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1 Introduction
Brazil is the third largest world producer of fresh 

fruit, harvesting about 42 million tons per year (FOOD..., 
2009). Nonetheless, the country exports only 2% of its 
whole production. In addition to the fruits that are usually 
commercialized, e.g. citrus, apple, banana, and mango, Brazil 
produces nearly 320 varieties of exotic fruits, although only four 
varieties are extensively cultivated. The world market for exotic 
fruits is expanding and presently accounts for 5% of the whole 
market of fresh and processed fruits. The volume of imported 
exotic fruits by the USA increased 27% from 1999 to 2006 
(UNITED..., 2009). Therefore, processing exotic fruits into pulp 
and juice is an attractive opportunity for tropical countries to 
expand their influence over the international market of fruits.

Cajá-manga (Spondias cytherea Sonn., Anacardiaceae), also 
known as golden apple and hog-plum, is an exotic fruit native 
from Îles de la Société (French Polynesia). It was introduced in 
Brazil in 1985 and cultivated mainly in the northeast region of the 
country (DONADIO; MORO; SERVIDOTE, 2000; DONATIO; 
NACHTIGAL; SACRAMENTO, 1998). The fruit is a prolate 
spheroid, up to 10 cm in length, in its largest dimension, 9 cm 
diameter, and 100 g weight. Its skin is golden yellow or brownish, 
and when ripe its pulp is bitter-sweet and acid. Harvesting time is 
short and the fruit is consumed either fresh or processed as jelly 
and juice. Rodriguez-Amaya and Kimura (1989) studied cajá 
(Spondias lutea L.), a fruit quite similar to the cajá-manga, and 
noticed that the total carotenoids content is higher than the other 
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Cajá-manga, also known as golden apple and hog-plum, is an exotic fruit native from Îles de la Société (French Polynesia), which was first 
introduced in Brazil in 1985. The pulp of ripe fruit was treated with the commercial enzymatic pool and its effect was evaluated in terms of 
yield, as well as the physical properties viscosity, turbidity and color (L* values). Response surface methodology was used and three levels were 
adopted for the independent variables temperature (30, 40, and 50 °C), incubation time (30, 60 and 90 minutes) and enzyme concentration 
(0.01, 0.05, 0.09 v/v%). A central composite statistical design was used to guide the experimental work. The enzyme treatment highly increased 
both juice yield (up to 56%) and color (up to 8.6%) and strongly decreased viscosity (up to 57.4%), clarity (up to 77%) and turbidity (up to 
85.5%). Incubation time was the most interacting facto, whereas temperature was the least one. Optimization analysis was carried out to 
reduce enzyme concentration to a minimum by superposing the contour plots of the tested properties, and the recommended ranges of the 
variables enzyme concentration, process temperature and incubation time were, respectively, 0.042-0.068%, 47.0-49.0 °C and 82-90 minutes.
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Cajá-manga: pectinolitic enzyme application

The objective of this work was the application of a 
commercial pecntinolytic enzymatic pool in the cajá-manga 
puree in order to evaluate the influence of the variables 
incubation time, temperature, and enzyme concentration, on 
the process variables turbidity, clarity and viscosity using RSM to 
optimize the search in order to help juice processing industries 
in the production of cajá-manga pulp and juice.

2 Materials and methods

2.1 Materials

Fruit

Fresh cajá-manga was purchased from a local retailer in 
São José do Rio Preto, SP – Brazil and mature fruits were chosen 
for this study.

Enzyme

The Pectinex Ultra SP-L (Novozymes - Switzerland AG), 
produced by Aspergillus aculeatus, was applied for the enzymatic 
treatment. According to the supplier (NOVOZYMES, 2001), the 
solution enzyme contained 26000 PG U per mL and a range of 
hemicellulolytic activities, and the optimum activity condition 
was 3.5 to 6.0 and temperatures below 50 °C. The enzyme was 
stored at 4 °C before use.

2.2 Methods

For each experiment performed with pulp treated with 
enzymes, a control sample was prepared with water instead of 
enzyme solution.

Pulp extraction

The fruits were peeled, deseeded, and blended using a 
household food blender until a homogeneous fruit pulp was 
obtained, usually after 3 minutes of blending time. The pulp 
was then filtered using a domestic plastic sieve. The total 
dissolved solid concentration of the obtained pulp was 13.1°Brix, 
measured with a hand held refractometer (Pocket Refractometer 
PAL-3). The pulp was kept frozen in plastic bags at -20 °C 
before use. For the experiments, the bags were removed from 
the freezer and left to thaw at room temperature.

Enzyme treatment

The samples, corresponding to 30 g of pulp each, were 
submitted to enzymatic treatments under different conditions. 
The adopted ranges for controlled variables were based on 
preliminary assays; three levels were adopted for the variables: 
incubation time, temperature, and enzyme concentration. 
A statistical experimental design, further described, was 
used to guide the experimental work. The experiments were 
conducted in Erlenmeyer flasks which were partially immersed 
in water and kept at constant temperature in a thermostatic 
bath. The enzymatic treatment was halted inactivating the 
enzyme by heating the suspension at 100 °C for 5 minutes. 

tropical fruits such as cashew, guava, and some varieties of papaya. 
According to Rosso, Silva and Mercadante (2008) all-trans-lutein 
was identified as the major carotenoid in cajá-manga, along 
with 9-cis-neoxanthin, all-trans-violaxantin, all-trans-β-cripto-
xantin, 5,6-epóxi-β-cripto-xantin and all-trans-β-carotene. The 
cajá-manga pulp is composed by 72.6-78% moisture, 0.35-0.53% 
fat, 0.25-1.2% protein, 0.7% ash, 17.8% carbohydrate, 1.5% fiber, 
1.2% pectin, 9.3% reducing sugars and 5.0-13.1% soluble solids 
(°Brix) (LAGO-VANZELA et  al., 2011; DONADIO; MORO; 
SERVIDOTE, 2000).

A serious problem in the industrial juice fruit processing 
is the release of pectin into the juice. Pectin is a heterogeneous 
structural polysaccharide present in the cell walls of mesocarp 
and accounts for up to 4% of the total weight of fresh fruits and 
up to 35% of cell walls. This complex carbohydrate composed 
of pectic acid molecules is known for being responsible 
for giving undesirable characteristics to juices such as high 
viscosity, haziness, and cloudiness (KASHYAP  et  al., 2001). 
The addition of pectinolytic enzymes is the technological 
route to overcome these undesirable effects besides improving 
carotenoid extraction from fruit tissues and contributing to 
cloud stabilization (ABDULLAH  et  al., 2007; ASKAR  et  al., 
1990; BRASIL; MAIA; FIGUEIREDO, 1995; LEE et al., 2006; 
LIAO et al., 2007; SANTIN et al., 2008; SHARMA; SARKAR; 
SHARMA, 2005; SIN et al., 2006).

According to Jayani, Saxena and Gupta (2005) juice 
extraction and clarification are the main uses for this class of 
enzyme. Nevertheless, few articles are available about tropical 
fruit processing using pecntinolytic enzymes; most of them 
are on enzymatic liquefaction of carambola, banana, mango, 
and sapodilla (ABDULLAH et al., 2007; CHAUHAN; TYAGI; 
SINGH, 2001; OLLÉ  et  al., 1997; RASTOGI; RASHMI, 
1999; SANTIN et al., 2008; SIN et al., 2006; SREEKANTAH; 
JAlEEL; RAMACHANDRA RAO, 1971; SREENATH; 
NANJUNDASWAMY; SREEKANTIAH, 1987; SREENATH; 
SUDARSHANAKRISHNA; SANTHANAM, 1995).

The enzymatic hydrolysis of pectic substances is influenced 
by several factors such as temperature, pH, enzyme concentration, 
and incubation time (LEE et al., 2006; SIN et al., 2006). Assessing 
the individual influence of each independent variable is a 
laborious task, and the Response Surface Methodology (RSM) 
is a skilful statistical tool for optimizing the search for the 
best operational condition. This technique was successfully 
applied to optimize the clarification of carambola, sapodilla, 
carrot, peach, banana, and mango juices (ABDULLAH et al., 
2007; LEE  et  al., 2006; SANTIN  et  al., 2008; SHARMA; 
SARKAR; SHARMA, 2005; SIN  et  al., 2006; SREENATH; 
SUDARSHANAKRISHNA; SANTHANAM, 1995; SUN et al., 
2006), the extraction of high-ester pectin from passion fruit 
peel with citric acid (PINHEIRO et al., 2008), the extraction 
of anthocyanins from black currants (LANDBO; MEYER, 
2004), and also to increase juice yield and to decrease turbidity 
of carrot juices and elderberry (LANDBO; KAACK; MEYER, 
2007; SHARMA; SARKAR; SHARMA, 2005), and to reduce 
mango pulp viscosity (CHAMCHONG; NOOMHORM, 1991), 
among other applications.
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incubation time, and temperature) at three levels and five 
replications were done at the central point, resulting in 
19 experimental runs. The uncoded values of those variables are 
their actual values, indentified by the capital letter X, whereas the 
coded values are represented by the levels -1, 0 and 1, identified 
by the lowercase letter x. Table 1 shows the correspondence 
among the uncoded and coded variables. A full quadratic model, 
including cross-product terms, was fitted to the experimental 
data, which can be represented by the following Equation 1:

2
0 i i ii i ij i j

i i i j
Y a a x a x a x x ε= + + + +∑ ∑ ∑∑

 	
(1)

where Y is the response variable; a0, ai, aii, and aij are the 
regression coefficients, and ε is the error, also quoted as the 
model’s non-explained portion.

Table 2 shows the design matrix. The experiments were 
randomly executed. Surface response figures were drawn by 
keeping one variable fixed at the central point and varying the 
other two within the whole range.

3 Results and discussion
Table 3 shows the experimental results for the measured 

response variables, and the referred runs can be seen in Table 2. 

After the treatment, the pulps were then centrifuged at 6000 g 
for 10 minutes (Avanti J-25, Beckman Coulter, USA) and the 
supernatant was collected for further analyses. The pH of 
cajá-manga was considered constant along the experiments 
at its natural value (3.3), which was measured using a calomel 
electrode pHmeter.

Physical and chemical analysis

Turbidity

Turbidity was assessed using a Turbidimeter (Model 
DR/2000, Hach Company), and the results were reported as 
Nephelometric Turbidity Units (NTU).

Clarity

Clarity was determined by measuring absorbance at 
660  nm using a UV–Vis spectrophotometer (Beckman DU. 
640 Spectrophotometer - USA); water was used as reference.

Viscosity

Apparent viscosity was determined using a Brookfield 
viscometer (DV-III+ Rheometer, USA) with a 40 cone and plate 
spindle. The measurements were made at a constant angular 
velocity (130 RPM). These experiments were conducted at 
constant temperature (10 ± 1 °C) surrounding the spindle with 
a water jacket.

Color measurements

Sample colors were estimated by taking pictures of the samples 
with a digital camera (Mitsuca DC 7325BR, 3.0 megapixels), and 
the digitalized pictures were analyzed using the software LensEye 
V-01 (Engineering and Cyber-Solutions, Gainesville, FL-USA). 
The adopted property was luminosity (L*), according to the 
CIELAB color scale. To avoid external interference on the sample 
colors, the pictures were taken in a chamber assembled according 
to the suggested design of Luzuriaga, Baiaban and Yeraian (1997). 
The samples were placed in opaque white pots (4 cm diameter × 
3 cm height), close to the color reference cards (X-Rite Munsell-
Color, Color Checker) to be compared with the reference sample 
using a software; and next, the parameter L* was determined.

Yield

Yield was defined as the extracted juice volume. The 
enzymatic treated pulp was centrifugated at 6000 g (Avanti J-25, 
Beckman Coulter, USA), and the volume of the supernatant 
obtained was measured using a digital caliper.

2.3 Statistical experimental design

The experimental work followed a central composite 
statistical experimental design (COCHRAN; COX, 1957; 
MYERS; MONTGOMERY, 2002), and the variance analysis 
(ANOVA) was performed using the software Statistica 7.0 
(Statsoft, Tulsa, OK - USA). As previously mentioned, three 
independent variables were employed (enzyme concentration, 

Table 1. Correspondence between coded and uncoded variables.

Independent uncoded variables (X) Independent coded variables (X)
-1 0 1

Incubation time (minute) – X1 30 60 90
Incubation temperature (°C) – X2 20 40 60
Enzyme concentration (%) – X3 0.01 0.05 0.09

Table 2. Statistical experimental design matrix.

Run Incubation time
(minute)

Temperature
(°C)

Enzyme concentration 
(%)

X1 X2 X3

1 30 40 0.05
2 90 40 0.05
3 60 30 0.05
4 60 50 0.05
5 60 40 0.01
6 60 40 0.09
7 90 50 0.09
8 30 50 0.09
9 90 30 0.09
10 30 30 0.09
11 90 50 0.01
12 30 50 0.01
13 90 30 0.01
14 30 30 0.01
15 60 40 0.05
16 60 40 0.05
17 60 40 0.05
18 60 40 0.05
19 60 40 0.05
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would certainly be poorer. In Table 3, AVG is the average value of 
the 19 tests of the control samples, SD is the standard deviation for 
the average, and CI is the confidence interval at 95% significance 
level assuming normal distribution of the experimental values.

Noticeable results must be emphasized. Considering 
maximum variations when comparing the treated material to the 
control samples, turbidity decreased up to 85.5% and viscosity 

The regression estimated parameters and the correlation 
coefficient (R2) are shown in Table 4, where one may notice that 
the R2 values are satisfactory considering that three independent 
variables were used for the fitting process. It is worth mentioning 
that R2 was calculated considering all terms of the full quadratic 
model significant, and that if only the significant terms at a specific 
significance level were chosen for a subsequent fit, the values of R2 

Table 4. Estimated parameters of the regression analysis.

Parameter Related variables Turbidity (NTU) Clarity (abs) Viscosity (Pas) Yield (NTU) Color (L* value)
a0 - 127.3144*** 0.111827*** 3.836134*** 16.30284*** 98.03526*
a1 X1 -25.4500*** -0.021085** -0.352500 -0.22500* 0.54400***
a11 X1 X1 -16.3325 -0.009335 0.322448 -0.46263* 0.78567**
a2 X2 -2.8000 -0.009765 0.792500** 0.06250 0.02800
a22 X2 X2 14.9175 0.009515 0.752448 -0.40013* 0.37567
a3 X3 -16.8500** -0.022775*** -0.522000 0.65000*** -0.15250
a33 X3 X3 16.6675 0.022765* 0.809948 -0.46263 * -0.58683*
a12 X1 X2 -1.5000 0.004656 0.047500 -0.03125 -0.21687
a13 X1 X3 10.5000* 0.015181* 0.525000 -0.21875 0.30063*
a23 X2 X3 7.0000 0.008181 -0.238750 -0.09375 -0.23437
R2 - 0.90 0.90 0.84 0.94 0.90

Optimum X1 43.50 43.88 75.78 46.99 49.82
X2 39.0 43.82 34.68 40.01 38.08
X3 0.078 0.074 0.053 0.082 0.043
Y 128.5 0.109 3.52 16.61 97.96

Level of significance: *5%, **1%, ***0.1%.

Table 3. Experimental results of the enzymatic treatment.

Run Response variable
Turbidity (NTU) Clarity (abs) Viscosity (Pa s) Yield (mL) Color (L*)

1 128.5 0.103 4.98 16.4 97.97
2 100.0 0.093 2.92 15.4 99.55
3 135.5 0.122 4.45 16.0 98.02
4 155.5 0.112 4.31 15.9 98.68
5 152.5 0.149 4.44 15.3 97.47
6 142.0 0.111 4.43 16.5 97.31
7 102.5 0.096 6.15 15.3 98.74
8 143.5 0.122 5.64 16.0 97.61
9 106.0 0.108 4.78 15.3 99.74
10 136.0 0.122 3.93 16.0 97.74
11 109.5 0.113 7.15 14.5 98.95
12 187.5 0.168 8.20 14.5 99.02
13 136.0 0.126 4.29 14.3 99.01
14 213.0 0.232 6.07 14.0 98.21
15 115.0 0.102 4.16 16.4 98.18
16 129.5 0.117 3.49 15.8 97.91
17 134.0 0.127 3.74 16.3 97.63
18 116.5 0.115 4.55 16.8 98.17
19 128.5 0.116 4.10 16.3 98.55

Control AVG 1467.9 1.006 19.25 10.7 91.8
SD 342.2 0.208 3.70 1.4 1.29
CI 153.8 0.094 1.66 0.6 0.018

MaximumVariation (%) 85.5 77.0 57.4 56.8 8.6
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In fact, long exposition to high enzyme concentrations are likely 
to break down pectic substances exposing positive nucleus sites 
to surrounding negative charges, settling out the so formed large 
protein-pectin particles (KAShYAP et al., 2001). A closer view 
of the turbidity dependence on incubation time reveals that, 
at low enzyme concentration, turbidity continually decreases 
as time increases but, at high value of enzyme concentration, 
turbidity increases for short times reaching a maximum at about 
40 minutes, and thereaft er it decreases. Sin et al. (2006) also 
observed similar eff ects for sapodilla juice and explained this 
behavior as the formation of a protein-carbohydrate complex 
or unsettling particles (protein-tannin).

Some authors reported similar synergistic contribution 
of incubation time and enzyme concentration to turbidity. 
Abdullah et al. (2007), liao et al. (2007) and landbo, Kaack 
and Meyer (2007) observed reductions in juice turbidity for 
carambola (48% reduction), carrot (22%), and elderberry (30%), 
respectively, using commercial enzymatic pools.

3.2 Clarity

Clarity was influenced only by incubation time and 
enzyme concentration. Th is result was predictable since the 
turbidity trend was known since both measurements are based 
on a similar physical principle, which is the attenuation of an 
incident radiation. Turbidity indicates the light scattered at an 
angle of 90 degrees from an incident beam, whereas clarity (also 
absorbance and transmittance) provides the absorbed radiation 
from an incident beam, which traveled a straight path. however, 
when measuring the absorbance of solutions with suspended 
solids, part of the incident radiation is scattered rather than 
absorbed masking the measured values. hence, clarity is a 
more adequate property than turbidity when clear juices are 
being processed. diff erent commercial pectinases have been 
successfully used to clarify juices such as banana (lee et al., 
2006), sapodilla (SIN et al., 2006), black currant (lANdBo; 
MeYeR, 2004), guava (ChoPdA; BARReTT, 2001), prickly 
pear (eSSA; SAlAMA, 2002), tangerine (ChAMChoNG; 

up to 57.4%, whereas all the following variables increased: clarity 
up to 77%, lightness up to 8.6%, and yield up to 56%. Th is is 
an indicative of the high amounts of pectic substances in the 
cajá-manga pulp, and it also indicates the effi  ciency of the chosen 
pool of enzymes for this application.

Incubation time was the variable which significantly 
aff ected the largest number of response variables, followed by 
enzyme concentration. except for viscosity, temperature was not 
a very interacting factor since temperature stability is expected 
for commercial enzymes.

3.1 Turbidity

only linear terms of incubation time, enzyme concentration 
and cross product, of these variables were signifi cant, as shown 
in Table 4. Cajá-manga juice turbidity was quite higher than the 
other exotic fruit juices such as carambola (ABdUllAh et al., 
2007) and sapodilla (SIN  et  al., 2007). Turbidity directly 
indicates unsettle matter or impurities in water suspension, 
such as colloidal polysaccharide particles in fresh juices 
(GRASSIN; FAUQUeMBeRGUe, 1999). For orange and tomato 
juices, this property is a positive sensorial aspect, whereas 
for pear, guava, apple, and carambola juices it is a negative 
one (ABdUllAh  et  al., 2007; ChoPdA; BARReTT, 2001; 
ISABelA; GeRAldo; RAIMUNdo, 1995; KAShYAP et al., 
2001; MIhAleV et al., 2004; SIN et al., 2007). during a non 
rigorous sensorial analysis carried out in the lab, the testers 
stated that clear cajá-manga juices are more attractive than the 
cloudy ones.

Figure 1 shows fi tted surface to the experimental data and 
the contour plot for Turbidity. From the contour plot, one might 
realize that the predictable variables are correlated since a non 
symmetrical pattern is observed. Figure 2 presents the normal 
plot, in which randomly distributed residuals can be noticed, a 
common behavior of all other residuals obtained in the present 
study. Both independent variables incubation time and enzyme 
concentration negatively aff ected turbidity, making the juice 
clearer, although the cross product presented a positive eff ect. 

Figure 1. Response surface (a) and contour plot (b) for turbidity.
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Rastogi and Rashmi (1999) observed a similar eff ect for 
incubation time and enzyme concentration when liquefying 
mango pulp. Th ey worked at constant temperature and did not 
mention the quadratic enzyme concentration term. Sun et al. 
(2004) enzimatically treated carrot juice at constant room 
temperature and also observed an intense relationship between 
the independent variables incubation time (X1) and enzyme 
concentration (X3). They also obtained the same response 
surface shape as the one found in this work and realized that 
the linear term of both X1 and X3 presented positive eff ect over 
the juice yield, whereas the quadratic term of X3 presented 
a negative effect. Sharma, Sarkar and Sharma (2005) also 
treated carrot juice and noticed that the main eff ects of the 
variables incubation time, incubation temperature, enzyme 
concentration, and cellulase/pectinase concentration ratio 
positively aff ected juice yield, whereas the signifi cant interactive 
effects negatively affected juice extraction. From these 
confl icting results, one may conclude that, although RSM allows 
for the statistical identifi cation of treatments that aff ect juice 
yield, understanding how the adopted independent variables 
and their cross interactions interfere in the extraction is not a 
simple task since diff erent fruits present diff erent chemical links 
among their constituents, as well as distinct enzymatic pools act 
distinctly on the constituents, even for the same fruit. Th erefore, 
specifi c experiments conducted by RSM are mandatory to assess 
the intrinsic relationship between specifi c enzymes and fruits; 
and biochemical studies are necessary to understand the fruit 
structure and the enzyme action.

It was expected that both incubation time and temperature 
would present a positive eff ect on juice yield; however, only 
enzyme concentration was positive. one might speculate that 
enzyme exposure to high temperatures for a long period might 
lead to a deleterious eff ect on enzyme stability considering that 
the enzyme was produced from a mesophilic mold. hence, 
further studies must be carried out under moderate and high 
temperatures to confi rm this hypothesis. Th e positive eff ect of 
enzyme concentration is understandable since a synergistic action 
of the enzymes present in Pectinex Ultra SP-l enzymatic pool is 
expected, which would act on other compounds such as cellulose, 
hemicellulose, starch, protopectin, and pectin releasing the juice.

Sun et al. (2006) achieved an increase of 48.1% in carrot 
juice yield using Pectinex Ultra SP-l, and obtained an even 
higher yield (71,5%) using the enzymatic pool Cellulase 
FNC-1 (Beijing Funong Food Co., China). Sharma, Sarkar 
and Sharma  (2005) prepared their own enzymatic pool from 
Aspergillus foetidus (pectinolytic) and Thrichoderma reesi 
(cellulotityc) and increased the carrot juice extraction up to 
25%. on the other hand, liao  et  al. (2007), using Pectinex 
Smash XXl (Novozymes), improved carrot juice extraction by 
20%. essa and Salama (2002) cleared prickly pear juice using 
commercial pectinase and extracted up to 32% more juice when 
compared to the control samples. Sreenath, Sudarshanakrishna, 
Santhanam (1994) found that the addition of a cellulase and 
pectinase recovered up to 86% of pineapple juice, whereas 
non-enzimatically treated samples recovered 72%. hence, the 
maximum improvement on yield, when compared to the control 
samples obtained in the present study (57%) is within the results 
published in the literature.

NooMhoRM, 1991), and apple juice (BeVeRIdGe; 
WeINTRAUB, 1997).

Figure 3 shows the response surface for clarity, where it can 
be seen that the surface shape is quite similar to the turbidity 
one. Sin et al. (2006) and Rastogi and Rashmi (1999) observed 
a similar dependence for the signifi cant independent variables 
incubation time and enzyme concentration when studying the 
liquefaction of sapodilla and mango pulp using RSM at constant 
temperature (42 °C). Th e signifi cant terms and trends observed 
by Sin et al. (2006) for clarity exactly matched the ones here 
noticed, whereas Rastogi and Rashmi (1999) did not mention 
the quadratic incubation time term as signifi cant.

3.3 Yield

Yield was infl uenced by all main eff ects of all tested variables 
although only enzyme concentration presented a positive eff ect 
over juice extraction. No cross-product terms were signifi cant. 
Figure 4a-c shows the surface response for juice yield, where 
one may notice that all curves present similar quadratic shapes.

Figure 3. Surface response for clarity.

Figure 2. Normal plot for turbidity.
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SP-L for banana juice clarification, and the statistical analysis 
showed that the main effects (linear and quadratic) of the enzyme 
concentration, incubation temperature, and incubation time 
were significant. Brasil, Maia and Figueiredo (1995) reported 
a remarkable reduction of 62.9% in the guava juice viscosity 
when Clarex-L super-concentrate (Miles-Brasil, Brazil) was 
applied. The results obtained by Sharma, Sarkar and Sharma 
(2005) also indicated that not only temperature, but also enzyme 
concentration and incubation time affected carrot juice viscosity 
when Pectinex Smash XXL was employed achieving up to 41% 
reduction. Some authors (KASHYAP et al., 2001; URLAUB, 1996) 
claimed that pectic substances present water holding capacity and 
that enzyme action would break down the pectin chains releasing 
captive water and thus reducing viscosity.

It should be highlighted that the viscosity of cajá-manga 
pulp is quite higher than those observed for the pulps of the 
above mentioned studies. Viscosity is a far more complex 

3.4 Viscosity

It is well known that fruit pulps present non-newtonian 
rheological behavior (URLAUB, 1996). Nevertheless, assessing 
the cajá-manga juice rheological behavior for all the statistical 
treatments applied in this study would be time consuming. 
A good example of this kind of comprehensive rheological 
research may be found in Bhattacharaya and Rastogi (1998) 
for mango pulp.

For the apparent viscosity, an odd behavior was observed 
since only the linear temperature term was significant. It must be 
emphasized that all viscosity measurements were conducted at the 
same constant temperature (10 °C) and only the enzyme tests were 
carried out at variable temperatures. Sreenath, Sudarshanakrishna 
and Santhanam (1995) noticed that the enzyme concentration 
strongly influenced the viscosity reduction when Pectinex and 
Celluclast (both Novozymes) were applied, achieving up to 
80% viscosity reduction. Lee et al. (2006) used Pectinex Ultra 

Figure 4. Surface response for cajá-manga juice yield, a) incubation time × enzyme concentration, b) incubation time × temperature, and  
c) temperature × enzyme concentration.
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property than the others tested in this work because it is 
measured under sample movement and therefore it does not 
represent only a physicochemical interaction, but a dynamic 
interaction as well. Ergo, specific studies must be carried out 
with higher enzyme concentrations and incubation times to 
verify possible undisclosed effects.

3.5 Color (L*)

Lightness presented almost the same dependence as 
Turbidity and Clarity since they are similar properties and 
somehow measure the interference of the sample in an incident 
ray. Only incubation time presented a positive effect on lightness, 
and the maximum improvement observed for L* values was 
nearly 9%. Liao et al. (2007) claimed that the enzyme treatment 
with Pectinex Smash XXL increased carrot juice lightness. 
Abdullah et al. (2007) reported that carambola juice lightness 
increased with the enzyme concentration, but it decreased after 
80 minutes incubation time. These authors argued that the 

Figure 6. Optimum regions for the contour plots (a- L* value; b- viscosity; c- turbidity; d- yield, ---- time, —temperature).

Figure 5. Surface response for lightness.
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turbidity, V for viscosity, Y for yield, and L for L* value), and the 
second the independent variable (T for temperature and t for 
incubation time). The number is the maximum or minimum 
value of the tested variable.

4 Conclusions
The commercial enzymatic pool Pectinex Ultra SP-L was 

efficient in reducing the cajá-manga pulp turbidity and viscosity 
and in enhancing clarity and lightness besides improving the 
juice yield. Incubation time was the most interacting factor, 
followed by enzyme concentration and temperature. The 
response surface methodology and the graphical method 
indicated that the application of commercial pectinases to 
cajá-manga juice extraction should be carried out under enzyme 
concentration (%) between 0.042-0.068%, temperature between 
47.0-49.0 °C and time process between 82-90 minutes.
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