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Inoculation with arbuscular mycorrhizal fungus Rhizophagus clarus on 
tomato promotes increasing yield under organic farming inputs
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INTRODUCTION

Organic farming prioritizes renewable 
inputs with leads to minor environmental impacts 
and, in a long term, food systems may converge 
to growing productivity and self-sufficiency 
(GLIESSMAN, 2016). Regulatory agencies and 
certifiers prohibit some inputs, mostly synthetic 

fertilizers and pesticides, and allow others such as 
manure, compost, rock powders, lime, microbial 
inoculants and biostimulants. 

Root inoculation with arbuscular 
mycorrizal fungi (AMF) may enhances phosphorus 
and other low mobile nutrients acquisition by plants 
in the soil (ORTAS et al., 2013; WATTS-WILLIAMS 
& CAVAGNARO, 2014), increases plant growth 
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ABSTRACT: Organic agriculture comprises farming practices that discard synthetic pesticides and fertilizers. Tomato production demands 
huge amounts of fertilizers and pesticides.  Improving efficiency of the inputs allowed for organic tomato production is a challenge to upgrade 
yields. Thereby, we studied the effects of the inoculation of the arbuscular mycorrhizal fungus (AMF) Rhizophagus clarus, supplying rock 
thermophosphate and bioactivator, alone or associated, on tomato development and yield. The experiment was achieved in a greenhouse 
using undetermined tomato cv. BRS-Nagai sown in polystyrene trays and afterwards transplanted to pots. Treatments included R. clarus; 
thermophosphate (TH) (130 g/pot); bioactivator (PenergeticK® + Penergetic®) (BI); R. clarus + TH; R. clarus + BI; R. clarus + TH+ BI and 
TH + BI and control (CO). From the flowering onset, plant height, height of insertion of first truss, trusses space, length, and also the diameter 
and fresh weight of ripe fruits of the three first trusses were assessed. AMF colonization in the roots and macronutrients in leaves and petioles 
were also measured.  Trusses spacing variable was affected by mycorrhiza and thermophosphate. R. clarus inoculation incremented 10 and 
31.85% of fresh mass of ripe fruits and mass of ripe fruits per plant, respectively. Soluble solids contents in fruits and N, P and K in the leaves 
and petioles were similar among treatments. AMF colonization decreased on thermophosphate fertilized plants and increased in bioactivator 
treatment. Results showed that root inoculation with R. clarus promoted better plant development and yield and may be used as biological 
inoculant mostly on organic tomato production. 
Key words: agroecology, Solanum lycopersicu, organic inputs, nutritional management.

RESUMO: A agricultura orgânica preconiza práticas culturais que dispensam o uso de pesticidas e fertilizantes sintéticos. A tomaticultura 
convencional, por sua vez, demanda grandes quantidades de agroquímicos. Neste contexto, aumentar a eficiência de insumos permitidos 
em agricultura orgânica consiste em um desafio para a manutenção de altas produtividades. Este estudo objetivou investigar os efeitos, 
isoladamente e de interação, da inoculação de fungo micorrízico arbuscular (FMA) Rhizophagus clarus e da aplicação de termofosfato e 
de bioativador no desenvolvimento e na produtividade de tomateiros. O experimento foi conduzido em casa de vegetação com a cultivar 
BRS-Nagai, genótipo de hábito indeterminado do grupo saladete, semeado em bandejas de poliestireno e posteriormente transplantado para 
vasos. Os tratamentos contemplaram R. clarus; termofosfato (TH) (130g/vaso); bioativador (Penergetic K® + Penergetic®) (BI); R. clarus + 
TH; R. clarus + BI; R. clarus + TH+ BI; TH + BI e controle (CO). A partir do início do florescimento, foram mensuradas altura de plantas, 
altura do primeiro cacho, distância entre cachos e largura, comprimento e massa fresca de frutos maduros dos três primeiros cachos. Foram 
determinadas também a colonização micorrízica e os teores de macronutrientes em folhas e pecíolos. A distância entre cachos foi influenciada 
pela inoculação micorrízica e pela aplicação de termofosfato. R. clarus aumentou em 10% e 31.85% a massa fresca de frutos maduros e a massa 
fresca de frutos por planta respectivamente. Os teores de sólidos solúveis em frutos e de N, P e K em folhas e pecíolos foram similares para os 
tratamentos. A colonização micorrizica foi menor em plantas que receberam termofosfato e maior na presença do bioativador. Os resultados 
demonstraram melhor desenvolvimento e maior produtividade em plantas inoculadas com FMA, sugerindo que R. clarus apresenta-se como 
um potencial inoculante biológico para tomateiros, principalmente em cultivos orgânicos.
Palavras-chave: agroecologia, Solanum lycopersicum, insumos orgânicos, manejo nutricional.
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and yield (SILVA et al., 2017) what is even more 
important in lower phosphorus availability soils 
such as highly weathered tropical soils, due to high 
adsorption and even lack in original rock (NOVAIS 
& SMITH, 1999). 

Mycorrhiza fungi may establish symbiotic 
interaction with more than 90% of plant species 
(dU JARdIN, 2015). AMF Rhizophagus clarus is a 
candidate to be fairly used as inoculant in crops due 
to high infectivity and low specificity (ADEMAR et 
al., 2015; SATO et al., 2015; URCOVICHE et al., 
2015; CELY et al., 2016; SALGAdO et al., 2016; 
KOYAMA et al., 2017).

Tomato production in organic and even 
conventional agricultural systems demands large 
amount of fertilizers. AMF may improve efficiency in 
the use fertilizers and even decreases the burden. In 
tomato crops, AMF have been reported to control root 
diseases (POZO et al., 2002); improving phosphorus 
content in plant (FINZI et al., 2017); root and shoot 
dry weight (LEY-RIVAS et al., 2015); plant height 
and yield (PÉREZ & MARTÍNEZ, 2012) and stem 
diameter (KILE et al., 2013).

Rock phosphate and bioactivators have 
been used in organic farming in Brazil, but we did 
not found reports about studies on the efficiency 
of these inputs, lonely or even associated with 
other inputs, on tomato yield and/or plant growth. 
Thereby we evaluated the inoculation of R clarus, 
rock thermophosphate and bioactivator, alone or 
associated, on tomato growth and yield.

MATERIALS   AND   METHODS

The experiment was carried out in a 
greenhouse in Londrina, PR, Brazil (230 23’S e 510 
11’ W); subtropical (Cfa) weather (Köppen). 

Undetermined tomato cv. BRS-Nagai was 
sown in polystyrene trays filled with commercial 
substrate (MecPlant®). The same substrate was also 
mixed with R. clarus inocula (spores, mycelia and 
colonized roots) that was acquired by Laboratory 
of Microbial Ecology (Universidade Estadual 
de Londrina, Londrina, PR, Brazil), providing a 
concentration of 50 spores per pit tray. After 32 days 
of sowing, seedlings were transplanted to pots [10 
dm3  filled with red eutroferric latossol mixed with 
sand (2:1)] (Sistema Brasileiro de Classificação de 
Solos, [s.d.])(Santos et al 2014). Chemical analysis 
of the mixture characterized pH (CaCl2) = 5.4; Ca = 
2.36 cmolc dm-3; Mg = 0.75 cmolc dm-3; Al = 0; H + 
Al = 3.42 cmolc dm-3; K = 0.18 cmolc dm-3; C = 5.29 g 
kg-1; MO = 9.1 g kg-1 and P = 6.7 mg dm-3. Lime was 

applied to improve soil base saturation until 80%.  
Before transplanting, 105 g of Ekosil® (K2O = 8,0%; 
Si = 25,0%) fertilizer plus 1 kg of organic manure were 
also added to each pot. Organic manure composition 
was pH (CaCl2) = 7.3; Ca = 13.28 cmolc dm-3; Mg = 
7.96 cmolc dm-3; Al = 0; H + Al = 2.19 cmolc dm-3; K 
= 8.33 cmolc dm-3; C = 60.46 g kg-1; MO = 104 g kg-1 
e P = 2.868 mg dm-3. Ca and Mg were determined by 
titration with EdTA and Al by titration with NaOH. 
Potential acidity was estimated by SMP pH. P and K 
were extracted using a Melich-1 extracting solution, 
P was determined by spectrophotometry and K by 
flame photometry. Organic carbon was quantified 
using the Walkley-Black method.

Treatments were R. clarus; Yoorin® 
thermophosphate (TH) (130 g/pot); bioativador 
(PenergeticK® + PenergeticP®) (BI) (1 g L-1); R. clarus 
+ TH; R. clarus + BI; R. clarus + TH+ BI and TH + 
BI and non-treated plant was considered as control 
(CO). PenergeticK® and PenergeticP® are composed 
of bentonite clays which are subjected to application 
of electric and magnetic fields (BRITO et al., 2012). 

From the flowering onset, organic Bokashi (N 
= 37.67 g kg-1; P = 14.36 g kg-1; K = 21.01 g kg-1; Ca = 12.00 
g kg-1; Mg = 8.80 g kg-1) and mineral Potamag® (K2O = 
22,0%; Mg = 11,0%; S = 22,0%) fertilizers were weekly 
applied in the soil and boric acid by fertigation, according 
to the cultivar demand. Phytosanitary management was 
achieved by spraying copper and sodium bicarbonate as 
fungicides, neem and Bacillus thuringiensis insecticides 
according to Brazilian legislation of organic agriculture 
(BRASIL, 2014).

Plants were grown on a single stake 
(single stem) supported by bamboo stakes and pruned 
(removal of apical meristem) after emission of the 
4th truss. Flowers of the 4th truss were also removed 
(STRECK et al., 1998; GUIMARÃES et al., 2007) .

From the flowering onset, evaluations 
comprised plant height, height of insertion of first truss, 
trusses space, length, diameter and fresh weight of ripe 
fruits (picking point: 60-90% of surface red) of the 
three first trusses.  Fruits out of commercial standards 
(diameter inferior to 4 cm) (BRASIL, 1995) and 
damaged fruit were discarded (not included in the yield). 

To evaluate the AM colonization, samples 
of secondary roots was stained with Trypan blue 
(KOSKE & GEMMA, 1989) and the determination 
of AM colonization (%) was carried using grid-line 
method (GIOVANNETTI & MOSSE, 1980). Shoot and 
root dry weight were also determined after incubated 
in forced air drying oven until constant weight. 

Macronutrients (N, P and K) were 
determined in dry leaves and petioles after ground in 



Inoculation with arbuscular mycorrhizal fungus Rhizophagus clarus on tomato promotes...

Ciência Rural, v.54, n.12, 2024.

3

a mill. Nitrogen was determined by sulfuric digestion 
and distillation in a Kjeldal system and phosphorus 
and potassium were determined by nitropercloric 
digestion (SILVA, 2009). 

The experimental design was randomized 
block with three-factor arranged in mycorrhiza (with 
and without) X thermophosphate (with and without) 
X bioactivator (with and without), with six replicates 
and 48 pots. data were submitted to analysis of 
variance after testing the normality and variance 
homogeneity assumptions (Shapiro-Wilk and 
Bartlett, respectively). Means were compared using 
Fisher F test (P < 0.05). Analyses were achieved using 
software R (R CORE TEAM, 2018). 

RESULTS

Vegetative and productive traits 
Similar values for shoot and root dry 

weight, plant height and height of first truss were 
observed among treatments. However, trusses 
spacing variable was affected by mycorrhiza and 
thermophosphate (Table 1). Reduction of the 
distance between trusses was observed for plants 
inoculated with mycorrhiza (9.59%) and those 
fertilized with termophosphate (8.36%). R. clarus 
inoculation enhanced fresh mass of ripe fruits and 
mass of ripe fruits per plant (10% and 31.85%, 
respectively) (Table 2). 

Mycorrhizal colonization, macronutrients in leaves 
and soluble solids in fruits contents

Soluble solids in fruits and N, P and K in 
the leaves and petioles were similar among treatments. 
The AMF colonization (Figure 1) was affected by 
thermophosphate and bioactivator (Table 3). 

We observed reduction of AMF 
colonization in treatments using thermophosphate, 
compared to those who did not receive the phosphate 
fertilizer (60.75 vs. 71.77%, respectively). In 
contrast, higher AMF colonization in bioactivator 
treated than untreated plants were found (71.89 vs. 
60.62%, respectively).

DISCUSSION

distance between trusses was reduced 
in treatments that received mycorrhizal inoculation 
and thermophosphate (Table 1). In tomato crops, 
the balance between vegetative and reproductive 
development is crucial for tomato yield, which may 
decreased nutrient drain through vegetable tissues 
(PUIATTI et al., 2010). Fruit are the main drains of 
photoassimilates produced by leaves (GUIMARÃES 
et al., 2007) and the relation source/drain is vital of 
vegetative development and reproductive tissues 
(OSORIO et al., 2014). 

Internodal spacing is directly related 
with light absorption and energetic efficiency 

 

Table 1 - Shoot (SdW) and root dry weight (RdW); plant height (PHE); height of first truss (H1T) and mean distance between trusses 
(dBT) in tomato cultivated under different nutritional managements. Londrina, 2018. 

 

R. Clarus TH BI SdW (g) RdW (g) PHE (cm) H1T (cm) dBT (cm) 

Without 
Without 

Without 75.70 10.92 172.50 43.33 39.22 
With 75.22 11.49 166.50 44.00 37.83 

With 
Without 70.47 13.39 159.17 44.00 32.39 

With 84.44 13.01 169.50 45.17 36.94 

With 
Without 

Without 76.68 12.41 167.00 47.33 35.28 
With 76.57 12.66 163.33 46.33 33.11 

With 
Without 73.00 13.01 162.50 48.00 32.44 

With 74.45 13.81 158.50 45.33 31.50 
Mycorrhiza (A) 0.6042(1) 0.4027 0.2226 0.0829 0.0015 
Thermophosphate (B) 0.8544 0.1333 0.1439 0.8000 0.0052 
Bioactivator (C) 0.1390 0.5835 0.8014 0.7571 0.9892 
A x B 0.3246 0.3958 0.9398 0.7148 0.4278 
A x C 0.2231 0.8343 0.3679 0.3562 0.1334 
B x C 0.1111 0.9278 0.2320 0.8439 0.0881 
A x B x C 0.1973 0.9056 0.2135 0.7148 0.2556 

 
R. clarus (Mycorrhiza); TH (Thermophosphate); BI (Bioactivator).  
(1)P-value of Fisher's F test. 
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(SARLIKIOTI et al., 2011). Variation on this 
variable may indicate differences in nutritional 
balance according to treatments. Higher internodal 
spacing may favor light penetration in crop dossel. 
In opposition, excessive high internodal spacing 
may bring about plant stapling and yield reduction 
(PAPAdOPOULOS & ORMROd, 1990) due to 
allocation of photoassimilates to stem elongation 
rather than fruit growth (FINZI et al., 2017). Reported 
prescription of nitrogen amounts for BRS-Nagai 
cultivar are, in general, lesser than other cultivars due 
to its highly efficiency in nitrogen usage (VILLAS-
BÔAS & JACON, 2016). Besides unbalanced 
development, N above real needs enhances 
proportion of green fruits (WARNER et al., 2004; 
ELIA & CONVERSA, 2012;), delay flowering and 
fructification (RASHID et al., 2016) and decreases 
fruit quality (BÉNARd et al., 2009). Besides the 
extensive reports on the positive effects on P usage 
efficiency, AMF may also affect N metabolism of 
plant. Previously, tomato inoculated with Glomus 
mossae increased nitrate reductase and the glutamine 
synthetase activity and N content (dI MARTINO 
et al., 2019). The inoculation with R. clarus, may 
be affecting N content and led balance between 
vegetative/reproductive development as indicated by 
lesser trusses spacing.

R. clarus inoculation also increased the 
fresh mass of ripe fruits both individually and per plant 

(Table 2). These results corroborated previous studies 
in which increases of 25% tomato yields were found 
in plants inoculated with AM fungi in organic farming 
system (BOWLES et al., 2016) and 50% in a low 
nutrient soil (dI MARTINO et al., 2019). Increasing 
tomato yields under low nutrient soil was also reported 
when AMF was associated with plant growth promoting 
bacteria (Pseudomonas spp.) (BONA et al., 2018). The 
inoculation of AMF fungi also allowed to decrease the 
amount of fertilizers without reducing productivity 
(ZIANE et al., 2017). The AMF R. clarus was also 
successfully used to improve crop performance and the 
effectiveness of fertilizer applied on soybean crop and 
to reduce amounts of fertilizers in cotton (CELY et al., 
2016; BARAZETTI et al., 2019).

Macronutrients in leaves and petioles did 
not vary significantly between treatments probably 
due to nutrients drained by tomato fruits (55%, 54% 
and 56% for N, P and K, respectively) from the 
vegetative portion (FAYAd et al., 2002).

Significant reductions on mycorrhizal 
colonization were observed for treatments fertilized 
with thermophosphate (Table 3). despite the 
low water solubility, previous studies showed 
that thermophosphates can have high agronomic 
efficiency when compared to soluble sources of 
phosphorus, enhancing nutrient available to plants 
in short periods of time (MACHAdO et al., 1983). 
Otherwise, supplying plants with soluble phosphorus 

Table 2 - Number of ripe fruits per plant (NFPP), fresh mass of ripe fruits (FMRF) and fresh mass of ripe fruits per plant (FMPP) of 
tomato cultivated under different fertilization systems. Londrina, 2018. 

 

R. clarus TH BI NFPP FMRF (g) FMPP (g) 

Without 
Without 

Without 6.83 91.44 640.38 
With 7.00 92.46 704.45 

With 
Without 8.83 96.16 827.94 

With 6.33 84.15 574.62 

With 
Without 

Without 8.67 96.23 850.53 
With 8.67 96.14 854.35 

With 
Without 8.83 107.45 966.46 

With 9.17 101.11 951.20 
Mycorrhiza (A) 0.0782(1) 0.0289 0.0228 
Thermophosphate (B) 0.5704 0.3271 0.3454 
Bioactivator (C) 0.5704 0.3155 0.4508 
A x B 0.8496 0.2491 0.7981 
A x C 0.4500 0.9105 0.5520 
B x C 0.5082 0.2565 0.4578 
A x B x C 0.3960 0.8106 0.4391 

 
R. clarus (Mycorrhiza); TH (Thermophosphate); BI (Bioactivator).  
(1)P-value of Fisher's F test. 
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sources decreases AMF root colonization (WATTS-
WILLIAMS & CAVAGNARO, 2012; YANG et 
al., 2014; KONVALINKOVÁ et al., 2017) while 
low availability in the soil may increment AMF 
colonization (BREUILLIN et al., 2010) and enhance 
root exudation (CARVALHAIS et al., 2010). 

Penergetic bioactivator improved 
microbial activity and AMF colonization (Table 3) 
as observed previously which incremented yields on 
sugar beet root, common bean, soybean crops and 
coffee yields (JAKIENE et al., 2009; COBUCCI 
et al., 2015; SOUZA et al., 2017; MANTOVANI 
& FLORENTINO, 2018). However, other studies 
reported lack of increment in productivity in mayze and 
soybean yields (ALOVISI et al., 2017), and Urochloa 
brizantha pastures (SILVA et al., 2015). AMF colonization 
varied among treatments between 60.7% e 71.9%. These 
values were similar to those obtained in previous studies 
using R. clarus inoculation (LEY-RIVAS et al., 2015) and 
lesser than other ones in which tomato was inoculated 
with G. cubense (PÉREZ & MARTÍNEZ, 2012), G. 
mosseae e G. intraradices (POZO et al., 2002).

CONCLUSION

Tomato inoculated with AMF R. clarus 
improved tomato yield and decreased trusses spacing 
suggesting a balance development under cultivation Figure 1 - Structures of R. clarus in tomato root.

 

Table 3 - Mycorrhizal colonization (%); N, P, K contents (g kg-1) in leaves and petioles and contents of soluble solids (ºBrix) in 
tomatoes cultivated under different nutritional managements. Londrina, 2018. 

 

R. clarus TH BI Colonization (%) N (g kg-1) P (g kg-1) K (g kg-1) °Brix 

Without 
Without 

Without 69.25 17.50 5.65 29.19 5.27 
With 75.20 18.08 5.58 26.17 5.32 

With 
Without 57.50 17.15 5.80 28.85 5.32 

With 66.50 18.20 5.81 26.84 5.36 

With 
Without 

Without 63.75 16.80 5.78 27.01 5.12 
With 78.88 18.20 5.66 28.52 4.71 

With 
Without 52.00 17.97 6.09 24.66 5.31 

With 67.00 16.97 6.35 26.51 5.26 
Mycorrhiza (A) 0.7049(1) 0.6785 0.389 0.4482 0.1457 
Thermophosphate (B) 0.0217 0.8898 0.257 0.4832 0.1631 
Bioactivator (C) 0.0192 0.4373 0.944 0.7685 0.5403 
A x B 0.9350 0.9631 0.604 0.4149 0.2772 
A x C 0.4546 0.6130 0.868 0.1557 0.3539 
B x C 0.9393 0.4373 0.710 0.8138 0.5446 
A x B x C 0.7921 0.2592 0.802 0.9062 0.5345 

 
R. clarus (Mycorrhiza); TH (Thermophosphate); BI (Bioactivator).  
(1)P-value of Fisher's F test. 
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with fertilizers allowed in organic agriculture. 
Thermophosphate inhibited and bioactivator 
improved AMF root colonization. 
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