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INTRODUCTION

Sigmoid models are widely used in 
agricultural science to describe animal and plant 
growth. Most of the models, including Logistic 
and Gompertz, are analytical solutions of ordinary 
differential equations (STEWART, 2016). 

According to CORDEIRO & DEMÉTRIO 
(2008), since the 1970s, nonlinear regression theory 
has restricted the use of nonlinear models (NLM) 
to the assumption of normality for the residual 
and consequently, the response variable. With the 
introduction of generalized linear models (GLM), 
NELDER & WEDDERBURN in 1972 defined the 

response variables that belong to the exponential 
family. Likewise, CORDEIRO & PAULA (1989) 
defined the exponential family for a normal 
nonlinear model in which the systematic component 
is not a linear combination of the parameters.

Nonlinear regression with a normal error 
is susceptible to extreme observations. However, 
the assumption of normal error can be relaxed 
using different symmetrical and asymmetrical 
distributions, in both linear and nonlinear models 
under Bayesian estimation (DE LA CRUZ & 
BRANCO, 2009; ROSSI & SANTOS, 2014).

In terms of dimensionality, a data base to 
be analyzed should contain at least 4 observations, 
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ABSTRACT: This study assessed distributions associated with Bayesian nonlinear modeling error in the description of total plant dry matter 
accumulation (TDMA) of Allium sativum as a function of days after planting (DAP). According to the DIC criterion, Logistic and Gompertz 
models that use student’s t distribution error exhibited the highest DIC with logistic error distribution. In general, the difference of DIC in all 
the scenarios was not more than 5. The Bayes factor (BF) criterion showed no difference in the Logistic and Gompertz model fit when four 
distributions are used for the errors, where BF values do not exceed 2. Posterior distributions and the usual estimators of Logistic and Gompertz 
model parameters were similar even for varied error distribution. In summary, there was no difference in the use of 4 distributions associated 
with the modeling error of garlic plant growth by the Bayes factor, whereby the results showed that alternating between error distributions 
significantly changes the number of Markov Chain Monte Carlo (MCMC) iterations.
Key words: Bayesian regression, Nonlinear regression, MCMC, Symmetrical location-scale family, Empirical Bayes.

RESUMO: O objetivo deste trabalho foi avaliar algumas distribuições associadas ao erro na modelagem não linear bayesiana na descrição do 
acúmulo de matéria seca total da planta (MSTP) de Allium sativum em função dos dias após o plantio (DAP). Pelo critério DIC os modelos 
Logístico e Gompertz que utilizam a distribuição do erro t de Student apresentaram a melhor qualidade de ajuste, sendo que o modelo 
Logístico apresentou o maior DIC com a distribuição de erro Logística. No geral, a diferença de DIC em todos os cenários não apresentou 
valores superiores a cinco. Pelo critério do Fator de Bayes (FB), não houve diferença no ajuste do modelo Logístico e Gompertz quando se 
utilizam as quatro distribuições para os erros, sendo que os valores de FB não superaram 2. As distribuições a posteriori e os estimadores usuais 
dos parâmetros dos modelos Logístico e Gompertz apresentaram semelhanças mesmo variando a distribuição do erro. Em suma não houve 
diferença na utilização das quatro distribuições associadas ao erro na modelagem do crescimento planta de alho pelo fator de Bayes, sendo que 
os resultados mostram que alternar entre as distribuições dos erros altera de forma significativa o número de iterações de MCMC.
Palavras-chave: Regressão bayesiana, Regressão não linear, MCMC, Família simétrica de locação-escala, Bayes empírico.
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so that the number of parameters is smaller than 
the dataset (n > p). With maximum likelihood 
estimation, in addition to the 3 usual parameters 
of the Gompertz and Logistic models (a, β, γ) 
contained in the location parameter of a symmetrical 
nonlinear model, it is necessary to estimate the scale 
(s) and (v) parameters in the case of the student’s t 
error. Dimensionality increases from 3 to 5, which 
is impossible to estimate in a 4-point regression. 
In these cases, a necessary option is Bayesian 
regression.

In Bayesian inference, a priori 
selection is made before accessing the data, using 
methodologies such as improper priors, conjugated 
distributions or meta-analysis assessment. In 
FIRAT et al. (2016) and MACEDO et al. (2017), 
the Logistic and Gompertz parameters (a, β, γ) 
follow normal prior distribution.

When the prior distribution obtained 
originates in the data, the methodology is empirical. 
Inference that uses prior empirical distribution is 
known as an empirical Bayesian approach, which is 
not necessarily a Bayesian inference, since the data 
are used twice, once in the likelihood function and 
once in prior distribution. However, this methodology 
is a good approximation for Bayesian inference 
(CARLIN & LOUIS, 2008).

In terms of parametric inference, 
GUJARATI & PORTER (2012) and SOUZA (1998) 
report that significance tests and confidence intervals 
of normal nonlinear models are asymptomatically 
valid, while F and t-tests, confidence intervals and 
regions depend on the asymptotic normality of 
parametric estimators. In Bayesian theory, the results 
of credible intervals and significance tests are valid, 
irrespective of sample size.

This study compared the symmetrical 
class of normal scale-location, student’s t-test, 
Laplace and logistic distributions for experimental 
error using the Bayesian methodology to describe 
MSTP accumulation of garlic as a function of days 
after planting (DAP).

MATERIALS   AND   METHODS

The data used in this study were obtained 
from the UFV Germplasm Bank (BHG/UFV), which 
contains 89 Allium sativum fruit accessions. The 
experiment was conducted in the Zona da Mata region 
of Minas Gerais State, Brazil, (20º45’S, 42º51’W, at 
650m of altitude) at the Universidade Federal de 
Viçosa, in randomized blocks with 8 repetitions. 
Accumulated plant dry matter (g) was calculated 60, 

90, 120 and 150 DAP (independent variable with n 
=4). Each DAP includes 8 repetitions, and the mean 
of each DAP was used.

The normal distribution is a member of 
the exponential family, location-scale family and 
symmetrical location-scale family. Distributions 
other than normal also belong to the symmetrical 
location-scale family and are generally denoted by 
the letter S. In this regression, the error follows 
a εi ~ S (0, σ2) distribution and its density is 

, where µ ϵ R 
is the location parameter and s > 0 the scale 
parameter (CORDEIRO et al., 2000). Figure 1 
represents distribution density S, these being the 
normal -

Logistic -  ;

Laplace – 

and student’s t models –

The nonlinear regression model is defined 
by yi = f (xi, θ) + εi, and the sample distribution of 
the response variable also has an independent S 
distribution, but not identically distributed (Yi ~ S ( f 
(xi, θ), s). For the description of garlic plant growth, 
the Logistic (f (xi; α, β, y) = α [1 + β exp ( - yxi)]

-1 and 
Gompertz f (xi; α, β, y) = α exp [ - β exp (-yx)] models 
were used, where α is asymptomatic plant growth, 
β a value with no biological interpretation and y the 
growth rate (RATKOWSKY, 1983).

In order to implement Bayesian regression, 
only accession 63 was used to fit the Logistic and 
Gompertz models. The definition of a nonlinear 
regression considers the Bayes theorem, where the 
joint posterior π (α, β, γ, τ, v | y) is proportional to 
the product of the likelihood function of the response 
variable L (α, β, γ, τ, v | y) with joint distribution of 
prior π (α, β, γ, τ, v), where y = (y1, y2, …, yn).

   (1)

The distribution of each parameter was 
obtained by the MCMC (Markov Chain Monte 
Carlo) method using the Openbugs interface, where 
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the PFCD (Posterior Full Conditional Distribution) of 
each parameter depends on the individual posterior 
distribution. 

The likelihood function is the product of 
the PDF (probability density function) of Yi that has 
S distribution:

           (2)

With regard to the determination of prior 
distributions, the precision parameter is defined as 

 for models (b), (c), (d), and 
v ~ U (2,10)2  for case t. All the choices involving 
uniform priors are based on Laplace’s principle of 
insufficient reason. The PFCD of σ2, for the normal 
S case is known and has inverse Gamma distribution:

    (3)
Where  and n = 4.

In order to implement empirical prior 
distribution for the vector (α, β, γ) and σ2 for the 
normal case, Gauss-Newton method estimates were 
obtained for the Logistic and Gompertz models of 
50 accessions from the database (only 50 of the 89 

accessions are sigmoid), which are used to obtain 
the histograms and densities of each parameter 
estimate, and thereby determine the adequate 
candidate distribution. After probability density 
distributions were determined, the hyper parameters 
were obtained by equaling the mean and variance of 
these distributions to the mean and sample variance, 
respectively.

                                              (4)
Figure 2 shows the results of this 

methodology for the 50 database accessions analyzed 
in the present study and the results computed were 
used as empirical prior.

Heindenberg-Welch and Geweke criteria 
were used to analyze the convergence of MCMC 
chains, selecting nIter (number of iterations), nBurnin 
(values disregarded in the initial iterations of the 
chain) and nThin (jump values) values are selected to 
meet the two criteria simultaneously.

After the nThin and nBurnin values are 
obtained, the Openbugs interface computes the DIC 
(Deviance Information Criterion) calculations to 
compare the models fit by the Bayesian methodology. 
The Bayes factor is a measure of plausibility, 

Figure 1 - Normal, Logistic, Laplace and Student’s t model densities and their respective probability density functions, varying the location 
(µ), scale (s) and degrees of freedom (v) parameters for the t error.
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given that DIC may be affected by posteriors that 
are bimodal or asymmetrical. The Bayes factor is 
defined as the ratio of marginal posteriors BF = p (y, 
M1) p

-1 (y, M 2), with Mi being the nth model to be 
compared, and the value of each p (y) is calculated 
by the harmonic mean: 

                                   (5)

Where G are the prior values generated, θ = (θ1, θ2, 
…, θn) and y = (y1, y2, …, yn).

RESULTS AND DISCUSSION

Table 1 shows the usual estimators of 
the parameter posteriors. According to the DIC 
comparison criterion, the Logistic (6.94) and 
Gompertz (4.94) models exhibited the lowest 

Figure 2 - Gauss-Newton estimate density - computed by the density function () of ggplot2 – of the parameters (a, β, γ, σ2) of the 
Logistic and Gompertz models and their empirical prior determined by equation 4.
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values when the student’s t-test is considered. 
In line with Bayesian modeling of the Cordona 
growth curve created by ROSSI & SANTOS 
(2014), the student’s t-test has a smaller DIC when 
compared to the normal error. In all the scenarios, 
except for the normal error, the Gompertz model 
obtained lower DICs than those of its Logistic 
counterpart. According to the criterion of the 
Bayes factor in all the error distribution scenarios, 
there was no evidence that either the Logistic 
or Gompertz model is more plausible, and the 
values obtained were less than 2. The high β 
estimates obtained in the Logistic and Gompertz 

models in the present study were also reported 
by MACEDO et al. (2017), who analyzed the dry 
matter accumulation of garlic using frequentist 
and Bayesian regression.

Table 1 and figure 3 show the (a, β, 
γ) posteriors from the Logistic and Gompertz 
models, exhibiting similar graphs and values when 
the normal - graphs (a), (b) and (c); Logistic – 
graphs (e), (f) and (g); Laplace – graphs (i), (j) and 
(k); and student’s t – graphs (m), (n) and (o) errors 
are considered. This demonstrated that alternating 
error distribution had little influence on obtaining 
the usual estimators and posterior distributions.

Table 1 - Estimate of parameters (α, β, γ, τ, v) followed by the usual mean estimators, HPD credible intervals with lower (LL) and upper 
limit (UL), Bayes factor (BF) and Deviance Information Criterion (DIC). 

 

Error ---Model--- ------θ------ ---Média--- -----LL----- -----UL----- ----DIC---- -----BF----- 

Normal Distribution Logistic α 22.7 21.47 24.14 8.21 1.2454 
  β 39390 4184 100780   
  γ 0.1 0.09 0.11   
  τ 2.85 0.52 5.75   
 Gompertz α 22.74 21.97 23.54 8.51  
  β 1462 192.99 3540   
  γ 0.07 0.06 0.09   
  τ 1.34 0.42 2.41   
Logistic Distribution Logistic α 22.7 20.91 24.65 9.84 0.9607 
  β 38460 1620 97766   
  γ 0.1 0.08 0.12   
  τ 2.76 0.54 5.71   
 Gompertz α 22.76 22.03 23.54 7.71  
  β 1513 104.89 3258   
  γ 0.07 0.06 0.09   
  τ 2.78 0.53 5.46   
Laplace Distribution Logistic α 22.7 21.07 24.75 9.38 1.7727 
  β 39530 2296 97022   
  γ 0.1 0.08 0.11   
  τ 2.28 0.21 5.02   
 Gompertz α 22.74 22.08 23.54 7.23  
  β 1603 193.41 3377   
  γ 0.07 0.06 0.09   
  τ 2.4 0.35 5.11   
Student’s t Distribution Logistic α 22.72 21.34 24.27 6.94 1.2374 
  β 41580 1890 100625   
  γ 0.1 0.09 0.11   
  τ 4.91 0.1 13.31   
  v 48.71 2.05 94.82   
 Gompertz α 22.75 22.03 23.47 4.94  
  β 1573 213.39 3399   
  γ 0.07 0.06 0.09   
  τ 5.16 0.1 14.54   
  v 46.16 2 94.4   
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In the graph (q) of Figure 3, the 
posterior density of v, in the case of the student’s 
t error, exhibited a uniform trend, indicating prior 
dominance as a function of likelihood, which does 
not occur in (h), (l) and (p), whose graphs are more 
informative. Similar to the study of MARTINS 
FILHO et al. (2008), the (a, β, γ) posteriors showed 
a uniform and more informative trend respectively, 
in the Bayesian growth modeling of the “neguinho” 
and “carioca” bean cultivars when these consider a 
uniform prior.

In computational terms, the MCMC 
iterative process and convergence analysis required 
some computational time, as explained by PEREIRA 
et al. (2022). Figure 4 shows the nIter values of 

Markov chains that each model needed in the 4 error 
scenarios. In all the scenarios, except the Gompertz 
model with normal error, nThin was less than 20.

The Gompertz model with normal error 
needed an nThin of 1100 to control the high self-
correlation of its chains, which contributed to the 
nIter of 4 ∙ 106. When considering the Logistic error, 
the same Gompertz model needed an nThin and 
nIter of 20 and 40,000, respectively, which reveals 
computational economy. All the chains created in 
this process passed the Geweke and Heidenberg-
Welch tests.

The results of Bayes factor, DIC and fitted 
graphs (a) and (b) of Figure 5 show no difference in 
the use of 4 garlic plant growth modeling errors. It was 

Figure 3 - Posterior parameter distribution (a, β, γ, τ) of Logistic and Gompertz models fit to access 63 considering an error with normal, 
Logistic, Laplace and student’s t distribution.
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concluded that alternating between the 4 symmetrical 
distributions for the error significantly alters the nIter 
values and, as such, it is up to the researcher to select 
the error with the highest computational economy.

CONCLUSION

There was no difference in the use of the 
normal, Logistic, Laplace and student’s t errors for 

Figure 4 - Log graph of the number of iterations (niter) of the Logistic and Gompertz models 
considering the Laplace, Logistic, normal and student’s t distributions.

Figure 5 - Logistic and Gompertz models fitted to the mean of each DAP, 
considering the error with normal, Logistic, Laplace and Student’s 
t distribution.
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the experimental error in the Bayesian nonlinear 
modeling of garlic using the Logistic and Gompertz 
models. There are significant differences in the size of 
MCMC iterations for each error distribution.
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