Acessibilidade / Reportar erro

Fluctuation of insect vectors of Cowpea aphid-borne mosaic virus in yellow passion fruit orchards in the state of Paraná, Brazil

Flutuação populacional de insetos vetores do Cowpea aphid-borne mosaic vírus em pomares de maracujá amarelo no estado do Paraná, Brasil

ABSTRACT:

This study identified and monitored the population fluctuations of insect vectors of Cowpea aphid-borne mosaic virus (CABMV) in experimental orchards in the North and Northwest Regions of the State of Paraná. The experiments were conducted in the cities of Londrina and Paranavaí at the Experimental Research Stations of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná), Brazil. The study period was from September 2019 to March 2021. In the experiments conducted in Londrina and in Paranavaí, yellow passion fruit plants were grown in trellis systems. Moericke traps were used to capture insects, and collections were performed weekly. Aphids were identified using a taxonomic identification key. The numbers of aphids present in each region were compared, and the populations were correlated with the climate and local precipitation. A total of 1522 and 1340 winged aphids were observed in the experiments in Londrina and Paranavaí, respectively. In Londrina, moderate positive correlations were observed between the number of insects and the maximum and average temperatures, while negative correlations were observed between the number of insects and the minimum temperature and precipitation. In contrast, in Paranavaí, the correlation between aphids and abiotic factors was negative, where maximum temperature was strongly correlated. In both regions, the following seven species of aphid vectors of CABMV were detected: Aphis fabae, Aphis gossypii, Toxoptera citricida, Acyrthosiphon pisum, Brevicoryne brassicae, Macrosiphum euphorbiae and Uroleucon ambrosiae. The population fluctuations of these species were influenced by variations in temperature and precipitation.

Key words:
Passiflora edulis; fruit hardening virus; vector aphids

RESUMO:

O objetivo deste estudo foi identificar e monitorar as flutuações populacionais de insetos vetores do Cowpea aphid-borne mosaic virus (CABMV) em pomares experimentais nas Regiões Norte e Noroeste do Estado do Paraná. Os experimentos foram conduzidos nas cidades de Londrina e Paranavaí nas Estações de Pesquisa Experimental do Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná), Brasil. O período de estudo foi de setembro de 2019 a março de 2021. Nos experimentos realizados em Londrina e em Paranavaí, plantas de maracujá amarelo foram cultivadas em sistema de latada. Foram utilizadas armadilhas Moericke para captura dos insetos e as coletas foram realizadas semanalmente. Os pulgões foram identificados por meio de uma chave de identificação taxonômica. Os números de pulgões presentes em cada região foram comparados e as populações correlacionadas com o clima e a precipitação local. Foram observados 1.522 e 1.340 pulgões alados nos experimentos de Londrina e Paranavaí, respectivamente. Em Londrina, foram observadas correlações positivas moderadas entre o número de insetos e as temperaturas máxima e média, enquanto correlações negativas foram observadas entre o número de insetos e a temperatura mínima e precipitação. Em contrapartida, em Paranavaí, a correlação entre pulgões e fatores abióticos foi negativa, onde a temperatura máxima estava fortemente correlacionada. Em ambas as regiões foram detectadas as seguintes sete espécies de pulgões vetores do CABMV: Aphis fabae, Aphis gossypii, Toxoptera citricida, Acyrthosiphon pisum, Brevicoryne brassicae, Macrosiphum euphorbiae e Uroleucon ambrosiae. As flutuações populacionais dessas espécies foram influenciadas pelas variações de temperatura e precipitação.

Palavras-chave:
Passiflora edulis; vírus do endurecimento dos frutos; afídeos vetores

INTRODUCTION

The Passifloraceae family has great genetic variability, comprising 18 genera and 630 species. The genus Passiflora is the most economically important genus, comprising 465 species (VANDERPLANK, 1996VANDERPLANK, J. Passion flowers. Massachusetts: MIT Press, 1996. 224p.), of which approximately 120 are native to Brazil. Despite this diversity, yellow or sour passion fruit is the main species grown in Brazilian orchards (MELETTI & BRÜCKNER, 2001MELETTI, L. M. M.; BRÜCKNER, C. H. Melhoramento Genético. In: BRÜCKNER, C. H.; PICANÇO, M. C. Maracujá: tecnologia de produção, pós-colheita, agroindústria, mercado. Porto Alegre: Cinco Continentes, 2001. p.345-385.).

Brazil is the world’s largest producer of passion fruit; it has produced an average of 740 thousand tons in the last 10 years. The northeast and southeast regions are the main producers of this fruit in the country. In the northeast region, the states of Bahia and Ceará are the main producers, accounting for 71.2% and 12.2% of the total passion fruit production, respectively (EMBRAPA, 2022EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Produção brasileira de maracujá em 2021. 2022. Online. Available from: <http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja/b1_maracuja.pdf.>. Accessed: Sept. 06, 2022.
http://www.cnpmf.embrapa.br/Base_de_Dado...
).

In the state of Paraná, passion fruit culture is also of significant importance, as passion fruit is cultivated in several regions. In 2021, approximately 1,391 hectares of planted area were harvested, with an average productivity of 14.27 tons per hectare. Paraná ranked eighth nationally in fruit production (EMBRAPA, 2022EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Produção brasileira de maracujá em 2021. 2022. Online. Available from: <http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja/b1_maracuja.pdf.>. Accessed: Sept. 06, 2022.
http://www.cnpmf.embrapa.br/Base_de_Dado...
).

As these crops have expanded, phytosanitary problems, which can seriously damage crops and impact their economic viability, and diseases have become more common (CARVALHO et al., 2015CARVALHO, S. L. C. et al. Maracujá-amarelo: Recomendações técnicas para cultivo no Paraná. Londrina: IAPAR, 2015. 54p.; MACHADO et al., 2017MACHADO, C. F. et al. Guia de identificação e controle de pragas na cultura do maracujazeiro. Brasília: Embrapa, 2017. 94p. Online. Available from: <Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/170600/1/Cartilha-Guia-de-identificacao-e-controle-de-pragas-na-cultura-do-maracujazeiro.pdf >. Accessed: Aug. 23, 2022.
https://ainfo.cnptia.embrapa.br/digital/...
). Passion fruit can be attacked by several phytopathogenic agents, such as viruses, which have a large economic impact on the crop, and the fruit hardening virus (NASCIMENTO et al., 2006NASCIMENTO, A. V. S. et al. Cowpea aphid-borne mosaic vírus (CABMV) is wides pread in passion fruit in Brazil and causes passion fruit. Archives of Virology, v.151, p.1797-1809, 2006. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16596328/ >. Accessed: Jul. 02, 2022. doi: 10.1007/s00705-006-0755-6.
https://pubmed.ncbi.nlm.nih.gov/16596328...
; PERUCH et al., 2018PERUCH, L. A. M. Controle de doenças do maracujazeiro: situação atual e perspectivas. Revista Agropecuária Catarinense, v.31, n.1, p.37-40, 2018. Available from: <Available from: https://publicacoes.epagri.sc.gov.br/index.php/RAC/article/view/243/0 >. Accessed: Jul. 12, 2022.
https://publicacoes.epagri.sc.gov.br/ind...
) caused by Cowpea aphid-borne mosaic virus (CABMV), which belongs to the genus Potyvirus and family Potyviridae (TAYLOR & GREBER, 1973TAYLOR, R. H.; GREBER, R. S. Passion fruit woodiness virus. Fainhani Royal: Commom wealth Mycological Institute, 1973. (Description of Plant Viruses, 122).).

The transmission of CABMV may occur during some cultural practices, such as grafting and pruning (ZERBINI-JÚNIOR & MACIEL-ZAMBOLIM, 1999ZERBINI JÚNIOR, F. M.; MACIEL ZAMBOLIM, E. A família Potyviridae parte I. Revisão Anual de Patologia de Plantas, v.7, p.1-50, 1999.). In natural conditions, transmission occurs through aphids in a non-persistent; the insect does not need to feed on the plant. For infection to occur, the insect must bite a diseased plant, acquire the virus, and later transmit it to other healthy plants (YUKI et al., 2006YUKI, V. A. et al. Epidemiologia do vírus do endurecimento dos frutos do maracujazeiro na região produtora da Alta Paulista, SP. Summa Phytopathologica, v.32, Supl., p.19, 2006.).

Although, there are no colonizing Passiflora species, many aphid species have been noted to transmit CABMV (GARCÊZ et al., 2015GARCÊZ, R. M. et al. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil. Springer Plus, v.4, p.537, 2015. Available from: <Available from: https://springerplus.springeropen.com/articles/10.1186/s40064-015-1263-5 >. Accessed: Sept. 06, 2022. doi: 10.1186/s40064-015-1263-5.
https://springerplus.springeropen.com/ar...
); these include Myzus persicae, Myzus nicotianae Blackman, Aphis gossypii Glover, Aphis fabae Scopoli, Aphis solanella Patch, Aphis craccivora Bock, Toxoptera citricida Kirkaldy, Uroleucon ambrosiae Thomas (COSTA et al., 1998COSTA, C. L. Vetores de vírus de plantas - 1. Insetos. Revista Anual de Patologia de Plantas, v.6, p.103-171, 1998.; GARCÊZ et al., 2015), Rhopalosiphum maidis Fitch, Acyrthosiphon pisum Harris, Macrosiphum euphorbiae Thomas (KILALO et al., 2012KILALO, D. C. et al. Utilization of cultural methods for controlling aphid vectors of passion fruit viruses. East African Agricultural & Forestry Journal, v.78, n.1, p.47-54, 2012. Available from: <Available from: http://erepository.uonbi.ac.ke/handle/11295/65300 >. Accessed: Jul. 17, 2022.
http://erepository.uonbi.ac.ke/handle/11...
), Brevicorine brassicae Linnaeus and Sitobion avenae Fabricius (KILALO et al., 2013KILALO, D. C. et al. Monitoring of aphid fauna in passion fruit orchards in Kenya. International Journal of Horticultural & Crop Science Research, v.3, n.1, p.1-18, 2013. Available from: <Available from: http://erepository.uonbi.ac.ke/handle/11295/35490 >. Accessed: Jul. 17, 2022.
http://erepository.uonbi.ac.ke/handle/11...
; MORITZ, 2020).

The incidence of the disease in passion fruit varies according to the time of implantation in the orchard and can reach 100%. CAVICHIOLI et al. (2011CAVICHIOLI, J. C. et al. Desenvolvimento, produtividade e sobrevivência de maracujazeiro-amarelo enxertado e cultivado em área com histórico de morte prematura de plantas. Revista Brasileira de Fruticultura, v.33, n.2, p.567-574, 2011. Available from: <https://www.scielo.br/j/rbf/a/qSgQJTd8fdbfwh3xS8WLYDm/?lang=pt>. Accessed: Jul. 11, 2023. doi: 10.1590/S0100-29452011005000075.
https://doi.org/10.1590/S0100-2945201100...
), studying the incidence and severity of the disease in passion fruit plants grafted onto non leaf plants, reported a virus incidence of 52.5% in plants grafted on P. alata, 51.25% on P. edulis, and 45.6% on P. gibertii and a virus incidence of 45% in non leaf plants from 90 to 120 days after planting; furthermore, 180 days after field planting, 100% of both the non leaf plants and those grafted onto P. alata were infected with CABMV.

The symptoms of the disease are characterized by the presence of mosaic patterns on the leaves, which may be accompanied by blistering and deformation. In fruits, deformation can also occur. In addition, due to the reduction in fruit size and thickening of the pericarp, pulp content decreases. These factors, together with the decrease in the production cycle of the plants, result in reduced passion fruit production and; consequently, in commercial losses, as highlighted by GIORIA et al. (2000GIORIA, R. et al. Incidência de viroses de maracujazeiro na Alta Paulista - SP, e danos causados pelo “Passion fruit woodiness vírus”. Fitopatologia Brasileira, Brasília, v.25, p.182-189, 2000.) and REZENDE (2006REZENDE, J. A. M. Práticas culturais para prevenção e convivência com as viroses do maracujazeiro. In: SAMPAIO, A. C. et al. (Eds.). Manejo no controle do vírus do endurecimento dos frutos (PWV) do maracujazeiro. Jaboticabal: Multipress, 2006. p.47-58.).

The disease in production areas has not been efficiently controlled due to its transmission via aphid bites; insecticide application cannot prevent the spread of CABMV (REZENDE, 2006REZENDE, J. A. M. Práticas culturais para prevenção e convivência com as viroses do maracujazeiro. In: SAMPAIO, A. C. et al. (Eds.). Manejo no controle do vírus do endurecimento dos frutos (PWV) do maracujazeiro. Jaboticabal: Multipress, 2006. p.47-58.) because it does not have sufficient time to act before the insects transmit the virus to the plant (COSTA, 1998COSTA, C. L. Vetores de vírus de plantas - 1. Insetos. Revista Anual de Patologia de Plantas, v.6, p.103-171, 1998.); furthermore, insecticide use may even increase transmission by increasing the vector activity of the insect (FERERES & MORENO, 2011FERERES, A.; MORENO, A. Integrated control measures against viruses and their vectors. In: CARANTA, C et al. (Eds.). Recent Advances in Plant Virology. Norfolk, UK: Caister Academic Press, 2011. p.237-262.).

In this context, the eradication of symptomatic plants and alternative hosts from orchards is recommended to decrease the source of disease inoculum and the use of materials resistant to the virus. According to a study conducted by SAMPAIO et al. (2017SAMPAIO, S. R. et al. Identificação de fontes de resistência à virose do endurecimento dos frutos em genótipos de Passiflora spp. In: 11ª JORNADA CIENTÍFICA, 1., 2017, Cruz das Almas, BA. Resumo... Cruz das Almas: Embrapa Mandioca e Fruticultura , 2017.), three passion fruit genotypes (BGP152 and BRS Pérola do Cerrado) are resistant to CABMV. These genotypes belong to the wild species P. suberosa, P. setacea and P. cincinnata.

In addition, in recent years, sanitary vacuums have been adopted as a disease management strategy to decrease the concentration of aphids in the area and decrease the inoculum source (STENZEL et al., 2019STENZEL, N. M. C. et al. Cultivo do maracujá-amarelo em áreas com ocorrência do vírus do endurecimento dos frutos (CABMV). Londrina (PR): IAPAR, 2019. 29 p.). Therefore, it is recommended that the “sanitary vacuum” period for passion fruit cultivation lasts at least 20 days. For the state of Paraná, this interval should start in July and continue until mid-August and be followed by the complete removal of the orchard and invasive plants that may serve as alternative hosts of the virus. Notably, this practice has gained increasing acceptance from producers in Paraná, contributing to the production of the crop

Considering that the virus responsible for fruit hardening can be transmitted by several species of aphids, studies that provide surveys of the possible insect vectors of CABMV present in each region are highly important for understanding the behaviour of the disease in cultivated regions. Thus the present study identified and follow the population fluctuations of CABMV vector insects in experimental orchards in the North and Northwest Regions of the state of Paraná.

MATERIALS AND METHODS

Location, implementation and conduct of experiments

The survey of aphid vectors of Cowpea aphid-borne mosaic virus CABMV in yellow passion fruit plants (Passiflora edulis) was conducted in two experimental orchards of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) located in the municipality of Londrina (North Region - N) (Latitude 23°21’44’’S and Longitude 51°10’06” W) and in Paranavaí (Northwest Region - NW) (Latitude: 23° 4’ 26’’ S and Longitude: 52° 27’ 55’’ W), Brazil. The experiment was conducted from September 2019 to March 2021, and two production cycles (2019/2020 and 2020/2021) were evaluated.

Passion fruit seedlings were obtained from the seeds of yellow passion fruit hybrids in a nursery protected with an anti-aphid screen. Germination occurred in plastic trays containing Flores MecPlant® commercial substrate (pine bark, acidity corrector, fertilizers and vermiculite). After 30 days, the seedlings were transplanted to plastic bags with substrate for development in a protected environment at the IDR-Paraná experimental station in Londrina. On 08/27/2019, when the plants reached 1.50 m in height, they were transplanted into the field.

In Londrina, the experiment was implemented with 28 plants in each row, totalling 280 plants of the commercial varieties Catarina and Seleção Morretes. The plants were planted in the field under the trellis system, with wires at a height of up to 1.90 m and a spacing of 3.0 m between the rows and 2.0 m between the plants in the planting rows.

In Paranavaí, the passion fruit seedlings were transplanted on 09/03/2019, following the same production system as in Londrina. The orchard consisted of 84 plants of the Catarina variety distributed in 6 rows.

Sampling of vector insects

MOERICKE (1954) traps placed on the soil surface were used to capture CABMV vector insects in the experimental areas. The traps were made with plastic trays measuring 37.0 cm × 26.5 cm × 6.5 cm, with a reflective surface of 980.5 cm2. Each interior was painted with yellow paint and filled with 3 L of a solution composed of water, detergent (5%) and bleach (3%). To avoid the loss of samples due to rain-induced water overflow, two 8-mm holes covered by fine-meshed nylon mesh were drilled on the smaller and opposite sides of the traps. Seven traps were installed at the IDR-Paraná experimental station in Londrina, and six traps were installed in Paranavaí; these traps were distributed in the central and peripheral areas of the orchard to capture insects.

Samples were collected three times a week in both experimental areas by transferring the contents of the trays to 50 mL Falcon tubes. The volume was then adjusted with a 70% alcohol solution. The content collected in the traps was sent to the Laboratory of Virology of the IDR-Paraná in Londrina for insect identification. To avoid the loss of captured insects in the traps due to a lack of solution, the water was replaced between collections.

Insect population survey collection

In both experiments, the traps were set immediately after transplanting the seedlings to the field. The evaluations began on September 11, 2019, and the last collection was on March 31, 2021. From the collected material, the insects were separated and identified with the aid of the classification key “Identification of aphids of agricultural importance” (PENÃ-MARTÍNEZ, 1992PENÃ-MARTÍNEZ, M. R. Identificacion de afidos de importância agrícola. Vol II. In: URIAS, C. M. et al (Eds.). Afidos como vectores de vírus en México. Montecillo, México: Centro de Fitopatologia, 1992. p.1-135.) and a specific bibliography, according to their respective families, genera or species. For better identification, some aphids collected were sent to a specialist, Dr. Alexandre Levi Rodrigues Chaves of the Biological Institute of São Paulo.

The number of species collected was recorded in spreadsheets for an evaluation and analysis of population fluctuations according to collection points and dates. As the traps are not selective or specific for aphids, several types of insects were collected, and triage was performed to separate the aphids from the other collected insects.

Abiotic factors

The data regarding the maximum, average and minimum temperatures and rainfall during the monitored months of September 2019 to March 2021 were obtained from the records of the meteorological station at the IDR Paraná in Londrina, which is located approximately 1,000 metres from the experimental area.

For the temperature data, the average, maximum and minimum daily temperatures were analysed. To obtain the monthly average, the daily averages throughout the month were summed and then divided by the total number of days in the month the monthly average. For precipitation, the sum of the average rainfall in each month (mm) was calculated.

The meteorological data are available in the IAPAR CLIMA application for Android: Agrometeorologia e Clima Instituto de Desenvolvimento Rural do Paraná (idrparana.pr.gov.br).

Analysis of the data

Insect population fluctuation data were subjected to normality distribution and used for plotting graphs. The precipitation and temperature graphs were constructed using the package Office Microsoft Excel (2007).

Pearson’s correlation, based on the formula described below, was used to evaluate the data on the presence of aphids, temperature and rainfall collected in each municipality. The classification of correlations is presented in table 1.

Table 1
Classification of correlation coefficients.

r x y = σ x y σ x 2 x σ y r

where:

σxy: estimator of the variance between the variables x and y;

σx2: estimator of the variance of the variable x;

σy2: estimator of the variance of the variable y.

RESULTS AND DISCUSSION

The process of screening and identification of insects was performed for 18 months; 1,522 winged aphids were collected from the orchard of the IDR-Paraná de Londrina experimental station, and 1,340 aphids were collected from the IDR-Paraná de Paranavaí; the collected species are listed in table 2.

Table 2
Total number of winged aphids collected from September 2019 to March 2021 in the experimental area at the Research Stations of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Londrina and Paranavaí, Paraná, Brazil.

Considering only the species that are vectors of CABMV, the aphids collected in the Londrina orchard were Aphis fabae, Aphis gossypii, Uroleucon ambrosiae, Toxoptera citricida, Macrosiphum euphorbiae, Brevicoryne brassicae and Acyrthosiphon pisum, representing 9, 7.4, 2, 2.5, 1, 0.7 and 0.5% of the total aphids collected, respectively. The largest number of non vector insects collected was represented by the species Lipaphis erysimi, accounting for 42% of the total collection. For species of aphids that were collected in small numbers, the total numbers were grouped together and called accessory species; these included Tetraneura nigriabdominalis, Toxoptera aurantii, Brachycaudus helichrysi, Pemphiginae spp., Rhopalosiphum spp. and Neotoxoptera formosana, totalling just under 2%. The percentage of unidentified aphid specimens in this orchard was 11.6% (Table 2; Figure 1).

Figure 1
Main aphid species collected in the passion fruit experimental field of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Londrina, Paraná, Brazil. A: Aphis spp.; B: Toxoptera citricida; C: Lipaphis erysimi; D: Uroleucon ambrosiae.

In the Paranavaí orchard, the CABMV vector species identified were Aphis fabae, Aphis gossypii, Toxoptera citricida, Acyrthosiphon pisum, Uroleucon ambrosiae, Macrosiphum euphorbiae and Brevicoryne brassicae, representing 22.9, 20.9, 4.6, 1.7, 0.9, 0.6 and 0.4% of the total aphids collected, respectively. The accessory species comprised 1.4% of the total number of insects and were represented by N. formosana and T. aurantii. As observed in the Londrina orchard, L. erysimi was the non vector species of CABMV observed in greater quantities, comprising 11.6% of the total aphids collected. Finally, unidentified species comprised 2% of the total number of insects (Table 2).

In both regions, vector individuals were collected, especially those of the genus Aphis, which presented a greater number of individuals than the other genera. The predominance of aphids of the genus Aphis was also observed by SANTOS (2020SANTOS, K. S. Levantamento do vírus do endurecimento dos frutos (Cowpea aphid-borne mosaic virus - CABMV) e de afídeos em maracujazeiro no Paraná. 2020. 91f. Dissertação (Mestrado em Agricultura Conservacionista), Instituto Agronômico do Paraná, Londrina, 2020.) in studies conducted in the same region of Londrina. Moreover, SANTOS (2020) reported that the genus cited contributed approximately 91% of the total specimens collected, with a frequency above 80% in all monitored months (October 2018 to June 2019). According to DI PIERO et al. (2006DI PIERO, R. M. et al. Transmissão do Passion fruit woodiness virus por Aphis gossypii (Glover) (Hemiptera: Aphididae) e Colonização de Maracujazeiro pelo Vetor. Neotropical Entomology, v.35, n.1, p.139-140, 2006. Available from: <Available from: https://www.scielo.br/j/ne/a/zmfyVwTScsFzbsgCtJyWgLv/?lang=pt >. Accessed: Jul. 11, 2023. doi: 10.1590/S1519-566X2006000100019.
https://www.scielo.br/j/ne/a/zmfyVwTScsF...
), the genus Aphis plays a crucial role in the spread of CABMV and is described as a vector of the virus. In addition, this genus contains species that efficiently transmit CABMV, with transmission rates ranging from 75% to 100%.

The results obtained in the present study also corroborated those of RODRIGUES (2013RODRIGUES, L. K. Epidemiologia do Cowpea aphid-borne mosaic virus e manejo do maracujazeiro-azedo no Vale do Ribeira, São Paulo. 2013. 134f. Dissertação (Mestrado em Sanidade, Segurança Alimentar e Ambiental no Agronegócio) - Instituto Biológico, São Paulo, 2013.), who observed the polyphagous nature of the insect, which explains its year-round presence and greater occurrence among the total number of insects collected. Tolerance to extreme temperatures, which range from 4 °C to 30 °C, and high fecundity also explain the large quantities of this genus captured in orchards (SAMPAIO et al., 2005SAMPAIO, M. V. et al. Resposta à temperatura de Aphidius colemani Viereck (Hymenoptera, Braconidae, Aphidiinae) originário de três regiões climáticas de Minas Gerais, Brasil. Revista Brasileira de Entomologia, v.49, n.1, p.141-147, 2005. Available from: <Available from: https://www.scielo.br/j/rbent/a/5Zj4jgqByKPDMY8t5Cktgdq/ >. Accessed: Jul. 10, 2022. doi: 10.1590/S0085-56262005000100016.
https://www.scielo.br/j/rbent/a/5Zj4jgqB...
).

In general, the divergence and diversity of species captured between regions and the amount of each genus may be related to the diversity of botanical species present in each region and to climatic conditions (DIXON & KINDLMANN, 1990DIXON, A. F. G.; KINDLMANN, P. Role of plant abundance in determining the abundance of herbivorous insects. Oecologia, v.83, p.281-283, 1990. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22160125/ >. Accessed: Jul. 15, 2022. doi: 10.1007/BF00317766.
https://pubmed.ncbi.nlm.nih.gov/22160125...
). The crops around the orchard can influence the presence and permanence of certain species in the field. In the surroundings of the experimental area, the following crops were observed: bean (Phaseolus vulgaris L.), pitaya (Hylocereus undatus), acerola (Malpighia punicifolia L.), citrus (Citrus spp.), avocado (Persea americana Mill), and cotton (Gossypium hirsutum L.), sugarcane (Saccharum officinarum L.), starfruit (Averrhoa carambola L.), coffee (Coffea arabica L.), banana (Musa spp. L.) and Crotalaria spp. The data observed in the present study related to the species A. spiraecola, which represented 1.6 and 3% of the total insects captured in Londrina and Paranavaí, respectively, and T. citricida, which represented 2.5 and 4.6% of the total insects captured in Londrina and Paranavaí, respectively. Insects collected in Londrina and Paranavaí (Table 2) corroborated those presented by PRIMIANO (2005PRIMIANO, E. L. V. Dinâmica populacional de afídeos (Hemiptera: Aphididae) em árvores cítricas no município de Nova Granada - SP. 2005. 73 f. Dissertação (Mestrado em Entomologia) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2005.), who reported that such species can be found more frequently in citrus orchards. Interestingly, citrus plants were present near the sites where the experiments in the present study were conducted.

This diversity of species found in the regions may be related to the feeding habits of the aphids. According to POWELL & HARDIE (2001POWELL, G.; HARDIE, J. The chemical ecology of aphid host alternation: How do returnmigrants find the primary host plant? Applied Entomological Zoology, v.36, p.259-267, 2001. Available from: <Available from: https://www.jstage.jst.go.jp/article/aez/36/3/36_3_259/_article/-char/ja/ >. Accessed: Jul. 12, 2023. doi: 10.1303/aez.2001.259.
https://www.jstage.jst.go.jp/article/aez...
), some species collected have a polyphagous habit, which means that they can adapt to different host plants in a facultative or obligatory manner. These polyphagous species tend to have a wide spatial and temporal distribution, depending on the availability of host plants (LAZZARI & LAZZAROTTO, 2005LAZZARI, S. M. N. et al. Distribuição altitudinal e sazonal de afídeos (Hemiptera, Aphididae) na Serra do Mar, Paraná, Brasil. Revista Brasileira de Zoologia, v.22, n.4, p.891-897, 2005. Available from: <Available from: https://www.scielo.br/j/rbzool/a/MZVrPH4qZgFHT3CkrGpxBYG/ >. Accessed: Jul. 22, 2022. doi: 10.1590/S0101-81752005000400013.
https://www.scielo.br/j/rbzool/a/MZVrPH4...
). This may explain the abundance of certain aphid species throughout the year, with seasonal variations in density (CERMELI, 1970CERMELI, M. Notas preliminares sobre la flutuacion de afídeos em Cagua, Estado Aragua, Venezuela. Agronomie Tropicale, v.20, p.311-321, 1970.). According to PIRONE & PERRY (2002PIRONE, T. P.; PERRY, K. L. Aphids: non-persistent transmission. Advanced Botanical Reviews, v.36, p.1-19, 2002. Available from: <Available from: https://www.researchgate.net/publication/251449243_Aphids_Non-persistent_transmission >. Accessed: Jul. 13, 2023. doi: 10.1016/S0065-2296(02)36056-7.
https://www.researchgate.net/publication...
), the aphids that are efficient in the transmission of viruses are those that perform test bites and have polyphagous habits. These factors play important roles in the development of the epidemiology of viral diseases.

Although, the species U. ambrosiae and T. citricida were found to have low population indices, they still showed a considerable frequency. Similar results were observed by RODRIGUES (2013RODRIGUES, L. K. Epidemiologia do Cowpea aphid-borne mosaic virus e manejo do maracujazeiro-azedo no Vale do Ribeira, São Paulo. 2013. 134f. Dissertação (Mestrado em Sanidade, Segurança Alimentar e Ambiental no Agronegócio) - Instituto Biológico, São Paulo, 2013.), who reported low rates for the species U. ambrosiae during the autumn and spring and for T. citricida during the winter and spring. Despite its low presence in passion fruit orchards, experimental studies conducted by COSTA (1998COSTA, C. L. Vetores de vírus de plantas - 1. Insetos. Revista Anual de Patologia de Plantas, v.6, p.103-171, 1998.) showed that these species are highly efficient in transmitting CABMV, with rates of 50% and 37.5%, respectively.

Notably, the large number of aphids of the species L. erysimi observed in this study may indicate that this species has adapted better than others to the region; in a previous study conducted by AQUINO & MOLINA (2020AQUINO, L. T.; MOLINA, R. O. Estudo dos insetos vetores do vírus do endurecimento do fruto (CABMV) em pomar experimental. In: XXVIII SEMINÁRIO DO PROGRAMA DE INICIAÇÃO CIENTÍFICA / X SEMINÁRIO DO PROGRAMA EM DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO, 2020, Londrina, PR. Resumos... Londrina: Instituto de Desenvolvimento Rural do Paraná IAPAR-EMATER (IDR-Paraná), 2020.) in the city of Londrina-PR, it was also observed in abundance.

Studies conducted by CIVIDANES & SANTOS-CIVIDANES (2012CIVIDANES, F. J.; SANTOS-CIVIDANES, T. M. Predicting the occurrence of alate aphids in Brassicaceae. Pesquisa Agropecuária Brasileira, v.47, n.4, p.505-510, 2012. Available from: <Available from: https://www.scielo.br/j/pab/a/C859pW9G38BQHpjD3tMRDBK/ >. Accessed: Jul. 20, 2022. doi: 10.1590/S0100-204X2012000400005.
https://www.scielo.br/j/pab/a/C859pW9G38...
) in the Jaboticabal region showed that the population of L. erysimi is constant in orchards, even in rainy seasons. This factor was also observed by RAMOS et al. (2018RAMOS, T. O. et al. Impacto dos insetos predadores e fatores meteorológicos sobre pulgões em couve consorciada. Revista Agronômica del Noroeste Argentino, v.38, n.2, p.105-113, 2018. Available from: <Available from: https://www.researchgate.net/publication/332395850_Impacto_dos_insetos_predadores_e_fatores_meteorologicos_sobre_pulgoes_em_couve_consorciada >. Accessed: Jul. 12, 2022.
https://www.researchgate.net/publication...
), who reported a population increase in this species during wetter periods. This predominance in orchards with relatively high humidity, according to CIVIDADES & SANTOS-CIVIDANES (2010)CIVIDANES, F. J.; SANTOS-CIVIDANES, T. M. Ocorrência de formas aladas de pulgões e a relação com fatores meteorológicos e plantas hospedeiras. Pesquisa Agropecuária Brasileira, v.45, p.7-15, 2010. Available from: <Available from: https://www.scielo.br/j/pab/a/qTdtzNx4rBj87YcLyBbLjWD/ >. Accessed: Jul. 20, 2022. doi: 10.1590/S0100-204X2010000100002.
https://www.scielo.br/j/pab/a/qTdtzNx4rB...
, may be related to the flight dynamics of the insect.

According to data on the population fluctuations of insects collected between 2019 and 2021 in Londrina, the largest population of aphids was recorded in September and October 2019. In January and September 2020 and February 2021, higher numbers of insects were also captured (Figure 2). These data corroborate those presented by LAZZARI & LAZZAROTO (2005LAZZARI, S. M. N. et al. Distribuição altitudinal e sazonal de afídeos (Hemiptera, Aphididae) na Serra do Mar, Paraná, Brasil. Revista Brasileira de Zoologia, v.22, n.4, p.891-897, 2005. Available from: <Available from: https://www.scielo.br/j/rbzool/a/MZVrPH4qZgFHT3CkrGpxBYG/ >. Accessed: Jul. 22, 2022. doi: 10.1590/S0101-81752005000400013.
https://www.scielo.br/j/rbzool/a/MZVrPH4...
) in the Serra do Mar region in the state of Paraná, who reported a peak in the population of the aphid species in September for most of the studied locations.

Figure 2
Insect vectors and non vectors of Cowpea aphid-borne mosaic virus (CABMV) were captured in an experimental orchard at the Research Station of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Londrina, Paraná, Brazil, from September 2019 to March 2021.

Conversely, the lowest insect incidences in Londrina were in November and December 2019 and May, November and December 2020 (Figure 2). However, the COVID-19 pandemic hindered insect collection in March, April, June and July 2020; this difficulty may have been reflected in the number of insects collected.

In the Londrina region, an analysis of the rainfall distributions during the evaluation periods from September to November 2019 indicated an average of 90 mm. The month with the highest rainfall was December 2019, at 272.2 mm. The highest temperatures in the evaluation months were from September to November 2019, and the lowest average temperatures were recorded in June and July 2020 (Figure 3).

Figure 3
Climatic data recorded in Londrina, Paraná, Brazil, during the experimental period, from September 2019 to February 2021.

These abiotic factors may influence the number of insects collected because, according to HULL (2002HULL, R. Matthew’s Plant Virology. Great Britain: Academic Press, 2002. 1001p.), abiotic factors such as rainfall and temperature can directly affect the population dynamics of certain insect species. In addition, the phenology of the plants, together with the temperature and moderate rainfall, also favours the development of insect populations.

In the region of Paranavaí, the highest number of captured aphids occurred between January and September 2020. For vector species, January 2020 had the highest incidence. A slight increase was also noticeable in January 2021 (Figure 4). In this region, in January 2020, the average temperature was 24.5 °C, and the average rainfall was 104.4 mm (Figure 5). Although, the rainfall index in the region was high during this period, large numbers of collected aphids were recorded.

Figure 4
Insect vectors and non vectors of Cowpea aphid-borne mosaic virus (CABMV) captured in an experimental orchard in the Research Station of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Paranavaí, Paraná, Brazil, period from September 2019 to March 2021.

Figure 5
Climatic data recorded in Paranavaí, Paraná, Brazil, during the experimental period, from September 2019 to February 2021.

For the data from the Paranavaí field, the highest rainfall distributions were recorded in December 2019 at 224.2 mm and in January 2021 at 275 mm. The lowest average temperatures were recorded in June and July 2020, and the highest temperatures were recorded in January and March 2021 (Figure 6).

Figure 6
Correlation of the total number of insects collected from the Research Station of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Paranavaí, Paraná, Brazil, with temperature and precipitation.

Precipitation and temperature are abiotic factors that strongly influenced the presence of insects in the orchards in this study; a distinct predominance between the number of individuals and genera collected at each study site was observed. CONTI et al. (2010CONTI, B. F. et al. Reproduction and fertility life table of three aphid species (Macrosiphini) at different temperatures. Revista Brasileira de Entomologia, v.54, n.4, p.654-660, 2010. Available from: <Available from: https://www.scielo.br/j/rbent/a/zZBfz7TLC3cJTJ94T7zMLHB/ >. Accessed: Jul. 18, 2022. doi: 10.1590/S0085-56262010000400018.
https://www.scielo.br/j/rbent/a/zZBfz7TL...
) reported that species tend to have a greater ability to reproduce under well-defined temperatures, and with increasing temperature, individual fertility decreases.

In this context, temperature and precipitation data were correlated with the total number of species captured in the two regions. In Londrina, the number of species captured was moderately positively correlated with the maximum and average temperatures (Figure 7). These data are justified by the high monthly temperature values for the months of September, October and November 2019, as well as the high number of insects captured in the orchard during these months (Figures 2 and 3). For the minimum temperature, the correlation with the number of captured insects was negative, as was the correlation between insects and precipitation (Figure 6).

Figure 7
Correlation of the total number of insects collected at the Research Station of the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná) in Londrina, Paraná, Brazil, with temperature and precipitation.

In Paranavaí, the correlations between temperature and aphids and between precipitation and aphids were negative (Figure 7), which can be explained by the fact that the number of insects captured in the experimental area was low when precipitation remained high in December 2019 and January 2021 in Paranavaí. (Figure 4 and 5).

The correlation data regarding abiotic factors and aphid population in this study corroborate those observed by SANTOS (2020SANTOS, K. S. Levantamento do vírus do endurecimento dos frutos (Cowpea aphid-borne mosaic virus - CABMV) e de afídeos em maracujazeiro no Paraná. 2020. 91f. Dissertação (Mestrado em Agricultura Conservacionista), Instituto Agronômico do Paraná, Londrina, 2020.), who reported that only precipitation had a negative effect (r = -0.1261) on the population dynamics of aphids. However, temperature was not a limiting factor and was characterized as moderately positive (r = 0.5061).

This relationship between insects and temperature was also observed by RAMOS et al. (2018RAMOS, T. O. et al. Impacto dos insetos predadores e fatores meteorológicos sobre pulgões em couve consorciada. Revista Agronômica del Noroeste Argentino, v.38, n.2, p.105-113, 2018. Available from: <Available from: https://www.researchgate.net/publication/332395850_Impacto_dos_insetos_predadores_e_fatores_meteorologicos_sobre_pulgoes_em_couve_consorciada >. Accessed: Jul. 12, 2022.
https://www.researchgate.net/publication...
), who studied the density of aphids on cabbage, sorghum and pigeon pea; the aphid species they identified had a negative and significant correlation with minimum temperature and a positive and significant correlation with maximum temperature. According to the authors, such meteorological factors are important variables because they directly influence the occurrence of aphids in the area.

Passion fruit is a tropical climate plant and thus grows very well in hot and humid regions; therefore, the main climatic elements that positively or negatively affect the development of the plant are temperature, precipitation, relative humidity and luminosity. While these factors can directly influence plant development, longevity and health, they can also promote the occurrence of diseases and pests, which cause damage to crops (CUNHA et al., 2004CUNHA, M. A. P. et al. Botânica. In: LIMA, A. A.; CUNHA, M. A. P. (Eds.) Maracujá: produção e qualidade na passicultura. Cruz das Almas: Embrapa Mandioca e Fruticultura, 2004. p.13-35.).

This high occurrence of Aphis may be related to the fact that some aphid species are well adapted to the environment in which they are found, such as A. gossypii, which is tolerant to temperatures of 4 to 30 °C (SOGLIA et al., 2002SOGLIA, M. C. M. et al. Desenvolvimento e sobrevivência de Aphis gossypii Glover (Hemiptera: Aphididae) em diferentes temperaturas e cultivares comerciais de crisântemo. Neotropical Entomology, v.31, n.2, p.211-216, 2002. Available from: <Available from: https://www.scielo.br/j/ne/a/mPMkbTVCYXdZhqk6fHGgSRK/ >. Accessed: Jul. 11, 2022. doi: 10.1590/S1519-566X2002000200006.
https://www.scielo.br/j/ne/a/mPMkbTVCYXd...
). Thus, efforts to control these species are very important. However, CABMV non-persistently aphid-transmitted viruses compromising the efficiency of chemical vector control; consequently, this measure is basically ineffective since most insecticides cannot act quickly enough to eliminate aphids before they perform the test bite and thus introduce the virus into the plant (FAJARDO & NICKEL, 2019FAJARDO, T. V. M. et al. Transmissão de vírus e controle de viroses em plantas. Bento Gonçalves: Embrapa Uva e Vinho, 2019. 24p. Online. Available from: <Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/195251/1/Doc110.pdf >. Accessed: Sept. 06, 2022.
https://ainfo.cnptia.embrapa.br/digital/...
).

In this context, to control the disease, all factors that may favour increases in its incidence in the area should be considered, such as adopting control measures based on the history of the cultivation area, since once present in the orchard, CABMV develops rapidly (BATISTA et al., 2022BATISTA, D. C. et al. Spatio-temporal distribution and influence of distance of diseased passion fruit plants in the dissemination of the Cowpea aphid-borne mosaic virus in semi-arid tropical region. Australian Journal of Crop Science, v.16, n.2, p.266-272, 2022. Available from: <Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1143037/1/Maracuja-Doenca-2022.pdf >. Accessed: Jul. 15, 2023. doi: 10.21475/ajcs.22.16.02.3426.
https://www.alice.cnptia.embrapa.br/alic...
).

Among the management practices that can eliminate CABMV inoculum sources; and consequently, reduce the rate of disease progression, eliminating abandoned or old orchards before new seedlings are transplanted is recommended. When planting in isolated locations with the use of windbreaks, attention should be given to the use of healthy plants produced in environments protected from aphids; thinning and pruning operations; sanitary vacuuming; the complete eradication of symptomatic plants (roguing) and the elimination of potential CABMV host plants present around the orchard (SAMPAIO et al., 2008SAMPAIO, A. C. et al. Manejo cultural do maracujazeiro-amarelo em ciclo anual visando à convivência com o vírus do endurecimento dos frutos: um estudo de caso. Revista Brasileira de Fruticultura, v.30, n.2, p.343-347, 2008. Available from: <Available from: https://www.scielo.br/j/rbf/a/jkHc5FjrVqCRcrsMHhjjMqb/ >. Accessed: Jul. 10, 2023. doi: 10.1590/S0100-29452008000200013.
https://www.scielo.br/j/rbf/a/jkHc5FjrVq...
; STENZEL et al., 2019STENZEL, N. M. C. et al. Cultivo do maracujá-amarelo em áreas com ocorrência do vírus do endurecimento dos frutos (CABMV). Londrina (PR): IAPAR, 2019. 29 p.; KOTSUBO et al., 2021KOTSUBO, R. Y. et al. Temporal and spatial progress of Cowpea aphid-borne mosaic virus (CABMV) in passion fruit (Passiflora edulis Sims). Australian Journal of Crop Science, v.15, n.2, p.284-289, 2021. Available from: <Available from: https://www.cropj.com/kostubu_15_2_2021_284_289.pdf >. Accessed: Jul. 15, 2023. doi: 10.21475/ajcs.21.15.02.p2997.
https://www.cropj.com/kostubu_15_2_2021_...
; BATISTA et al., 2022BATISTA, D. C. et al. Spatio-temporal distribution and influence of distance of diseased passion fruit plants in the dissemination of the Cowpea aphid-borne mosaic virus in semi-arid tropical region. Australian Journal of Crop Science, v.16, n.2, p.266-272, 2022. Available from: <Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1143037/1/Maracuja-Doenca-2022.pdf >. Accessed: Jul. 15, 2023. doi: 10.21475/ajcs.22.16.02.3426.
https://www.alice.cnptia.embrapa.br/alic...
).

Alternative control measures have also been investigated and show promise in controlling insect vectors. MORITZ et al. (2022MORITZ, D. R. et al. Effect of vegetable oil on the efficiency of transmission of cowpea aphid-borne mosaic virus by Aphis gossypii Glover in passion fruit plants. Tropical Plant Pathology, v.47, p.298-302, 2022. Available from: <Available from: https://link.springer.com/article/10.1007/s40858-021-00476-8 >. Accessed: Jul. 15, 2023. doi: 10.1007/s40858-021-00476-8.
https://link.springer.com/article/10.100...
) confirmed that doses of up to 1.0% vegetable oil reduced the acquisition and transmission of CABMV via A. gossypii in passion fruit seedlings by 98.67% and 60%, respectively.

There is still little information about the resistance of yellow passion fruit plants to the CABMV virus, and there is currently no effective chemical control of the vectors; thus, studies that provide information and support for cultivation practices that can reduce the losses caused by this disease are much needed (PERUCH et al., 2018PERUCH, L. A. M. Controle de doenças do maracujazeiro: situação atual e perspectivas. Revista Agropecuária Catarinense, v.31, n.1, p.37-40, 2018. Available from: <Available from: https://publicacoes.epagri.sc.gov.br/index.php/RAC/article/view/243/0 >. Accessed: Jul. 12, 2022.
https://publicacoes.epagri.sc.gov.br/ind...
).

CONCLUSION

In the regions of Londrina and Paranavaí, the presence of seven species of aphid vectors of CABMV were observed: Aphis fabae, Aphis gossypii, Toxoptera citricida, Acyrthosiphon pisum, Brevicoryne brassicae, Macrosiphum euphorbiae and Uroleucon ambrosiae. Aphis species were the most abundant in both studied regions, and their population fluctuations were influenced by temperature and precipitation.

ACKNOWLEDGEMENTS

The authors thank the Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER (IDR-Paraná), Brazil, for access to infrastructure and the support offered; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support; Dr. Alexandre Levi Rodrigues Chaves, Instituto Biológico (IB), São Paulo, Brazil, for assistance in identifying aphid species; To the researchers, professors, technicians, fellows and interns at the Virology Laboratory at IDR-Paraná for their support in the development of this work.

REFERENCES

  • AQUINO, L. T.; MOLINA, R. O. Estudo dos insetos vetores do vírus do endurecimento do fruto (CABMV) em pomar experimental. In: XXVIII SEMINÁRIO DO PROGRAMA DE INICIAÇÃO CIENTÍFICA / X SEMINÁRIO DO PROGRAMA EM DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO, 2020, Londrina, PR. Resumos... Londrina: Instituto de Desenvolvimento Rural do Paraná IAPAR-EMATER (IDR-Paraná), 2020.
  • BATISTA, D. C. et al. Spatio-temporal distribution and influence of distance of diseased passion fruit plants in the dissemination of the Cowpea aphid-borne mosaic virus in semi-arid tropical region. Australian Journal of Crop Science, v.16, n.2, p.266-272, 2022. Available from: <Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1143037/1/Maracuja-Doenca-2022.pdf >. Accessed: Jul. 15, 2023. doi: 10.21475/ajcs.22.16.02.3426.
    » https://doi.org/10.21475/ajcs.22.16.02.3426» https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1143037/1/Maracuja-Doenca-2022.pdf
  • CARVALHO, S. L. C. et al. Maracujá-amarelo: Recomendações técnicas para cultivo no Paraná. Londrina: IAPAR, 2015. 54p.
  • CAVICHIOLI, J. C. et al. Desenvolvimento, produtividade e sobrevivência de maracujazeiro-amarelo enxertado e cultivado em área com histórico de morte prematura de plantas. Revista Brasileira de Fruticultura, v.33, n.2, p.567-574, 2011. Available from: <https://www.scielo.br/j/rbf/a/qSgQJTd8fdbfwh3xS8WLYDm/?lang=pt>. Accessed: Jul. 11, 2023. doi: 10.1590/S0100-29452011005000075.
    » https://doi.org/10.1590/S0100-29452011005000075.
  • CERMELI, M. Notas preliminares sobre la flutuacion de afídeos em Cagua, Estado Aragua, Venezuela. Agronomie Tropicale, v.20, p.311-321, 1970.
  • CIVIDANES, F. J.; SANTOS-CIVIDANES, T. M. Ocorrência de formas aladas de pulgões e a relação com fatores meteorológicos e plantas hospedeiras. Pesquisa Agropecuária Brasileira, v.45, p.7-15, 2010. Available from: <Available from: https://www.scielo.br/j/pab/a/qTdtzNx4rBj87YcLyBbLjWD/ >. Accessed: Jul. 20, 2022. doi: 10.1590/S0100-204X2010000100002.
    » https://doi.org/10.1590/S0100-204X2010000100002.» https://www.scielo.br/j/pab/a/qTdtzNx4rBj87YcLyBbLjWD/
  • CIVIDANES, F. J.; SANTOS-CIVIDANES, T. M. Predicting the occurrence of alate aphids in Brassicaceae. Pesquisa Agropecuária Brasileira, v.47, n.4, p.505-510, 2012. Available from: <Available from: https://www.scielo.br/j/pab/a/C859pW9G38BQHpjD3tMRDBK/ >. Accessed: Jul. 20, 2022. doi: 10.1590/S0100-204X2012000400005.
    » https://doi.org/10.1590/S0100-204X2012000400005.» https://www.scielo.br/j/pab/a/C859pW9G38BQHpjD3tMRDBK/
  • CONTI, B. F. et al. Reproduction and fertility life table of three aphid species (Macrosiphini) at different temperatures. Revista Brasileira de Entomologia, v.54, n.4, p.654-660, 2010. Available from: <Available from: https://www.scielo.br/j/rbent/a/zZBfz7TLC3cJTJ94T7zMLHB/ >. Accessed: Jul. 18, 2022. doi: 10.1590/S0085-56262010000400018.
    » https://doi.org/10.1590/S0085-56262010000400018.» https://www.scielo.br/j/rbent/a/zZBfz7TLC3cJTJ94T7zMLHB/
  • COSTA, C. L. Vetores de vírus de plantas - 1. Insetos. Revista Anual de Patologia de Plantas, v.6, p.103-171, 1998.
  • CUNHA, M. A. P. et al. Botânica. In: LIMA, A. A.; CUNHA, M. A. P. (Eds.) Maracujá: produção e qualidade na passicultura. Cruz das Almas: Embrapa Mandioca e Fruticultura, 2004. p.13-35.
  • DI PIERO, R. M. et al. Transmissão do Passion fruit woodiness virus por Aphis gossypii (Glover) (Hemiptera: Aphididae) e Colonização de Maracujazeiro pelo Vetor. Neotropical Entomology, v.35, n.1, p.139-140, 2006. Available from: <Available from: https://www.scielo.br/j/ne/a/zmfyVwTScsFzbsgCtJyWgLv/?lang=pt >. Accessed: Jul. 11, 2023. doi: 10.1590/S1519-566X2006000100019.
    » https://doi.org/10.1590/S1519-566X2006000100019.» https://www.scielo.br/j/ne/a/zmfyVwTScsFzbsgCtJyWgLv/?lang=pt
  • DIXON, A. F. G.; KINDLMANN, P. Role of plant abundance in determining the abundance of herbivorous insects. Oecologia, v.83, p.281-283, 1990. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/22160125/ >. Accessed: Jul. 15, 2022. doi: 10.1007/BF00317766.
    » https://doi.org/10.1007/BF00317766.» https://pubmed.ncbi.nlm.nih.gov/22160125/
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Produção brasileira de maracujá em 2021. 2022. Online. Available from: <http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja/b1_maracuja.pdf.>. Accessed: Sept. 06, 2022.
    » https://doi.org/Sept. 06, 2022» http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja/b1_maracuja.pdf.
  • FAJARDO, T. V. M. et al. Transmissão de vírus e controle de viroses em plantas. Bento Gonçalves: Embrapa Uva e Vinho, 2019. 24p. Online. Available from: <Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/195251/1/Doc110.pdf >. Accessed: Sept. 06, 2022.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/195251/1/Doc110.pdf
  • FERERES, A.; MORENO, A. Integrated control measures against viruses and their vectors. In: CARANTA, C et al. (Eds.). Recent Advances in Plant Virology. Norfolk, UK: Caister Academic Press, 2011. p.237-262.
  • FIGUEREDO FILHO, D. B; SILVA JUNIOR, J. A. Desenvolvendo os mistérios do coeficiente de correlação de Pearson (r). Revista Politica Hoje, v.18, p.115-146, 2009. Available from: <Available from: https://periodicos.ufpe.br/revistas/politicahoje/article/view/3852/3156 >. Accessed: Sept. 06, 2022.
    » https://periodicos.ufpe.br/revistas/politicahoje/article/view/3852/3156
  • GARCÊZ, R. M. et al. Survey of aphid population in a yellow passion fruit crop and its relationship on the spread Cowpea aphid-borne mosaic virus in a subtropical region of Brazil. Springer Plus, v.4, p.537, 2015. Available from: <Available from: https://springerplus.springeropen.com/articles/10.1186/s40064-015-1263-5 >. Accessed: Sept. 06, 2022. doi: 10.1186/s40064-015-1263-5.
    » https://doi.org/10.1186/s40064-015-1263-5.» https://springerplus.springeropen.com/articles/10.1186/s40064-015-1263-5
  • GIORIA, R. et al. Incidência de viroses de maracujazeiro na Alta Paulista - SP, e danos causados pelo “Passion fruit woodiness vírus”. Fitopatologia Brasileira, Brasília, v.25, p.182-189, 2000.
  • HULL, R. Matthew’s Plant Virology. Great Britain: Academic Press, 2002. 1001p.
  • KILALO, D. C. et al. Monitoring of aphid fauna in passion fruit orchards in Kenya. International Journal of Horticultural & Crop Science Research, v.3, n.1, p.1-18, 2013. Available from: <Available from: http://erepository.uonbi.ac.ke/handle/11295/35490 >. Accessed: Jul. 17, 2022.
    » http://erepository.uonbi.ac.ke/handle/11295/35490
  • KILALO, D. C. et al. Utilization of cultural methods for controlling aphid vectors of passion fruit viruses. East African Agricultural & Forestry Journal, v.78, n.1, p.47-54, 2012. Available from: <Available from: http://erepository.uonbi.ac.ke/handle/11295/65300 >. Accessed: Jul. 17, 2022.
    » http://erepository.uonbi.ac.ke/handle/11295/65300
  • KOTSUBO, R. Y. et al. Temporal and spatial progress of Cowpea aphid-borne mosaic virus (CABMV) in passion fruit (Passiflora edulis Sims). Australian Journal of Crop Science, v.15, n.2, p.284-289, 2021. Available from: <Available from: https://www.cropj.com/kostubu_15_2_2021_284_289.pdf >. Accessed: Jul. 15, 2023. doi: 10.21475/ajcs.21.15.02.p2997.
    » https://doi.org/10.21475/ajcs.21.15.02.p2997.» https://www.cropj.com/kostubu_15_2_2021_284_289.pdf
  • LAZZARI, S. M. N. et al. Distribuição altitudinal e sazonal de afídeos (Hemiptera, Aphididae) na Serra do Mar, Paraná, Brasil. Revista Brasileira de Zoologia, v.22, n.4, p.891-897, 2005. Available from: <Available from: https://www.scielo.br/j/rbzool/a/MZVrPH4qZgFHT3CkrGpxBYG/ >. Accessed: Jul. 22, 2022. doi: 10.1590/S0101-81752005000400013.
    » https://doi.org/10.1590/S0101-81752005000400013» https://www.scielo.br/j/rbzool/a/MZVrPH4qZgFHT3CkrGpxBYG/
  • MACHADO, C. F. et al. Guia de identificação e controle de pragas na cultura do maracujazeiro. Brasília: Embrapa, 2017. 94p. Online. Available from: <Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/170600/1/Cartilha-Guia-de-identificacao-e-controle-de-pragas-na-cultura-do-maracujazeiro.pdf >. Accessed: Aug. 23, 2022.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/170600/1/Cartilha-Guia-de-identificacao-e-controle-de-pragas-na-cultura-do-maracujazeiro.pdf
  • MELETTI, L. M. M.; BRÜCKNER, C. H. Melhoramento Genético. In: BRÜCKNER, C. H.; PICANÇO, M. C. Maracujá: tecnologia de produção, pós-colheita, agroindústria, mercado. Porto Alegre: Cinco Continentes, 2001. p.345-385.
  • MORITZ, D. R. et al. Effect of vegetable oil on the efficiency of transmission of cowpea aphid-borne mosaic virus by Aphis gossypii Glover in passion fruit plants. Tropical Plant Pathology, v.47, p.298-302, 2022. Available from: <Available from: https://link.springer.com/article/10.1007/s40858-021-00476-8 >. Accessed: Jul. 15, 2023. doi: 10.1007/s40858-021-00476-8.
    » https://doi.org/10.1007/s40858-021-00476-8.» https://link.springer.com/article/10.1007/s40858-021-00476-8
  • NASCIMENTO, A. V. S. et al. Cowpea aphid-borne mosaic vírus (CABMV) is wides pread in passion fruit in Brazil and causes passion fruit. Archives of Virology, v.151, p.1797-1809, 2006. Available from: <Available from: https://pubmed.ncbi.nlm.nih.gov/16596328/ >. Accessed: Jul. 02, 2022. doi: 10.1007/s00705-006-0755-6.
    » https://doi.org/10.1007/s00705-006-0755-6.» https://pubmed.ncbi.nlm.nih.gov/16596328/
  • PENÃ-MARTÍNEZ, M. R. Identificacion de afidos de importância agrícola. Vol II. In: URIAS, C. M. et al (Eds.). Afidos como vectores de vírus en México. Montecillo, México: Centro de Fitopatologia, 1992. p.1-135.
  • PERUCH, L. A. M. Controle de doenças do maracujazeiro: situação atual e perspectivas. Revista Agropecuária Catarinense, v.31, n.1, p.37-40, 2018. Available from: <Available from: https://publicacoes.epagri.sc.gov.br/index.php/RAC/article/view/243/0 >. Accessed: Jul. 12, 2022.
    » https://publicacoes.epagri.sc.gov.br/index.php/RAC/article/view/243/0
  • PIRONE, T. P.; PERRY, K. L. Aphids: non-persistent transmission. Advanced Botanical Reviews, v.36, p.1-19, 2002. Available from: <Available from: https://www.researchgate.net/publication/251449243_Aphids_Non-persistent_transmission >. Accessed: Jul. 13, 2023. doi: 10.1016/S0065-2296(02)36056-7.
    » https://doi.org/10.1016/S0065-2296(02)36056-7.» https://www.researchgate.net/publication/251449243_Aphids_Non-persistent_transmission
  • POWELL, G.; HARDIE, J. The chemical ecology of aphid host alternation: How do returnmigrants find the primary host plant? Applied Entomological Zoology, v.36, p.259-267, 2001. Available from: <Available from: https://www.jstage.jst.go.jp/article/aez/36/3/36_3_259/_article/-char/ja/ >. Accessed: Jul. 12, 2023. doi: 10.1303/aez.2001.259.
    » https://doi.org/10.1303/aez.2001.259.» https://www.jstage.jst.go.jp/article/aez/36/3/36_3_259/_article/-char/ja/
  • PRIMIANO, E. L. V. Dinâmica populacional de afídeos (Hemiptera: Aphididae) em árvores cítricas no município de Nova Granada - SP. 2005. 73 f. Dissertação (Mestrado em Entomologia) - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2005.
  • RAMOS, T. O. et al. Impacto dos insetos predadores e fatores meteorológicos sobre pulgões em couve consorciada. Revista Agronômica del Noroeste Argentino, v.38, n.2, p.105-113, 2018. Available from: <Available from: https://www.researchgate.net/publication/332395850_Impacto_dos_insetos_predadores_e_fatores_meteorologicos_sobre_pulgoes_em_couve_consorciada >. Accessed: Jul. 12, 2022.
    » https://www.researchgate.net/publication/332395850_Impacto_dos_insetos_predadores_e_fatores_meteorologicos_sobre_pulgoes_em_couve_consorciada
  • REZENDE, J. A. M. Práticas culturais para prevenção e convivência com as viroses do maracujazeiro. In: SAMPAIO, A. C. et al. (Eds.). Manejo no controle do vírus do endurecimento dos frutos (PWV) do maracujazeiro. Jaboticabal: Multipress, 2006. p.47-58.
  • RODRIGUES, L. K. Epidemiologia do Cowpea aphid-borne mosaic virus e manejo do maracujazeiro-azedo no Vale do Ribeira, São Paulo. 2013. 134f. Dissertação (Mestrado em Sanidade, Segurança Alimentar e Ambiental no Agronegócio) - Instituto Biológico, São Paulo, 2013.
  • SAMPAIO, A. C. et al. Manejo cultural do maracujazeiro-amarelo em ciclo anual visando à convivência com o vírus do endurecimento dos frutos: um estudo de caso. Revista Brasileira de Fruticultura, v.30, n.2, p.343-347, 2008. Available from: <Available from: https://www.scielo.br/j/rbf/a/jkHc5FjrVqCRcrsMHhjjMqb/ >. Accessed: Jul. 10, 2023. doi: 10.1590/S0100-29452008000200013.
    » https://doi.org/10.1590/S0100-29452008000200013.» https://www.scielo.br/j/rbf/a/jkHc5FjrVqCRcrsMHhjjMqb/
  • SAMPAIO, M. V. et al. Resposta à temperatura de Aphidius colemani Viereck (Hymenoptera, Braconidae, Aphidiinae) originário de três regiões climáticas de Minas Gerais, Brasil. Revista Brasileira de Entomologia, v.49, n.1, p.141-147, 2005. Available from: <Available from: https://www.scielo.br/j/rbent/a/5Zj4jgqByKPDMY8t5Cktgdq/ >. Accessed: Jul. 10, 2022. doi: 10.1590/S0085-56262005000100016.
    » https://doi.org/10.1590/S0085-56262005000100016.» https://www.scielo.br/j/rbent/a/5Zj4jgqByKPDMY8t5Cktgdq/
  • SAMPAIO, S. R. et al. Identificação de fontes de resistência à virose do endurecimento dos frutos em genótipos de Passiflora spp. In: 11ª JORNADA CIENTÍFICA, 1., 2017, Cruz das Almas, BA. Resumo... Cruz das Almas: Embrapa Mandioca e Fruticultura , 2017.
  • SANTOS, K. S. Levantamento do vírus do endurecimento dos frutos (Cowpea aphid-borne mosaic virus - CABMV) e de afídeos em maracujazeiro no Paraná. 2020. 91f. Dissertação (Mestrado em Agricultura Conservacionista), Instituto Agronômico do Paraná, Londrina, 2020.
  • SOGLIA, M. C. M. et al. Desenvolvimento e sobrevivência de Aphis gossypii Glover (Hemiptera: Aphididae) em diferentes temperaturas e cultivares comerciais de crisântemo. Neotropical Entomology, v.31, n.2, p.211-216, 2002. Available from: <Available from: https://www.scielo.br/j/ne/a/mPMkbTVCYXdZhqk6fHGgSRK/ >. Accessed: Jul. 11, 2022. doi: 10.1590/S1519-566X2002000200006.
    » https://doi.org/10.1590/S1519-566X2002000200006.» https://www.scielo.br/j/ne/a/mPMkbTVCYXdZhqk6fHGgSRK/
  • STENZEL, N. M. C. et al. Cultivo do maracujá-amarelo em áreas com ocorrência do vírus do endurecimento dos frutos (CABMV). Londrina (PR): IAPAR, 2019. 29 p.
  • TAYLOR, R. H.; GREBER, R. S. Passion fruit woodiness virus. Fainhani Royal: Commom wealth Mycological Institute, 1973. (Description of Plant Viruses, 122).
  • VANDERPLANK, J. Passion flowers. Massachusetts: MIT Press, 1996. 224p.
  • YUKI, V. A. et al. Epidemiologia do vírus do endurecimento dos frutos do maracujazeiro na região produtora da Alta Paulista, SP. Summa Phytopathologica, v.32, Supl., p.19, 2006.
  • ZERBINI JÚNIOR, F. M.; MACIEL ZAMBOLIM, E. A família Potyviridae parte I. Revisão Anual de Patologia de Plantas, v.7, p.1-50, 1999.
  • CR-2022-0535.R2

Edited by

Editors: Leandro Souza da Silva (0000-0002-1636-6643) Uemerson Cunha (0000-0001-8005-4647)

Publication Dates

  • Publication in this collection
    26 Aug 2024
  • Date of issue
    2025

History

  • Received
    26 Sept 2022
  • Accepted
    27 Mar 2024
  • Reviewed
    16 July 2024
Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br