Acessibilidade / Reportar erro

Comparison of multispectral modeling of physiochemical attributes of greengage: Brix and pH values

Abstract

Chemometric modeling concerns both accuracy and computational expense for the prediction of quality-indicating attributes of food materials. Modeling approaches were explored with the hyperspectral images with pH and Brix values of greengages. A two-phase architecture was applied for modeling. Firstly, waveband selection was performed using two approaches, i.e., succession projection algorithm (SPA) and its combination with genetic algorithm (SPA+GA). Secondly, multispectral models based on the two feature sets of wavebands were built via a total of six different modeling methods, i.e., partial least squares regression (PLSR) and extreme learning machine (ELM) in their respective stand-alone versions, their applications combined with genetic algorithm (GA), and their ensemble enhancements with modified Adaboost.RT (MAdaboost.RT). Analysis of accuracy and computational expense showed that supervised feature selection with SPA+GA was superior to unsupervised SPA for better modeling accuracy. MAdaboost.RT-ELM showed high accuracy at low computational expense. ELM models were the better base models than the PLSR ones, for being more randomized and diverse. It indicates that MAdaboost.RT-ELM on SPA is the best choice for a quick test on a newly available dataset, while switching the dimensionality reduction from SPA to SPA+GA may yield more accurate models with added, but well worthy, computational expense.

Keywords:
multispectral modeling; supervised feature wavelength selection; modified Adaboost; RT; extreme learning machine; greengage; Brix; pH

Sociedade Brasileira de Ciência e Tecnologia de Alimentos Av. Brasil, 2880, Caixa Postal 271, 13001-970 Campinas SP - Brazil, Tel.: +55 19 3241.5793, Tel./Fax.: +55 19 3241.0527 - Campinas - SP - Brazil
E-mail: revista@sbcta.org.br