-E).

USDA - United States Department of Agriculture. Oilseeds: World 
Markets and Trade, 2021. Available from: <https://apps.fas.usda.
gov/psdonline/circulars/oilseeds.pdf.>. Accessed: Oct, 20, 2021.

VENCOVSKY, R., BARRIGA P. Genética biométrica no 
fitomelhoramento. Ribeirão Preto: Revista Brasileira de Genética, 
1992. 504 p. 

WAN, L. et al. Rapid determination of oil quantity in intact rapeseeds 
using near-infrared spectroscopy. Journal of Food Process Engineering, 
v.41, 12594. 2018. Available from: <https://doi.org/10.1111/jfpe.12594>. 
Accessed: Aug. 11, 2021. doi: 10.1111/jfpe.12594.

WESTAD, F., MARTENS, F. Variable selection in near infrared 
spectroscopy based on significance testing in partial least square 

regression. Journal of Near Infrared Spectroscopy, v.8, p.117-
124, 2000. Available from: <https://doi.org/10.1255/jnirs.271>. 
Accessed: Sept. 17, 2021. doi: 10.1255/jnirs.271.

WILLIAMS, P., et al. Near-infrared technology: Getting the 
best out of light. África do Sul: African Sun Media, 1992, 311 p.

WRIGHT, S. Correlation and causation. Journal of Agricultural 
Research, v.20, p.557-585, 1921. Available from: <https://
doi.org/10.2307/2287275>. Accessed: Sept. 12, 2021. doi: 
10.2307/2287275.

XU, X., et al. Factors influencing near infrared spectroscopy 
analysis of agro-products: a review. Frontiers of Agricultural 
Science and Engineering, v.6, p.105-115, 2019. Available from: 
<https://doi.org/10.15302/J-FASE-2019255>. Accessed: Dec. 03, 
2021. doi: 10.15302/J-FASE-2019255.


	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_35nkun2
	_Hlk104050464
	_1ksv4uv
	_Hlk94447020
	_Hlk94452290
	_Hlk94450445
	_Hlk94453287

