Acessibilidade / Reportar erro

Gas emissions from an agricultural compression-ignition engine using Diesel, biodiesel and ethanol blends

Emissões de gases de um motor agrícola de ignição por compressão utilizando misturas de óleo Diesel, biodiesel e etanol

ABSTRACT:

Partial fuel replacement strategies arising from fossil sources used in compression ignition engines involve mixtures of mineral Diesel oil, biodiesel and ethanol to minimize the gas emissions. In this study, experimental assessments were performed on a multi-cylinder, turbocharged aftercooler, compression-ignition, agricultural tractor engine provided with electronic injection management and an exhaust gas recirculation (EGR) gas treatment system. Diesel oil containing low (BS10 -10 ppm) and high sulfur concentrations (BS500 - 500 ppm) was utilized, with 10% of biodiesel as a constituent established by Brazilian legislation, in blends with 5, 10, 15 and 20% of the total volume, made up of anhydrous ethanol with additives. Thus, there were eight fuels blends and two reference conditions (without ethanol). The emissions of CO, HC, NOx and the HC+NOx gases were estimated, corresponding to the eight operating modes (M) of the ABNT NBR ISO 8178-4 standard. From the findings, it was evident that with the rise in the ethanol concentrations in the fuel blends there was a corresponding increasing in the CO, NOx and HC+NOx emissions. The HC, on the contrary, exhibited a pattern of higher emissions for the high-sulfur fuels (BS500) at low loads. No difference was observed for the NOx emissions at high loads. In the other operation modes, different behaviors were expressed for the BS10, which sometimes showed an increase, while at other times a reduction in the NOx emissions. Regarding the BS500, the NOx emission increased when the ethanol concentrations rose. As the specific emissions of the NOx were higher than those of the HC (in g.kW-1.h-1), the behavior exhibited by the HC+NOx showed similarity to that of the NOx. When the directly analysis of the operating modes was taken into consideration, the use of ethanol triggered an upswing in the emissions, exceeding the threshold of MAR-1 and EURO V standards.

Key words:
Biofuels; electronic injection; Diesel-biodiesel-ethanol blends; emission regulations; tractor

Universidade Federal de Santa Maria Universidade Federal de Santa Maria, Centro de Ciências Rurais , 97105-900 Santa Maria RS Brazil , Tel.: +55 55 3220-8698 , Fax: +55 55 3220-8695 - Santa Maria - RS - Brazil
E-mail: cienciarural@mail.ufsm.br