Victora et al. (1998) propuseram o uso de estimativas de prevalência de baixo peso para idade para a estimação de déficit de altura para idade em crianças brasileiras, em virtude da necessidade de simplificar métodos usados em programas de saúde comunitária. Este artigo tenta aprofundar o referido estudo ao propor uma abordagem Bayesiana com base no método de Simulação Estocástica via Cadeia de Markov (SEvCM), para lidar com questões de imprecisão ligadas à modelagem de estimação do déficit de estatura. Para evitar valores inválidos de prevalência estimados pelo modelo linear sugerido originalmente, propõem-se duas alternativas: um truncamento dos valores que extrapolem os limites plausíveis de prevalência ou uma transformação logito das prevalências. A abordagem Bayesiana é ilustrada com um exemplo de um estudo comunitário. Imprecisões oriundas da complexidade do desenho desse estudo também são contornadas com a abordagem Bayesiana, ao se introduzir uma estrutura hierárquica ou multinível. Já que o déficit de crescimento foi efetivamente observado no exemplo, o artigo também serve como instância de validação para o procedimento proposto por Victora et al.
Antropometria; Vigilância Nutricional; Análise Estatística; Teorema de Bayes; Simulação Estocástica via Cadeia de Markov