Abstract
Lactoferrin (LF) is a non-heme protein binding Fe3+ tightly and plays a role in regulating the absorption and metabolism of iron under physiological condition. The absorption of non-heme iron occurs in the duodenum. LF is incorporated as a functional factor of food products during food processing. In this review, we describe the structural and functional changes of LF due to thermal processing of food, as well as the metabolic processes of LF iron binding and release in vivo, which characterizes the value of LF as a food matrix from nutrition and biochemistry and provides a basis for the comprehensive utilization of LF in food.
Keywords:
lactoferrin; iron binding and release; lactoferrin digestion; lactoferrin function
1 Introduction
Lactoferrin (LF) is an iron binding glycoprotein with a molecular mass of approximately 80 kDa, due to its ability of binding Fe3+ ions and its structural similarity with serum TF (Transferrin), LF belongs to the transferrin family (Iglesias-Figueroa et al., 2019Iglesias-Figueroa, B. F., Espinoza-Sánchez, E. A., Siqueiros-Cendón, T. S., & Rascón-Cruz, Q. (2019). Lactoferrin as a nutraceutical protein from milk, an overview. International Dairy Journal, 89, 37-41. http://dx.doi.org/10.1016/j.idairyj.2018.09.004.
http://dx.doi.org/10.1016/j.idairyj.2018...
; Yang et al., 2017Yang, M., Song, D., Cao, X., Wu, R., Liu, B., Ye, W., Wu, J., & Yue, X. (2017). Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Research International, 92, 17-25. http://dx.doi.org/10.1016/j.foodres.2016.11.041. PMid:28290293.
http://dx.doi.org/10.1016/j.foodres.2016...
). It is found in milk, semen, mucous membrane secretions, saliva and tears (Wang et al., 2019Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2019). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580-596. http://dx.doi.org/10.1080/10408398.2017.1381583. PMid:28933602.
http://dx.doi.org/10.1080/10408398.2017....
). Bovine lactoferrin (bLF) and the human lactoferrin (hLF), having similar 3D structures (Lönnerdal et al., 2011Lönnerdal, B., Jiang, R., & Du, X. (2011). Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. Journal of Pediatric Gastroenterology and Nutrition, 53(6), 606-614. http://dx.doi.org/10.1097/MPG.0b013e318230a419. PMid:21832946.
http://dx.doi.org/10.1097/MPG.0b013e3182...
), the similarity of amino acid sequence between which reaches 69% (Zlatina & Galuska, 2021Zlatina, K., & Galuska, S. P. (2021). The N-glycans of lactoferrin: more than just a sweet decoration. Biochemistry and Cell Biology, 99(1), 117-127. http://dx.doi.org/10.1139/bcb-2020-0106. PMid:32464076.
http://dx.doi.org/10.1139/bcb-2020-0106...
).
In order to sterilize, milk products has to be treated at high temperature, thus the structure and functional properties of LF in changed accordingly (Xiong et al., 2021Xiong, L., Boeren, S., Vervoort, J., & Hettinga, K. (2021). Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chemistry, 337, 127973. http://dx.doi.org/10.1016/j.foodchem.2020.127973. PMid:32927224.
http://dx.doi.org/10.1016/j.foodchem.202...
). Either LF is added to infant milk formula (IMF) prior to thermal processing (required for product safety) or LF is thermally processed alone for subsequent addition to IMF by dry blending, it is important to consider the influence of thermal processing on the LF physicochemical structure, digestibility and bio-functional properties (Goulding et al., 2021bGoulding, D. A., Vidal, K., Bovetto, L., O’Regan, J., O’Brien, N. M., & O’Mahony, J. A. (2021b). The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin-An in vitro study. Food Chemistry, 362, 130142. http://dx.doi.org/10.1016/j.foodchem.2021.130142. PMid:34087706.
http://dx.doi.org/10.1016/j.foodchem.202...
).
Iron is an essential trace element in vivo, and the regulation of iron absorption largely controls the maintenance of collective iron homeostasis. LF plays an important role in the processes of iron regulation at the cellular level, preventing the body from being damaged by high levels of free iron ions. LF also has other bio-functional activities such as anti-microbial, anti-viral, anti-oxidant, anti-cancer and anti-inflammatory activities (Moreno-Expósito et al., 2018Moreno-Expósito, L., Illescas-Montes, R., Melguizo-Rodríguez, L., Ruiz, C., Ramos-Torrecillas, J., & de Luna-Bertos, E. (2018). Multifunctional capacity and therapeutic potential of lactoferrin. Life Sciences, 195, 61-64. http://dx.doi.org/10.1016/j.lfs.2018.01.002. PMid:29307524.
http://dx.doi.org/10.1016/j.lfs.2018.01....
), many of these functions are closely linked to the iron binding capacity of LF. Although LF has many biological activities, it is difficult to preserve its biological functions in the processed food. Of note, there is a stimulated increased research interest in the multiple health promoting functions of LF, and its wide real-life applications.
2 Structure and source of LF
2.1 Fundamental structure of LF
LF consists of two homologous structural domains, N-lobe and C-lobe, which are connected by a α-helix structure and a β-sheet structure with two structural domains on each lobe (Figure 1). Each lobe can be further divided into two similar-sized domains in the N-lobe (N1 and N2) and the C-lobe (C1 and C2), respectively (Rastogi et al., 2016Rastogi, N., Singh, A., Singh, P. K., Tyagi, T. K., Pandey, S., Shin, K., Kaur, P., Sharma, S., & Singh, T. P. (2016). Structure of iron saturated C‐lobe of bovine lactoferrin at p H 6.8 indicates a weakening of iron coordination. Proteins, 84(5), 591-599. http://dx.doi.org/10.1002/prot.25004. PMid:26850578.
http://dx.doi.org/10.1002/prot.25004...
). One LF molecule can bind two Fe3+ ions together with two CO32- ions, each lobe has the ability to reversibly bind a single ferric ion. bLF consists of a polypeptide chain composed by two sugar chains, which fold spatially into two similar ginkgo biloba-shaped structural domains with an ordered secondary structure (Dierick et al., 2021Dierick, M., Vanrompay, D., Devriendt, B., & Cox, E. (2021). Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host’s innate immunity. Biochemistry and Cell Biology, 99(1), 61-65. http://dx.doi.org/10.1139/bcb-2020-0080. PMid:32585120.
http://dx.doi.org/10.1139/bcb-2020-0080...
).
3D crystal structure of iron saturated bLF at 2.8 A resolution (protein databank code: 1BLF), ferric ions are represented as spheres. N-lobe (N1 and N2) and C-lobe (C1 and C2) are two homologous structural domains of LF.
2.2 Iron bound structure of LF
Despite the different origins of LF, the iron binding sites are all roughly the same. A bLF molecule contains 40 glutamic acid and 36 aspartic acid residues, accounting for 11% of the total number of residues, which may lead to its high metal ion chelating potential (Pomastowski et al., 2016Pomastowski, P., Sprynskyy, M., Zuvela, P., Rafinska, K., Milanowski, M., Liu, J. J., Yi, M., & Buszewski, B. (2016). Silver-lactoferrin nanocomplexes as a potent antimicrobial agent. Journal of the American Chemical Society, 138(25), 7899-7909. http://dx.doi.org/10.1021/jacs.6b02699. PMid:27263865.
http://dx.doi.org/10.1021/jacs.6b02699...
). There is an iron binding site in each lobe and the metal ion is coordinated by four amino acid side chains: a carboxylic acid in one aspartic acid residue, two phenolic oxygen atoms in two tyrosine residues and an imidazole in one histidine residue (Figure 2). The iron ion is stabilized at the protein binding site by two oxygen atoms in a carbonate ion. In the N-lobe of LF, the iron ion is bound to Asp60, Tyr92, Tyr192 and His253. In the C-lobe of LF, the iron ion is bound to Asp395, Tyr433, Tyr526 and His595. When saturated with iron, the structure of LF is more compact; when iron ions are not saturated, only the C-lobe of the LF molecule is bound to iron ions, indicating that LF releases iron ions from the N-lobe first. The two lobes of holo-LF (iron-saturated lactoferrin) has a compact structure and those of the apo-LF (iron-free lactoferrin) are more or less broadly open (Voswinkel et al., 2016Voswinkel, L., Vogel, T., & Kulozik, U. (2016). Impact of the iron saturation of bovine lactoferrin on adsorption to a strong cation exchanger membrane. International Dairy Journal, 56, 134-140. http://dx.doi.org/10.1016/j.idairyj.2016.01.008.
http://dx.doi.org/10.1016/j.idairyj.2016...
). LF binds or releases Fe3+ by opening or releasing specific iron binding sites in the N- and C- lobes. Crystallographic studies have shown that the binding of iron to LF made the structural conformation of LF more compact (Baker & Baker, 2012Baker, H. M., & Baker, E. N. (2012). A structural perspective on lactoferrin function. Biochemistry and Cell Biology, 90(3), 320-328. http://dx.doi.org/10.1139/o11-071. PMid:22292559.
http://dx.doi.org/10.1139/o11-071...
; Rastogi et al., 2016Rastogi, N., Singh, A., Singh, P. K., Tyagi, T. K., Pandey, S., Shin, K., Kaur, P., Sharma, S., & Singh, T. P. (2016). Structure of iron saturated C‐lobe of bovine lactoferrin at p H 6.8 indicates a weakening of iron coordination. Proteins, 84(5), 591-599. http://dx.doi.org/10.1002/prot.25004. PMid:26850578.
http://dx.doi.org/10.1002/prot.25004...
).
Cartoon representation of the overall structure of bLF (protein databank code: 1BLF), with iron ions represented as spheres. Metal ion coordination sites in the closed form of bLF, including residues Asp60, Tyr92, Tyr192, His253 in N lobe (A) and Asp395, Tyr433, Tyr526 and His595 in C lobe (B).
2.3 The primary source of LF
LF is available from a wide range of sources, table 1 shows the range of LF concentrations in the milk of different mammals. Mammalian colostrum normally contains higher levels of LF than their mature milk, only Murrah buffaloes' mature milk contains higher levels of LF than its colostrum (Abdel-Hamid et al., 2022Abdel-Hamid, M., Yang, P., Mostafa, I., Osman, A., Romeih, E., Yang, Y., Huang, Z., Awad, A. A., & Li, L. (2022). Changes in whey proteome between mediterranean and murrah buffalo colostrum and mature milk reflect their pharmaceutical and medicinal value. Molecules (Basel, Switzerland), 27(5), 1575. http://dx.doi.org/10.3390/molecules27051575. PMid:35268677.
http://dx.doi.org/10.3390/molecules27051...
; Kell et al., 2020Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221. http://dx.doi.org/10.3389/fimmu.2020.01221. PMid:32574271.
http://dx.doi.org/10.3389/fimmu.2020.012...
).
3 Effect of thermal processing on LF
3.1 Changes of LF structure in heating process
The denaturation of LF depends on the environmental factors such as temperature, pH, ionic strength, and the presence of other proteins and polysaccharides (Li & Zhao, 2017Li, Q., & Zhao, Z. (2017). Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface. Food Chemistry, 232, 697-703. http://dx.doi.org/10.1016/j.foodchem.2017.04.072. PMid:28490130.
http://dx.doi.org/10.1016/j.foodchem.201...
). Thermal processing is a very important step in the processing of dairy products, not only for sterilization but also for changing the organoleptic properties of the product (Goncalves et al., 2022Goncalves, B. L., Uliana, R. D., Coppa, C., Lee, S. H. I., Kamimura, E. S., Oliveira, C. A. F., & Corassin, C. H. (2022). Aflatoxin M-1: biological decontamination methods in milk and cheese. Food Science and Technology (Campinas), 42, e22920. http://dx.doi.org/10.1590/fst.22920.
http://dx.doi.org/10.1590/fst.22920...
; Tadjine et al., 2021Tadjine, D., Boudalia, S., Bousbia, A., Gueroui, Y., Symeon, G., Mebirouk Boudechiche, L., Tadjine, A., & Chemmam, M. (2021). Milk heat treatment affects microbial characteristics of cows’ and goats’ “Jben” traditional fresh cheeses. Food Science and Technology (Campinas), 41(1), 136-143. http://dx.doi.org/10.1590/fst.00620.
http://dx.doi.org/10.1590/fst.00620...
). High temperatures not only alter the physicochemical, organoleptic and nutritional properties of milk, but also damage the biologically active substances in it (Prestes et al., 2022Prestes, A. A., Helm, C. V., Esmerino, E. A., Silva, R., & Prudencio, E. S. (2022). Conventional and alternative concentration processes in milk manufacturing: a comparative study on dairy properties. Food Science and Technology (Campinas), 42, e08822. http://dx.doi.org/10.1590/fst.08822.
http://dx.doi.org/10.1590/fst.08822...
). LF contains 17 intramolecular disulfide bonds and has low thermal stability. The pasteurization in human milk at 62.5 °C for 30 min, LF therefore changes its structural by thiol-disulfide exchange reactions, resulting in the loss or reduction of bioactive components (Liu et al., 2020bLiu, Y., Xiong, L., Kontopodi, E., Boeren, S., Zhang, L., Zhou, P., & Hettinga, K. (2020b). Changes in the milk serum proteome after thermal and non-thermal treatment. Innovative Food Science & Emerging Technologies, 66, 102544. http://dx.doi.org/10.1016/j.ifset.2020.102544.
http://dx.doi.org/10.1016/j.ifset.2020.1...
; Picaud & Buffin, 2017Picaud, J.-C., & Buffin, R. (2017). Human milk—treatment and quality of banked human milk. Clinics in Perinatology, 44(1), 95-119. http://dx.doi.org/10.1016/j.clp.2016.11.003. PMid:28159212.
http://dx.doi.org/10.1016/j.clp.2016.11....
). The study demonstrated that thermal processing of LF resulted in changes to the native secondary protein structure which contains the reduce of α-helix domains and the increase of intermolecular β-sheet structures, loss in color of LF, the increases in surface hydrophobicity and cationic surface charge, and the formation of disulfide linked protein-protein aggregates (Goulding et al., 2021bGoulding, D. A., Vidal, K., Bovetto, L., O’Regan, J., O’Brien, N. M., & O’Mahony, J. A. (2021b). The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin-An in vitro study. Food Chemistry, 362, 130142. http://dx.doi.org/10.1016/j.foodchem.2021.130142. PMid:34087706.
http://dx.doi.org/10.1016/j.foodchem.202...
). Besides, thermal processing induced LF to show a less compact protein structure in the new exposed regions of the surface, further to trigger the denaturation and aggregation (Goulding et al., 2021aGoulding, D. A., O’Regan, J., Bovetto, L., O’Brien, N. M., & O’Mahony, J. A. (2021a). Influence of thermal processing on the physicochemical properties of bovine lactoferrin. International Dairy Journal, 119, 105001. http://dx.doi.org/10.1016/j.idairyj.2021.105001.
http://dx.doi.org/10.1016/j.idairyj.2021...
). The binding of bLF to iron promotes changes in tertiary structure which increases its structural stability (Barros et al., 2021Barros, C. A., Sanches, D., Marques de Carvalho, C. A., Santos, R. A., Ferraz de Souza, T. L., Macena Leite, V. L., Pereira da Costa Campos, S., Cheble de Oliveira, A., & Gonçalves, R. B. (2021). Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon, 7(9), e08087. http://dx.doi.org/10.1016/j.heliyon.2021.e08087. PMid:34632151.
http://dx.doi.org/10.1016/j.heliyon.2021...
).
3.2 Changes in LF thermal stability
It has been reported that apo-LF denatures faster than holo-LF with the increasing temperature and time and with their deformation temperatures after purification being around 70 °C and 90 °C respectively, holo-LF has a denser structure, thus it is more stable (Franco et al., 2018Franco, I., Pérez, M. D., Conesa, C., Calvo, M., & Sánchez, L. (2018). Effect of technological treatments on bovine lactoferrin: an overview. Food Research International, 106, 173-182. http://dx.doi.org/10.1016/j.foodres.2017.12.016. PMid:29579916.
http://dx.doi.org/10.1016/j.foodres.2017...
; Morel et al., 2022Morel, J., Zain, S. N. M., & Archer, R. (2022). Comparison of drying techniques for bovine lactoferrin: Iron binding and antimicrobial properties of dried lactoferrin. International Dairy Journal, 124, 105142. http://dx.doi.org/10.1016/j.idairyj.2021.105142.
http://dx.doi.org/10.1016/j.idairyj.2021...
). The difference of denaturation temperature between holo-LF and apo-LF is due to the more compact structure of holo-LF formed by iron binding (Rastogi et al., 2016Rastogi, N., Singh, A., Singh, P. K., Tyagi, T. K., Pandey, S., Shin, K., Kaur, P., Sharma, S., & Singh, T. P. (2016). Structure of iron saturated C‐lobe of bovine lactoferrin at p H 6.8 indicates a weakening of iron coordination. Proteins, 84(5), 591-599. http://dx.doi.org/10.1002/prot.25004. PMid:26850578.
http://dx.doi.org/10.1002/prot.25004...
). Therefore, iron saturation increases its resistance to thermally induced denaturation. In IMF, thermal processing promoted the formation of LF-casein complexes by binding LF to casein, this binding readily altered the thermal stability of LF, which explains the more rapid thermal denaturation of LF compared to a pure protein solution of LF (Halabi et al., 2020Halabi, A., Croguennec, T., Bouhallab, S., Dupont, D., & Deglaire, A. (2020). Modification of protein structures by altering the whey protein profile and heat treatment affects in vitro static digestion of model infant milk formulas. Food & Function, 11(8), 6933-6945. http://dx.doi.org/10.1039/D0FO01362E. PMid:32692321.
http://dx.doi.org/10.1039/D0FO01362E...
; Li & Zhao, 2018Li, Q., & Zhao, Z. (2018). Interaction between lactoferrin and whey proteins and its influence on the heat-induced gelation of whey proteins. Food Chemistry, 252, 92-98. http://dx.doi.org/10.1016/j.foodchem.2018.01.114. PMid:29478568.
http://dx.doi.org/10.1016/j.foodchem.201...
).
3.3 Effect of iron binding on LF stability
LF was found to be able to maintain its iron binding capacity after being heated at temperatures ranging from 65 °C to 90 °C and ionic strength of about 0.01 or below (Sabra & Agwa, 2020Sabra, S., & Agwa, M. M. (2020). Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. International Journal of Biological Macromolecules, 164, 1046-1060. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.167. PMid:32707283.
http://dx.doi.org/10.1016/j.ijbiomac.202...
). However, continuous thermal processing can alter the structure of proteins and thus lead to the loss of iron, which reduces the stability of LF. Fernández-Menéndez et al. (2020)Fernández-Menéndez, S., Peixoto, R. R., Fernandez-Colomer, B., Suarez-Rodriguez, M., Sanz-Medel, A., & Fernandez-Sanchez, M. L. (2020). Effect of holder pasteurisation on total concentrations and iron-binding profiles of holo-lactoferrin used as fortifier in donor human milk. International Dairy Journal, 100, 104564. http://dx.doi.org/10.1016/j.idairyj.2019.104564.
http://dx.doi.org/10.1016/j.idairyj.2019...
synthesized an isotopically labelled iron-lactoferrin complex [57Fe(III)2-LF], which was used to fortify milk samples. After pasteurization, the LF levels increased higher in the iron-added samples than in the non-added ones, suggesting that the binding of LF to iron reduced the effect of the pasteurization thermal processing on it, thus strengthening the LF binding of iron may be a potential way to maintain LF stability under heating condition. Thermal processing forms the so-called Maillard reaction products (MRP) based on the interaction between protein and sugar or lipid. MRP decreased the extent of complex formation of Chrome Azurol S with iron, which reflected the MRP ability to efficiently chelate iron (Bhattacharjee et al., 2020Bhattacharjee MK, Mehta BS, Akukwe B. (2020). Maillard reaction products inhibit the periodontal pathogen Aggregatibacter actinomycetemcomitans by chelating iron. Archives of Oral Biology, 122, 104989. http://dx.doi.org/10.1016/j.archoralbio.2020.104989. PMID: 33249361.
http://dx.doi.org/10.1016/j.archoralbio....
, 2021Bhattacharjee, M. K., Mehta, B. S., & Akukwe, B. (2021). Maillard reaction products inhibit the periodontal pathogen Aggregatibacter actinomycetemcomitans by chelating iron. Archives of Oral Biology, 122, 104989. http://dx.doi.org/10.1016/j.archoralbio.2020.104989. PMid:33249361.
http://dx.doi.org/10.1016/j.archoralbio....
). Thus, LF glycation may play a greater role in LF function than what has been recognized to date.
3.4 Effects of thermal processing on LF physiological activity
Hot pasteurization can trigger the loss or reduction of LF (Picaud & Buffin, 2017Picaud, J.-C., & Buffin, R. (2017). Human milk—treatment and quality of banked human milk. Clinics in Perinatology, 44(1), 95-119. http://dx.doi.org/10.1016/j.clp.2016.11.003. PMid:28159212.
http://dx.doi.org/10.1016/j.clp.2016.11....
), thus it is important to improve the thermal stability of LF in order to maintain its biological activity. Although light heat treatment (70 °C, 10 min) prior to in vitro digestion did not have any significant effect on digestibility compared with the unheated LF samples (Wang et al., 2019Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2019). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580-596. http://dx.doi.org/10.1080/10408398.2017.1381583. PMid:28933602.
http://dx.doi.org/10.1080/10408398.2017....
), the protein aggregates formed at 75 °C are more resistant to digestion, leading to a reduced release of peptides from LF and thus reducing the bacteriostatic activity of bLF (Xiong et al., 2021Xiong, L., Boeren, S., Vervoort, J., & Hettinga, K. (2021). Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chemistry, 337, 127973. http://dx.doi.org/10.1016/j.foodchem.2020.127973. PMid:32927224.
http://dx.doi.org/10.1016/j.foodchem.202...
). In recent years, non-thermal pasteurization methods have been proposed as potential alternatives to pasteurization, such as optimal conditions of hydro-autoclaving (400 MPa for 5 min at 25 °C) guarantee bioactive components include LF in breast milk samples (Zhang et al., 2022Zhang, J., Lee, N. A., Duley, J. A., Cowley, D. M., Shaw, P. N., & Bansal, N. (2022). Comparing the effects of hydrostatic high-pressure processing vs holder pasteurisation on the microbial, biochemical and digestion properties of donor human milk. Food Chemistry, 373(Pt B), 131545. http://dx.doi.org/10.1016/j.foodchem.2021.131545. PMid:34839967.
http://dx.doi.org/10.1016/j.foodchem.202...
). In addition, the complex of soy soluble polysaccharides and LF at thermal processing is electrostatically generated to prevent aggregation, denaturation and loss of the α-helix of LF, thus preserves the antibacterial capacity of LF during thermal processing (Lin et al., 2022Lin, T., Dadmohammadi, Y., Davachi, S. M., Torabi, H., Li, P., Pomon, B., Meletharayil, G., Kapoor, R., & Abbaspourrad, A. (2022). Improvement of lactoferrin thermal stability by complex coacervation using soy soluble polysaccharides. Food Hydrocolloids, 131, 107736. http://dx.doi.org/10.1016/j.foodhyd.2022.107736.
http://dx.doi.org/10.1016/j.foodhyd.2022...
).
Of course, proper thermal denaturation sometimes favors the release of some biological activities in LF. Compared with natural bLF, heat-denatured bLF is susceptible to digestive enzymes, the studies of mice found denatured bLF is hydrolyzed by pepsin and released the neutrophil-binding peptide lactoferricin, which enhanced the production and proliferation of IgM, IgG and IgA (Bielecka et al., 2021Bielecka, M., Cichosz, G., & Czeczot, H. (2021). Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates-a review. International Dairy Journal, 127, 105208. https://doi.org/10.1016/j.idairyj.2021.105208.
https://doi.org/10.1016/j.idairyj.2021.1...
; Godínez-Victoria et al., 2017Godínez-Victoria, M., Cruz-Hernández, T. R., Reyna-Garfias, H., Barbosa-Cabrera, R. E., Drago-Serrano, M. E., Sánchez-Gómez, M. C., & Campos-Rodríguez, R. (2017). Modulation by bovine lactoferrin of parameters associated with the IgA response in the proximal and distal small intestine of BALB/c mice. Immunopharmacology and Immunotoxicology, 39(2), 66-73. http://dx.doi.org/10.1080/08923973.2017.1282513. PMid:28151031.
http://dx.doi.org/10.1080/08923973.2017....
).
4 Iron binding and release of LF in vivo
The iron binding and release of the LF is closely linked to its function in vivo. As shown in Figure 3, Fe3+ in food is converted to Fe2+ by duodenal cytochrome b (Dcytb), and Fe2+ enters the small intestinal epithelium via recombinant divalent metal transporter 1 (DMT1) or heme carrier protein 1 (HCP1). LF enters the small intestinal epithelium via endocytosis and the Fe3+ carried by LF can be converted to Fe2+ by hydrochloric acid in the intestine. The absorption of new iron depends on the total previous iron storage. In the Duodenum, there is a sensor transferring carrying iron - the HFE protein, transcriptional expression of the HFE gene can act on Dcytb and hephaestin (Hp) to regulate duodenal absorption of iron. There are two routes for Fe2+, one is to bind to ferritin, which is present in the cytoplasm as mucosal ferritin and subsequently shed outside the cell, where the normal epithelium regenerates; the other is that Fe2+ crosses the basement membrane of intestinal epithelial cells by the combined action of ferroportin 1 (FPN1) and Hp and is subsequently converted to Fe3+ by ceruloplasmin (CER) in the small intestinal epithelium.
Fe3+ enters the vasculature, binds to transferrin, and is transported to the bone and liver. Some Fe3+ reach the bone marrow via the blood for hemoglobin synthesis and erythropoiesis, finally iron is used in various tissues and organs. Some Fe3+ transported as TF-Fe3+, they reach the liver via the portal system, Fe3+ entering the liver stimulates a protein called Hepcidin (Hepc), this is a regulator as well as an inhibitor. When Hepc senses that there is too much Fe3+ coming in, Hepc acts on FPN1 to inhibit Fe2+ production until FPN1 is not receiving Fe2+, at which point Fe2+ in the cytoplasm is shed outside the cell as mucosal ferritin and excreted in the feces or urine. Meanwhile, HFE gene acts on Dcytb and Hp to inhibit their translational uptake of LF. If there is too little Fe3+, Hepc acts on FPN1 to increase Fe2+ production, and HFE gene acts on Dcytb and Hp to promote their translational uptake of LF. There is also a way to maintain iron homeostasis in the body, when there is too much Fe3+, Hepc acts on macrophages until macrophages stop releasing Fe3+; when there is too little Fe2+, Hepc does not act on macrophages and macrophages release Fe3+ as normal. Most of the body's iron is derived from the recirculation of heme iron after senescent red blood cells are phagocytosed by macrophages, and another part comes from the absorption of iron from food, with the small intestine being the only site for iron absorption.
The release of iron from LF follows the reverse pathway of iron binding, with the structural domain of the closed iron binding site opening, followed by the release of iron. Three factors contribute to the structural changes necessary for iron release: the presence of a specific receptor similar to serum transferrin, the reduction of Fe3+ to Fe2+ and the lowering of the pH in the environment (Baker et al., 2002Baker, E. N., Baker, H. M., & Kidd, R. D. (2002). Lactoferrin and transferrin: functional variations on a common structural framework. Biochemistry and Cell Biology, 80(1), 27-34. http://dx.doi.org/10.1139/o01-153. PMid:11908640.
http://dx.doi.org/10.1139/o01-153...
). Iron absorption occurs in the proximal duodenum (Cassat & Skaar, 2013Cassat, J. E., & Skaar, E. P. (2013). Iron in infection and immunity. Cell Host & Microbe, 13(5), 509-519. http://dx.doi.org/10.1016/j.chom.2013.04.010. PMid:23684303.
http://dx.doi.org/10.1016/j.chom.2013.04...
). When LF with iron ions reaches the intestine, it binds specifically to receptors on the cell surface (Figure 3), facilitating the entry of iron and intact LF into the enterocyte and the release of Fe3+ ions via an endocytosis-mediated pathway (Jiang et al., 2011Jiang, R., Lopez, V., Kelleher, S. L., & Lönnerdal, B. (2011). Apo‐and holo‐lactoferrin are both internalized by lactoferrin receptor via clathrin‐mediated endocytosis but differentially affect ERK‐signaling and cell proliferation in Caco‐2 cells. Journal of Cellular Physiology, 226(11), 3022-3031. http://dx.doi.org/10.1002/jcp.22650. PMid:21935933.
http://dx.doi.org/10.1002/jcp.22650...
; Suzuki et al., 2005Suzuki, Y. A., Lopez, V., & Lönnerdal, B. (2005). Mammalian lactoferrin receptors: structure and function. Cellular and Molecular Life Sciences, 62(22), 2560-2575. http://dx.doi.org/10.1007/s00018-005-5371-1. PMid:16261254.
http://dx.doi.org/10.1007/s00018-005-537...
). The absorbed LF is then transported by the microsomes and ultimately participates in the redox reactions of the iron cycle (Lönnerdal, 2016Lönnerdal, B. (2016). Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. The Journal of Pediatrics, 173(Suppl), S4-S9. http://dx.doi.org/10.1016/j.jpeds.2016.02.070. PMid:27234410.
http://dx.doi.org/10.1016/j.jpeds.2016.0...
). LF enhances intestinal iron absorption by binding to iron and improves hemoglobin and total serum iron levels, thereby maintaining homeostasis of iron in the body and in cells (Mayeur et al., 2016Mayeur, S., Spahis, S., Pouliot, Y., & Levy, E. (2016). Lactoferrin, a pleiotropic protein in health and disease. Antioxidants & Redox Signaling, 24(14), 813-836. http://dx.doi.org/10.1089/ars.2015.6458. PMid:26981846.
http://dx.doi.org/10.1089/ars.2015.6458...
; Sienkiewicz et al., 2022Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A., & Fichna, J. (2022). Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Critical reviews in food science and nutrition, 62(22), 6016-6033. PMid:33685299.).
5 Digestion of LF
5.1 Digestion of LF in vivo
The digestion of food starts from mouth which is mainly mechanical chawing, and most of the LF is ingested in liquid form, which makes its digestion in the oral stage even less. LF is initially broken down by pepsin in the gastric juice with the participation of gastric acid, and it is at this stage that strong antimicrobial peptides such as lactoferricin and lactoferrampin are produced.
With or without thermal processing, LF is more susceptible to simulated infant intestinal digestive conditions than simulated infant gastric digestive conditions. The effect of thermal processing on LF gastric digestion is negligible, as LF and its aggregates are highly resistant to gastric digestion. In addition, the difference in digestion between bLF and hLF may arise from the different levels of iron saturation in LF (Bokkhim et al., 2013Bokkhim, H., Bansal, N., Grøndahl, L., & Bhandari, B. (2013). Physico-chemical properties of different forms of bovine lactoferrin. Food Chemistry, 141(3), 3007-3013. http://dx.doi.org/10.1016/j.foodchem.2013.05.139. PMid:23871052.
http://dx.doi.org/10.1016/j.foodchem.201...
; Sabra & Agwa, 2020Sabra, S., & Agwa, M. M. (2020). Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. International Journal of Biological Macromolecules, 164, 1046-1060. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.167. PMid:32707283.
http://dx.doi.org/10.1016/j.ijbiomac.202...
). The iron saturation degree of LF interferes with its degradation, apo-LF in bovine milk are more easily digested than holo-LF (Troost et al., 2001Troost, F. J., Steijns, J., Saris, W. H., & Brummer, R.-J. M. (2001). Gastric digestion of bovine lactoferrin in vivo in adults. The Journal of Nutrition, 131(8), 2101-2104. http://dx.doi.org/10.1093/jn/131.8.2101. PMid:11481401.
http://dx.doi.org/10.1093/jn/131.8.2101...
). All the same, the gastric digestion may also demonstrate a positive impact on LF activity, because LF can form antimicrobial derivatives in the stomach (Lizzi et al., 2016Lizzi, A., Carnicelli, V., Clarkson, M., Nazzicone, C., Segatore, B., Celenza, G., Aschi, M., Dolo, V., Strom, R., & Amicosante, G. (2016). Bovine lactoferrin and its tryptic peptides: antibacterial activity against different species. Applied Biochemistry and Microbiology, 52(4), 435-440. http://dx.doi.org/10.1134/S0003683816040116.
http://dx.doi.org/10.1134/S0003683816040...
).
5.2 Simulation digestion studies of LF in vitro
Most of the current LF studies are based on simulation methods in vitro. The digestion model in vitro facilitates the subsequent extraction and isolation of digestion products by simulating the physiological conditions in vitro digestion and then analyses the structure, composition, interactions, and digestibility of the digestion products, with the advantage of being easy to manipulate and reproduce. This allows relatively large numbers of samples to be measured in parallel for screening purposes and is well suited to mechanistic studies and hypothesis construction (Minekus et al., 2014Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D. J., Ménard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S., Weitschies, W., & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function, 5(6), 1113-1124. http://dx.doi.org/10.1039/C3FO60702J. PMid:24803111.
http://dx.doi.org/10.1039/C3FO60702J...
). Thus, the use of adequate digestion tools in vitro is a priority for the optimization of IMF (Ménard et al., 2018Ménard, O., Bourlieu, C., De Oliveira, S. C., Dellarosa, N., Laghi, L., Carrière, F., Capozzi, F., Dupont, D., & Deglaire, A. (2018). A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chemistry, 240, 338-345. http://dx.doi.org/10.1016/j.foodchem.2017.07.145. PMid:28946281.
http://dx.doi.org/10.1016/j.foodchem.201...
).
In simulating gastric digestion in infants, compared to the undigested or untreated LF samples, the gastric digest revealed an almost identical molecular weights profile, suggesting that LF undergoes little protein hydrolysis. The heat-treated LF samples showed a lesser resistance to gastric digestion than the unprocessed LF (Goulding et al., 2021bGoulding, D. A., Vidal, K., Bovetto, L., O’Regan, J., O’Brien, N. M., & O’Mahony, J. A. (2021b). The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin-An in vitro study. Food Chemistry, 362, 130142. http://dx.doi.org/10.1016/j.foodchem.2021.130142. PMid:34087706.
http://dx.doi.org/10.1016/j.foodchem.202...
). This result is consistent with those of high temperature short duration pasteurization (HTSDP) on the dynamic digestion of human milk in a premature neonatal model (Nebbia et al., 2020Nebbia, S., Giribaldi, M., Cavallarin, L., Bertino, E., Coscia, A., Briard-Bion, V., Ossemond, J., Henry, G., Ménard, O., Dupont, D., & Deglaire, A. (2020). Differential impact of Holder and High Temperature Short Time pasteurization on the dynamic in vitro digestion of human milk in a preterm newborn model. Food Chemistry, 328, 127126. http://dx.doi.org/10.1016/j.foodchem.2020.127126. PMid:32492605.
http://dx.doi.org/10.1016/j.foodchem.202...
). LF can act biologically as an intact protein and possibly as a hydrolyzed form, in them LF-derived peptides showed a potent anti-microbial activity (Vogel, 2012Vogel, H. J. (2012). Lactoferrin, a bird’s eye view. Biochemistry and Cell Biology, 90(3), 233-244. http://dx.doi.org/10.1139/o2012-016. PMid:22540735.
http://dx.doi.org/10.1139/o2012-016...
). In a static model simulating gastrointestinal digestion in infants, LF resists gastric digestion, instead of intestinal digestion (Halabi et al., 2020Halabi, A., Croguennec, T., Bouhallab, S., Dupont, D., & Deglaire, A. (2020). Modification of protein structures by altering the whey protein profile and heat treatment affects in vitro static digestion of model infant milk formulas. Food & Function, 11(8), 6933-6945. http://dx.doi.org/10.1039/D0FO01362E. PMid:32692321.
http://dx.doi.org/10.1039/D0FO01362E...
; Xiong et al., 2021Xiong, L., Boeren, S., Vervoort, J., & Hettinga, K. (2021). Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chemistry, 337, 127973. http://dx.doi.org/10.1016/j.foodchem.2020.127973. PMid:32927224.
http://dx.doi.org/10.1016/j.foodchem.202...
). Although the amount of LF excreted intact through infant intestinal digestion is low, the protein hydrolysis resistance that allows LF to persist in the infant's gastrointestinal tract may be the key to allowing the protein to affect the infant's intestinal microbiota (Manzoni, 2016Manzoni, P. (2016). Clinical benefits of lactoferrin for infants and children. The Journal of Pediatrics, 173(Suppl), S43-S52. http://dx.doi.org/10.1016/j.jpeds.2016.02.075. PMid:27234411.
http://dx.doi.org/10.1016/j.jpeds.2016.0...
). Bokkhim et al. (2016)Bokkhim, H., Bansal, N., Grøndahl, L., & Bhandari, B. (2016). In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocolloids, 52, 231-242. http://dx.doi.org/10.1016/j.foodhyd.2015.07.007.
http://dx.doi.org/10.1016/j.foodhyd.2015...
used an aerosol technique to encapsulate LF and then found that encapsulating apo- and native-LF with alginate microgel particles (composed of a mixture of apo- and holo-LF) protects them from the action of pepsin and allows their release in the intestine.
6 Active functions of LF in vivo
There are many medicinal foods in human lives that not only provide the body with nutrients, but also have preventive, palliative, or curative effects. LF is expected to bring some active functions to food. Table 2 summarizes the biofunctions and mechanism of LF that have been studied in recent years.
The anti-cancer activity of LF is reflected in the activation of innate and adaptive immune responses, in addition to stimulating the proliferation and differentiation of T-helper cells and their release of tumor-killing cytokines in the intestine (Zhang et al., 2015Zhang, Y., Lima, C. F., & Rodrigues, L. R. (2015). In vitro evaluation of bovine lactoferrin potential as an anticancer agent. International Dairy Journal, 40, 6-15. http://dx.doi.org/10.1016/j.idairyj.2014.08.016.
http://dx.doi.org/10.1016/j.idairyj.2014...
). Virus-dependent binding is attributed to LF leaf termini (N- and C-) and is dependent on charge interactions, with LF inhibiting the entry of viral particles into host cells either by direct attachment to viral particles or by blocking their cellular receptors (Redwan et al., 2014Redwan, E. M., Uversky, V. N., El-Fakharany, E. M., & Al-Mehdar, H. (2014). Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biologies, 337(10), 581-595. http://dx.doi.org/10.1016/j.crvi.2014.08.003. PMid:25282173.
http://dx.doi.org/10.1016/j.crvi.2014.08...
). LF increases the cytotoxicity of natural killer cells in vitro while inhibiting the release of reactive oxygen species (ROS) from leukocytes at sites of inflammation, however, its antioxidant capacity decreases with decreasing iron saturation (Cutone et al., 2020aCutone, A., Colella, B., Pagliaro, A., Rosa, L., Lepanto, M. S., Bonaccorsi di Patti, M. C., Valenti, P., Di Bartolomeo, S., & Musci, G. (2020a). Native and iron-saturated bovine lactoferrin differently hinder migration in a model of human glioblastoma by reverting epithelial-to-mesenchymal transition-like process and inhibiting interleukin-6/STAT3 axis. Cellular Signalling, 65, 109461. http://dx.doi.org/10.1016/j.cellsig.2019.109461. PMid:31678680.
http://dx.doi.org/10.1016/j.cellsig.2019...
). LF inhibited oxidative stress-induced cell death and apoptosis by enhancing autophagy (Hsu et al., 2020Hsu, Y.-H., Chiu, I.-J., Lin, Y.-F., Chen, Y.-J., Lee, Y.-H., & Chiu, H.-W. (2020). Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics, 12(5), 434. http://dx.doi.org/10.3390/pharmaceutics12050434. PMid:32397266.
http://dx.doi.org/10.3390/pharmaceutics1...
). It is worth noting that, compare to holo-LF, apo-LF had a more pronounced stimulatory effect on the proliferation of crypt cells associated with inflammation in colon cancer (Fan et al., 2022Fan, L. L., Yao, Q. Q., Wu, H. W., Wen, F., Wang, J. Q., Li, H. Y., & Zheng, N. (2022). Protective effects of recombinant lactoferrin with different iron saturations on enteritis injury in young mice. Journal of Dairy Science, 105(6), 4791-4803. http://dx.doi.org/10.3168/jds.2021-21428. PMid:35379462.
http://dx.doi.org/10.3168/jds.2021-21428...
). The N-terminal region of LF binds to the bacterial cell wall and destroys the bacterial cell. It inhibits the growth of pathogens (especially Enterobacteriaceae) and stimulates the growth of bifidobacterial intestinal flora, thus protecting the intestinal epithelial cells (Vega-Bautista et al., 2019Vega-Bautista, A., de la Garza, M., Carrero, J. C., Campos-Rodríguez, R., Godínez-Victoria, M., & Drago-Serrano, M. E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. International Journal of Molecular Sciences, 20(19), 4707. http://dx.doi.org/10.3390/ijms20194707. PMid:31547574.
http://dx.doi.org/10.3390/ijms20194707...
). In addition to the more representative bio-functional activities mentioned above, LF has also been found to have anti-parasitic, osteogenic, enzymatic activity, and neurological modulation functions.
7 LF application in food
7.1 Food fortification
Good product acceptability is one of the biggest challenges for food development (Santos et al., 2022Santos, G. O., Costa e Silva, G., Souza, R. B., Medeiros, J. S., Brito, I. S., Cardoso Neto, S. P., Leão, P. V. T., Nicolau, E. S., Cappato, L. P., Favareto, R., & Silva, M. A. P. (2022). Effect of milk protein concentrate supplementation on body composition and biochemical markers during a resistance training program. Food Science and Technology (Campinas), 42, e67222. http://dx.doi.org/10.1590/fst.67222.
http://dx.doi.org/10.1590/fst.67222...
), and as people become more health conscious, nutritional fortification has become one of the reasons for product acceptance. Nutritional fortification refers to natural or synthetic nutrients or other nutritional ingredients added to foods to increase their nutritional value. bLF has been approved as a generally recognized safe compound by the United States Food and Drug Administration and as a dietary supplement by European Food Safety Authority (Cutone et al., 2020bCutone, A., Rosa, L., Ianiro, G., Lepanto, M. S., Bonaccorsi di Patti, M. C., Valenti, P., & Musci, G. (2020b). Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules, 10(3), 456. http://dx.doi.org/10.3390/biom10030456. PMid:32183434.
http://dx.doi.org/10.3390/biom10030456...
; Superti, 2020Superti, F. (2020). Lactoferrin from bovine milk: a protective companion for life. Nutrients, 12(9), 2562. http://dx.doi.org/10.3390/nu12092562. PMid:32847014.
http://dx.doi.org/10.3390/nu12092562...
). LF can be used as a nutritional fortification in IMF, milk mixes, flavored fermented milk and dairy drinks. Figure 4 shows different applications of LF in the food industry.
LF has been reported to be a very important addition to IMF due to its antibacterial, anti-inflammatory, anti-cancer, immunomodulatory, enzyme activity and many other bioactive functions (Giansanti et al., 2016Giansanti, F., Panella, G., Leboffe, L., & Antonini, G. (2016). Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals, 9(4), 61. http://dx.doi.org/10.3390/ph9040061. PMid:27690059.
http://dx.doi.org/10.3390/ph9040061...
; Niaz et al., 2019Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Tufail, T., Anjum, F. M., Hussain, S., & Suleria, H. A. R. (2019). Lactoferrin (LF): A natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626-1641. http://dx.doi.org/10.1080/10942912.2019.1666137.
http://dx.doi.org/10.1080/10942912.2019....
; Yan et al., 2022Yan, M., Wang, Y., Shen, X., Dong, S., Diao, M., Zhao, Y., & Zhang, T. (2022). Enhanced foaming properties of lactoferrin by forming functional complexes with ginsenoside Re and Rb1. Food Hydrocolloids, 123, 107159. http://dx.doi.org/10.1016/j.foodhyd.2021.107159.
http://dx.doi.org/10.1016/j.foodhyd.2021...
). bLF is usually added to IMF to improve its functional properties based on its high homology with hLF and easy availability (Artym & Zimecki, 2013Artym, J., & Zimecki, M. (2013). Milk-derived proteins and peptides in clinical trials. Postepy Higieny i Medycyny Doswiadczalnej, 67, 800-816. http://dx.doi.org/10.5604/17322693.1061635. PMid:24018446.
http://dx.doi.org/10.5604/17322693.10616...
; Cornish et al., 2004Cornish, J., Callon, K. E., Naot, D., Palmano, K. P., Banovic, T., Bava, U., Watson, M., Lin, J. M., Tong, P. C., Chen, Q., Chan, V. A., Reid, H. E., Fazzalari, N., Baker, H. M., Baker, E. N., Haggarty, N. W., Grey, A. B., & Reid, I. R. (2004). Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology, 145(9), 4366-4374. http://dx.doi.org/10.1210/en.2003-1307. PMid:15166119.
http://dx.doi.org/10.1210/en.2003-1307...
). By participating in the transport of iron in the body, LF can directly or indirectly chelate iron, thus regulating the amount of iron absorbed by the intestine (Hao et al., 2019Hao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: major physiological functions and applications. Current Protein & Peptide Science, 20(2), 139-144. http://dx.doi.org/10.2174/1389203719666180514150921. PMid:29756573.
http://dx.doi.org/10.2174/13892037196661...
). Infants are prone to nutritional iron deficiency anaemia and direct iron supplementation can cause irritation to their gastrointestinal tract. The addition of LF to IMF ensures the absorption and utilization of iron and prevents nausea, vomiting and disruption of feeding due to the irritation of the gastrointestinal tract in infants. Moreover, bLF is added to reconstituted IMF and HTSDP retained bLF in IMF with high quality, together with the binding capacity and storage stability of iron, this retention confirmed the possibility of adding bLF to HTSDP products (Wazed et al., 2020Wazed, M. A., Ismail, M., & Farid, M. (2020). Pasteurized ready-to-feed (RTF) infant formula fortified with lactoferrin: a potential niche product. Journal of Food Engineering, 273, 109810. http://dx.doi.org/10.1016/j.jfoodeng.2019.109810.
http://dx.doi.org/10.1016/j.jfoodeng.201...
). LF combined with whey protein hydrolysate maintains the stability of IMF emulsions and the yield, encapsulation and hygroscopicity of IMF containing LF are improved (Figueiredo Furtado et al., 2021Figueiredo Furtado, G., da Silva Carvalho, A. G., & Hubinger, M. D. (2021). Model infant formulas: Influence of types of whey proteins and oil composition on emulsion and powder properties. Journal of Food Engineering, 292, 110256. http://dx.doi.org/10.1016/j.jfoodeng.2020.110256.
http://dx.doi.org/10.1016/j.jfoodeng.202...
). The iron binding bLF found in colostrum was effective in treating diarrhea in calves, suggesting that bLF may have a potential therapeutic role in infant diarrhea.
As mentioned in above, LF has many beneficial biological activities and therefore direct consumption of LF powder is a good option, but the daily dose per person should be strictly controlled. LF can be powdered and turned into drink, however, due to its instability, storage conditions and limited shelf life, the processing and packaging of beverages still needs to be improved. LF is mainly added to milk as a nutritional fortifier, as milk is pasteurized and sterilized, packaged tightly and mostly in small individual packs, and is not stored for long periods of time like milk powder, thus the antibacterial properties of LF are less represented in milk.
It has been reported that beneficial microorganisms need protein to proliferate, and most proteins do not reach the gut, and there are no protein-containing prebiotics on the market (Peled & Livney, 2021Peled, S., & Livney, Y. D. (2021). Oligosaccharide-lactoferrin shell-crosslinked particles for selective targeting of proteins to probiotic bacteria in the colon. Food Hydrocolloids, 120, 106973. http://dx.doi.org/10.1016/j.foodhyd.2021.106973.
http://dx.doi.org/10.1016/j.foodhyd.2021...
). LF is able to improve intestinal flora, strengthens the body's immunity and has a regulatory effect on iron absorption in mammals, thereby maintaining iron homeostasis in the body (Li et al., 2017Li, H.-Y., Li, M., Luo, C., Wang, J.-Q., & Zheng, N. (2017). Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. Journal of Agricultural and Food Chemistry, 65(48), 10464-10472. http://dx.doi.org/10.1021/acs.jafc.7b03390. PMid:29112400.
http://dx.doi.org/10.1021/acs.jafc.7b033...
). Chen et al. (2013)Chen, P.-W., Jheng, T., Shyu, C.-L., & Mao, F. (2013). Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. Journal of Dairy Science, 96(3), 1438-1446. http://dx.doi.org/10.3168/jds.2012-6112. PMid:23332852.
http://dx.doi.org/10.3168/jds.2012-6112...
combined apo-bLF or bLF hydrolysis products with specific supernatants produced by different probiotic bacteria and observed that they inhibited foodborne pathogens. Therefore, LF can be added to yogurt and probiotic drinks. However, the high addition of LF can lead to a decrease in the quality of the probiotic, when developing probiotic products with LF, the amount of probiotic added should be increased to ensure enough live bacteria. Besides, the zinc-bLF complex was reported to be used as a food additive or as a wound healing agent (Pryshchepa et al., 2022Pryshchepa, O., Sagandykova, G., Rudnicka, J., Pomastowski, P., Sprynskyy, M., & Buszewski, B. (2022). Synthesis and physicochemical characterization of zinc-lactoferrin complexes. Journal of Dairy Science, 105(3), 1940-1958. http://dx.doi.org/10.3168/jds.2021-20538. PMid:35033339.
http://dx.doi.org/10.3168/jds.2021-20538...
).
7.2 Foam agents
Foaming agent is a kind of substance that makes the target substance pore, which can be divided into three categories: chemical foaming agent, physical foaming agent and surfactant, LF belongs to surfactant. Protein is the main foaming agent in food industry (Murray, 2020Murray, B. S. (2020). Recent developments in food foams. Current Opinion in Colloid & Interface Science, 50, 101394. http://dx.doi.org/10.1016/j.cocis.2020.101394.
http://dx.doi.org/10.1016/j.cocis.2020.1...
), but its foam is not easy to produce and control. Due to the foaming and emulsifying properties, the proteins in milk are a good choice for surface active molecules and bLF is a globular protein found in milk whey protein (Liu et al., 2018Liu, F., Zhang, S., Li, J., McClements, D. J., & Liu, X. (2018). Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: complexes, emulsions, and nanoparticles. Trends in Food Science & Technology, 79, 67-77. http://dx.doi.org/10.1016/j.tifs.2018.06.013.
http://dx.doi.org/10.1016/j.tifs.2018.06...
). Rather than using the foaming properties of LF alone, there is now a preference for using LF in combination with other substances to form complexes, which retain the foaming properties of LF and increase the biological functionality of the complex.
At present, LF is widely used to be foam agents, but this function is not yet perfect. Therefore, it is necessary to further modify the foam agent to make a compound foam agent with better performance. Covalent modification of LF with epigallocatechin gallate, chlorogenic acid and gallic acid resulted in significant changes in the solubility and emulsification of LF, as well as enhanced thermal stability of the LF-polyphenol conjugate (Liu et al., 2015Liu, F., Sun, C., Yang, W., Yuan, F., & Gao, Y. (2015). Structural characterization and functional evaluation of lactoferrin-polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances, 5(20), 15641-15651. http://dx.doi.org/10.1039/C4RA10802G.
http://dx.doi.org/10.1039/C4RA10802G...
). It is reported that a stable complex was formed by hydrophobic interaction between LF and procyanidin and the foaming properties of the complex were also improved (Li et al., 2021Li, C., Dai, T., Chen, J., Li, X., Li, T., Liu, C., & McClements, D. J. (2021). Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry, 339, 128145. http://dx.doi.org/10.1016/j.foodchem.2020.128145. PMid:33152895.
http://dx.doi.org/10.1016/j.foodchem.202...
). Dai et al. (2022)Dai, T., McClements, D. J., Hu, T., Chen, J., He, X., Liu, C., Sheng, J., & Sun, J. (2022). Improving foam performance using colloidal protein-polyphenol complexes: Lactoferrin and tannic acid. Food Chemistry, 377, 131950. http://dx.doi.org/10.1016/j.foodchem.2021.131950. PMid:34998155.
http://dx.doi.org/10.1016/j.foodchem.202...
used bLF and tannins to form a complex to improve foam performance, although poor foam compared to bLF alone, but with good foam stability. Although rosmarinic acid interacts to a lesser extent with bLF, the complexes formed are more stable than the protein alone and also have more freedom of movement and heat capacity (Ferraro et al., 2015Ferraro, V., Madureira, A. R., Sarmento, B., Gomes, A., & Pintado, M. E. (2015). Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Research International, 77, 450-459. http://dx.doi.org/10.1016/j.foodres.2015.08.024.
http://dx.doi.org/10.1016/j.foodres.2015...
). The conjugation of polyphenols to LF increases the ζ-potential of the complex and decreases the surface hydrophobicity, leading to a reduction in turbidity during thermal processing, and this change in physicochemical properties can also affect the foaming properties of LF (Liu et al., 2016Liu, F., Wang, D., Ma, C., & Gao, Y. (2016). Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH. Food Hydrocolloids, 58, 49-59. http://dx.doi.org/10.1016/j.foodhyd.2016.02.011.
http://dx.doi.org/10.1016/j.foodhyd.2016...
). These complexes are able to fully perform the dual role of the ingredients, suitable for functional food foams, with nutritional and technical benefits. LF offers new resource ideas for purely natural foaming agents and a viable strategy for enhancing the use of functional molecules in food stabilization and industry.
As a pure natural additive, LF can be widely used in food industries such as bread and biscuits. In addition to increasing protein nutrients, it also has the functions of foaming, loosening, and whitening food. Thus, it is widely used in cold drinks such as soft drinks and ice cream.
7.3 Chewable tablets and capsules
Other products of LF included health food products with both nutritional functions and medical efficacy. Subjects took bLF chewable tablets twice daily for 8 weeks and the result showed that bLF was well tolerated in mild and moderate acne vulgaris (Mueller et al., 2011Mueller, E. A., Trapp, S., Frentzel, A., Kirch, W., & Brantl, V. (2011). Efficacy and tolerability of oral lactoferrin supplementation in mild to moderate acne vulgaris: an exploratory study. Current Medical Research and Opinion, 27(4), 793-797. http://dx.doi.org/10.1185/03007995.2011.557720. PMid:21303195.
http://dx.doi.org/10.1185/03007995.2011....
). Wotring et al. (2022)Wotring, J. W., Fursmidt, R., Ward, L., & Sexton, J. Z. (2022). Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. Journal of Dairy Science, 105(4), 2791-2802. http://dx.doi.org/10.3168/jds.2021-21247. PMid:35221061.
http://dx.doi.org/10.3168/jds.2021-21247...
found that custom chewable LF tablets formulated with glucose or sorbitol had anti-SARS-CoV-2 activity. New capsules loaded with LF have been reported using polyelectrolyte complexes, which can be used as anti-colon cancer protein products (Wu et al., 2013Wu, Q.-X., Zhang, Q.-L., Lin, D.-Q., & Yao, S.-J. (2013). Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 455(1-2), 124-131. http://dx.doi.org/10.1016/j.ijpharm.2013.07.048. PMid:23891653.
http://dx.doi.org/10.1016/j.ijpharm.2013...
)
8 Conclusion
This review illustrates the foodstuffs into which LF may be made, but the processes by which LF can be incorporated into foodstuffs are still to be discovered, and this provides a wider range of ideas for the application of LF in foodstuffs. As LF is easily inactivated during thermal processing, it is particularly important to find out how to obtain highly active bLF in an efficient isolation method. The high extraction cost and high price of bLF set currently in the market have severely limited the development and application of lactoferrin health products. In order for LF to pass through the stomach in its intact structural form, many protection measures have been proposed one after another and that microencapsulation and PEGylation are the most effective methods used to deliver LF to the site of intestinal absorption, which holds promise for future research. Despite these findings, the kinetics of thermal processing on LF digestion and the biological activity of LF digestion require further study. In addition, the physiological functions of LF need to be studied in depth in order to solve the technical problems of food industry. This is also of great importance for a more rational use of bLF, such as the simulation of breast milk nutrition and the development of breast milk substitute food and IMF. Due to the special status and role of iron in many physiological and pathological processes in the body, further systematic studies will have good application prospects.
Abbreviations
apo-LF: iron-free lactoferrin. bLF: bovine lactoferrin. CER: ceruloplasmin. Dcytb: duodenal cytochrome b. DMT1: divalent metal transporter 1. FPN1: ferroportin 1. HCP1: heme carrier protein 1. hLF: human lactoferrin. holo-LF: iron-saturated lactoferrin. Hp: hephaestin. HTSDP: high temperature short duration pasteurization. IMF: infant milk formula. LF: lactoferrin. MRP: Maillard reaction products. ROS: reactive oxygen species. TF: transferrin
Acknowledgements
Financial support from the grants of National Natural Science foundation of 368 China (31571796) is gratefully acknowledged.
-
Practical Application: a. Changes in lactoferrin structure and function induced by thermal processing. b. Mechanism of iron-binding release from Fe3+ bound lactoferrin in vivo. c. Comprehensive application of lactoferrin as food functional factor.
References
- Abdel-Hamid, M., Yang, P., Mostafa, I., Osman, A., Romeih, E., Yang, Y., Huang, Z., Awad, A. A., & Li, L. (2022). Changes in whey proteome between mediterranean and murrah buffalo colostrum and mature milk reflect their pharmaceutical and medicinal value. Molecules (Basel, Switzerland), 27(5), 1575. http://dx.doi.org/10.3390/molecules27051575 PMid:35268677.
» http://dx.doi.org/10.3390/molecules27051575 - Acosta-Smith, E., Viveros-Jimenez, K., Canizalez-Roman, A., Reyes-Lopez, M., Bolscher, J. G., Nazmi, K., Flores-Villaseñor, H., Alapizco-Castro, G., de la Garza, M., Martínez-Garcia, J. J., Velazquez-Roman, J., & Leon-Sicairos, N. (2018). Bovine lactoferrin and lactoferrin-derived peptides inhibit the growth of Vibrio cholerae and other Vibrio species. Frontiers in Microbiology, 8, 2633. http://dx.doi.org/10.3389/fmicb.2017.02633 PMid:29375503.
» http://dx.doi.org/10.3389/fmicb.2017.02633 - Altomonte, I., Salari, F., Licitra, R., & Martini, M. (2019). Donkey and human milk: insights into their compositional similarities. International Dairy Journal, 89, 111-118. http://dx.doi.org/10.1016/j.idairyj.2018.09.005
» http://dx.doi.org/10.1016/j.idairyj.2018.09.005 - Arab, H. H., Salama, S. A., & Maghrabi, I. A. (2018). Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cellular Physiology and Biochemistry, 46(4), 1628-1642. http://dx.doi.org/10.1159/000489210 PMid:29694984.
» http://dx.doi.org/10.1159/000489210 - Arab, H. H., Salama, S. A., Abdelghany, T. M., Omar, H. A., Arafa, E.-S. A., Alrobaian, M. M., & Maghrabi, I. A. (2017). Camel milk attenuates rheumatoid arthritis via inhibition of mitogen activated protein kinase pathway. Cellular Physiology and Biochemistry, 43(2), 540-552. http://dx.doi.org/10.1159/000480527 PMid:28930753.
» http://dx.doi.org/10.1159/000480527 - Artym, J., & Zimecki, M. (2013). Milk-derived proteins and peptides in clinical trials. Postepy Higieny i Medycyny Doswiadczalnej, 67, 800-816. http://dx.doi.org/10.5604/17322693.1061635 PMid:24018446.
» http://dx.doi.org/10.5604/17322693.1061635 - Azhar, J., Mohammadabadi, T., Ellahi Babar, M., & Hussain, T. (2020). Milk lactoferrin: a probable immunological agent against sars-cov-2: a review. Basrah Journal of Agricultural Sciences, 33(2), 138-146. http://dx.doi.org/10.37077/25200860.2020.33.2.12
» http://dx.doi.org/10.37077/25200860.2020.33.2.12 - Baker, E. N., Baker, H. M., & Kidd, R. D. (2002). Lactoferrin and transferrin: functional variations on a common structural framework. Biochemistry and Cell Biology, 80(1), 27-34. http://dx.doi.org/10.1139/o01-153 PMid:11908640.
» http://dx.doi.org/10.1139/o01-153 - Baker, H. M., & Baker, E. N. (2012). A structural perspective on lactoferrin function. Biochemistry and Cell Biology, 90(3), 320-328. http://dx.doi.org/10.1139/o11-071 PMid:22292559.
» http://dx.doi.org/10.1139/o11-071 - Barros, C. A., Sanches, D., Marques de Carvalho, C. A., Santos, R. A., Ferraz de Souza, T. L., Macena Leite, V. L., Pereira da Costa Campos, S., Cheble de Oliveira, A., & Gonçalves, R. B. (2021). Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon, 7(9), e08087. http://dx.doi.org/10.1016/j.heliyon.2021.e08087 PMid:34632151.
» http://dx.doi.org/10.1016/j.heliyon.2021.e08087 - Bhattacharjee MK, Mehta BS, Akukwe B. (2020). Maillard reaction products inhibit the periodontal pathogen Aggregatibacter actinomycetemcomitans by chelating iron. Archives of Oral Biology, 122, 104989. http://dx.doi.org/10.1016/j.archoralbio.2020.104989 PMID: 33249361.
» http://dx.doi.org/10.1016/j.archoralbio.2020.104989 - Bhattacharjee, M. K., Mehta, B. S., & Akukwe, B. (2021). Maillard reaction products inhibit the periodontal pathogen Aggregatibacter actinomycetemcomitans by chelating iron. Archives of Oral Biology, 122, 104989. http://dx.doi.org/10.1016/j.archoralbio.2020.104989 PMid:33249361.
» http://dx.doi.org/10.1016/j.archoralbio.2020.104989 - Bielecka, M., Cichosz, G., & Czeczot, H. (2021). Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates-a review. International Dairy Journal, 127, 105208. https://doi.org/10.1016/j.idairyj.2021.105208
» https://doi.org/10.1016/j.idairyj.2021.105208 - Biernbaum, E. N., Gnezda, A., Akbar, S., Franklin, R., Venturelli, P. A., & McKillip, J. L. (2021). Lactoferrin as an antimicrobial against Salmonella enterica and Escherichia coli O157: H7 in raw milk. JDS Communications, 2(3), 92-97. http://dx.doi.org/10.3168/jdsc.2020-0030 PMid:36339505.
» http://dx.doi.org/10.3168/jdsc.2020-0030 - Bokkhim, H., Bansal, N., Grøndahl, L., & Bhandari, B. (2013). Physico-chemical properties of different forms of bovine lactoferrin. Food Chemistry, 141(3), 3007-3013. http://dx.doi.org/10.1016/j.foodchem.2013.05.139 PMid:23871052.
» http://dx.doi.org/10.1016/j.foodchem.2013.05.139 - Bokkhim, H., Bansal, N., Grøndahl, L., & Bhandari, B. (2016). In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocolloids, 52, 231-242. http://dx.doi.org/10.1016/j.foodhyd.2015.07.007
» http://dx.doi.org/10.1016/j.foodhyd.2015.07.007 - Brandl, N., Zemann, A., Kaupe, I., Marlovits, S., Huettinger, P., Goldenberg, H., & Huettinger, M. (2010). Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis and Cartilage, 18(1), 117-125. http://dx.doi.org/10.1016/j.joca.2009.08.012 PMid:19747587.
» http://dx.doi.org/10.1016/j.joca.2009.08.012 - Cassat, J. E., & Skaar, E. P. (2013). Iron in infection and immunity. Cell Host & Microbe, 13(5), 509-519. http://dx.doi.org/10.1016/j.chom.2013.04.010 PMid:23684303.
» http://dx.doi.org/10.1016/j.chom.2013.04.010 - Chen, P.-W., Jheng, T., Shyu, C.-L., & Mao, F. (2013). Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. Journal of Dairy Science, 96(3), 1438-1446. http://dx.doi.org/10.3168/jds.2012-6112 PMid:23332852.
» http://dx.doi.org/10.3168/jds.2012-6112 - Chen, Y., Zheng, Z., Zhu, X., Shi, Y., Tian, D., Zhao, F., Liu, N., Hüppi, P. S., Troy, F. A. 2nd., & Wang, B. (2015). Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation. Molecular Neurobiology, 52(1), 256-269. http://dx.doi.org/10.1007/s12035-014-8856-9 PMid:25146846.
» http://dx.doi.org/10.1007/s12035-014-8856-9 - Cornish, J., Callon, K. E., Naot, D., Palmano, K. P., Banovic, T., Bava, U., Watson, M., Lin, J. M., Tong, P. C., Chen, Q., Chan, V. A., Reid, H. E., Fazzalari, N., Baker, H. M., Baker, E. N., Haggarty, N. W., Grey, A. B., & Reid, I. R. (2004). Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology, 145(9), 4366-4374. http://dx.doi.org/10.1210/en.2003-1307 PMid:15166119.
» http://dx.doi.org/10.1210/en.2003-1307 - Cutone, A., Colella, B., Pagliaro, A., Rosa, L., Lepanto, M. S., Bonaccorsi di Patti, M. C., Valenti, P., Di Bartolomeo, S., & Musci, G. (2020a). Native and iron-saturated bovine lactoferrin differently hinder migration in a model of human glioblastoma by reverting epithelial-to-mesenchymal transition-like process and inhibiting interleukin-6/STAT3 axis. Cellular Signalling, 65, 109461. http://dx.doi.org/10.1016/j.cellsig.2019.109461 PMid:31678680.
» http://dx.doi.org/10.1016/j.cellsig.2019.109461 - Cutone, A., Rosa, L., Ianiro, G., Lepanto, M. S., Bonaccorsi di Patti, M. C., Valenti, P., & Musci, G. (2020b). Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules, 10(3), 456. http://dx.doi.org/10.3390/biom10030456 PMid:32183434.
» http://dx.doi.org/10.3390/biom10030456 - Dai, T., McClements, D. J., Hu, T., Chen, J., He, X., Liu, C., Sheng, J., & Sun, J. (2022). Improving foam performance using colloidal protein-polyphenol complexes: Lactoferrin and tannic acid. Food Chemistry, 377, 131950. http://dx.doi.org/10.1016/j.foodchem.2021.131950 PMid:34998155.
» http://dx.doi.org/10.1016/j.foodchem.2021.131950 - Díaz-Godínez, C., González-Galindo, X., Meza-Menchaca, T., Bobes, R. J., de la Garza, M., León-Sicairos, N., Laclette, J. P., & Carrero, J. C. (2019). Synthetic bovine lactoferrin peptide Lfampin kills Entamoeba histolytica trophozoites by necrosis and resolves amoebic intracecal infection in mice. Bioscience Reports, 39(1), BSR20180850. http://dx.doi.org/10.1042/BSR20180850 PMid:30429239.
» http://dx.doi.org/10.1042/BSR20180850 - Dierick, M., Vanrompay, D., Devriendt, B., & Cox, E. (2021). Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host’s innate immunity. Biochemistry and Cell Biology, 99(1), 61-65. http://dx.doi.org/10.1139/bcb-2020-0080 PMid:32585120.
» http://dx.doi.org/10.1139/bcb-2020-0080 - Fan, L. L., Yao, Q. Q., Wu, H. W., Wen, F., Wang, J. Q., Li, H. Y., & Zheng, N. (2022). Protective effects of recombinant lactoferrin with different iron saturations on enteritis injury in young mice. Journal of Dairy Science, 105(6), 4791-4803. http://dx.doi.org/10.3168/jds.2021-21428 PMid:35379462.
» http://dx.doi.org/10.3168/jds.2021-21428 - Fernández-Menéndez, S., Peixoto, R. R., Fernandez-Colomer, B., Suarez-Rodriguez, M., Sanz-Medel, A., & Fernandez-Sanchez, M. L. (2020). Effect of holder pasteurisation on total concentrations and iron-binding profiles of holo-lactoferrin used as fortifier in donor human milk. International Dairy Journal, 100, 104564. http://dx.doi.org/10.1016/j.idairyj.2019.104564
» http://dx.doi.org/10.1016/j.idairyj.2019.104564 - Ferraro, V., Madureira, A. R., Sarmento, B., Gomes, A., & Pintado, M. E. (2015). Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Research International, 77, 450-459. http://dx.doi.org/10.1016/j.foodres.2015.08.024
» http://dx.doi.org/10.1016/j.foodres.2015.08.024 - Figueiredo Furtado, G., da Silva Carvalho, A. G., & Hubinger, M. D. (2021). Model infant formulas: Influence of types of whey proteins and oil composition on emulsion and powder properties. Journal of Food Engineering, 292, 110256. http://dx.doi.org/10.1016/j.jfoodeng.2020.110256
» http://dx.doi.org/10.1016/j.jfoodeng.2020.110256 - Franco, I., Pérez, M. D., Conesa, C., Calvo, M., & Sánchez, L. (2018). Effect of technological treatments on bovine lactoferrin: an overview. Food Research International, 106, 173-182. http://dx.doi.org/10.1016/j.foodres.2017.12.016 PMid:29579916.
» http://dx.doi.org/10.1016/j.foodres.2017.12.016 - Gao, Y.-N., Li, S.-L., Yang, X., Wang, J.-Q., & Zheng, N. (2021). The Protective Effects of Lactoferrin on Aflatoxin M1-Induced Compromised Intestinal Integrity. International Journal of Molecular Sciences, 23(1), 289. http://dx.doi.org/10.3390/ijms23010289 PMid:35008712.
» http://dx.doi.org/10.3390/ijms23010289 - García-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta, 1820(3), 226-236. http://dx.doi.org/10.1016/j.bbagen.2011.06.018 PMID: 21726601.
» http://dx.doi.org/10.1016/j.bbagen.2011.06.018 - Giacinti, G., Basiricò, L., Ronchi, B., & Bernabucci, U. (2013). Lactoferrin concentration in buffalo milk. Italian Journal of Animal Science, 12(1), e23. http://dx.doi.org/10.4081/ijas.2013.e23
» http://dx.doi.org/10.4081/ijas.2013.e23 - Giansanti, F., Panella, G., Leboffe, L., & Antonini, G. (2016). Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals, 9(4), 61. http://dx.doi.org/10.3390/ph9040061 PMid:27690059.
» http://dx.doi.org/10.3390/ph9040061 - Godínez-Victoria, M., Cruz-Hernández, T. R., Reyna-Garfias, H., Barbosa-Cabrera, R. E., Drago-Serrano, M. E., Sánchez-Gómez, M. C., & Campos-Rodríguez, R. (2017). Modulation by bovine lactoferrin of parameters associated with the IgA response in the proximal and distal small intestine of BALB/c mice. Immunopharmacology and Immunotoxicology, 39(2), 66-73. http://dx.doi.org/10.1080/08923973.2017.1282513 PMid:28151031.
» http://dx.doi.org/10.1080/08923973.2017.1282513 - Goncalves, B. L., Uliana, R. D., Coppa, C., Lee, S. H. I., Kamimura, E. S., Oliveira, C. A. F., & Corassin, C. H. (2022). Aflatoxin M-1: biological decontamination methods in milk and cheese. Food Science and Technology (Campinas), 42, e22920. http://dx.doi.org/10.1590/fst.22920
» http://dx.doi.org/10.1590/fst.22920 - Goulding, D. A., O’Regan, J., Bovetto, L., O’Brien, N. M., & O’Mahony, J. A. (2021a). Influence of thermal processing on the physicochemical properties of bovine lactoferrin. International Dairy Journal, 119, 105001. http://dx.doi.org/10.1016/j.idairyj.2021.105001
» http://dx.doi.org/10.1016/j.idairyj.2021.105001 - Goulding, D. A., Vidal, K., Bovetto, L., O’Regan, J., O’Brien, N. M., & O’Mahony, J. A. (2021b). The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin-An in vitro study. Food Chemistry, 362, 130142. http://dx.doi.org/10.1016/j.foodchem.2021.130142 PMid:34087706.
» http://dx.doi.org/10.1016/j.foodchem.2021.130142 - Guedes, J. P., Pereira, C. S., Rodrigues, L. R., & Côrte-Real, M. (2018). Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Frontiers in Oncology, 8, 200. http://dx.doi.org/10.3389/fonc.2018.00200 PMid:29915723.
» http://dx.doi.org/10.3389/fonc.2018.00200 - Guerra, J. R., Cárdenas, A. B., Ochoa-Zarzosa, A., Meza, J. L., Umaña Pérez, A., Fierro-Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). The tetrameric peptide LfcinB (20-25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Advances, 9(36), 20497-20504. http://dx.doi.org/10.1039/C9RA04145A PMid:35515557.
» http://dx.doi.org/10.1039/C9RA04145A - Halabi, A., Croguennec, T., Bouhallab, S., Dupont, D., & Deglaire, A. (2020). Modification of protein structures by altering the whey protein profile and heat treatment affects in vitro static digestion of model infant milk formulas. Food & Function, 11(8), 6933-6945. http://dx.doi.org/10.1039/D0FO01362E PMid:32692321.
» http://dx.doi.org/10.1039/D0FO01362E - Hao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: major physiological functions and applications. Current Protein & Peptide Science, 20(2), 139-144. http://dx.doi.org/10.2174/1389203719666180514150921 PMid:29756573.
» http://dx.doi.org/10.2174/1389203719666180514150921 - Hsu, Y.-H., Chiu, I.-J., Lin, Y.-F., Chen, Y.-J., Lee, Y.-H., & Chiu, H.-W. (2020). Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics, 12(5), 434. http://dx.doi.org/10.3390/pharmaceutics12050434 PMid:32397266.
» http://dx.doi.org/10.3390/pharmaceutics12050434 - Hu, Y., Meng, X., Zhang, F., Xiang, Y., & Wang, J. (2021). The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerging Microbes & Infections, 10(1), 317-330. http://dx.doi.org/10.1080/22221751.2021.1888660 PMid:33560940.
» http://dx.doi.org/10.1080/22221751.2021.1888660 - Iglesias-Figueroa, B. F., Espinoza-Sánchez, E. A., Siqueiros-Cendón, T. S., & Rascón-Cruz, Q. (2019). Lactoferrin as a nutraceutical protein from milk, an overview. International Dairy Journal, 89, 37-41. http://dx.doi.org/10.1016/j.idairyj.2018.09.004
» http://dx.doi.org/10.1016/j.idairyj.2018.09.004 - Inubushi, T., Kosai, A., Yanagisawa, S., Chanbora, C., Miyauchi, M., Yamasaki, S., Sugiyama, E., Ishikado, A., Makino, T., & Takata, T. (2020). Bovine lactoferrin enhances osteogenesis through Smad2/3 and p38 MAPK activation. Journal of Oral Biosciences, 62(2), 147-154. http://dx.doi.org/10.1016/j.job.2020.05.001 PMid:32464258.
» http://dx.doi.org/10.1016/j.job.2020.05.001 - Jiang, R., Lopez, V., Kelleher, S. L., & Lönnerdal, B. (2011). Apo‐and holo‐lactoferrin are both internalized by lactoferrin receptor via clathrin‐mediated endocytosis but differentially affect ERK‐signaling and cell proliferation in Caco‐2 cells. Journal of Cellular Physiology, 226(11), 3022-3031. http://dx.doi.org/10.1002/jcp.22650 PMid:21935933.
» http://dx.doi.org/10.1002/jcp.22650 - Kanthawong, S., Puknun, A., Bolscher, J. G., Nazmi, K., van Marle, J., de Soet, J. J., Veerman, E. C., Wongratanacheewin, S., & Taweechaisupapong, S. (2014). Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis. Biometals, 27(5), 949-956. http://dx.doi.org/10.1007/s10534-014-9760-5 PMid:24961697.
» http://dx.doi.org/10.1007/s10534-014-9760-5 - Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221. http://dx.doi.org/10.3389/fimmu.2020.01221 PMid:32574271.
» http://dx.doi.org/10.3389/fimmu.2020.01221 - Li, C., Dai, T., Chen, J., Li, X., Li, T., Liu, C., & McClements, D. J. (2021). Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry, 339, 128145. http://dx.doi.org/10.1016/j.foodchem.2020.128145 PMid:33152895.
» http://dx.doi.org/10.1016/j.foodchem.2020.128145 - Li, H.-Y., Li, M., Luo, C., Wang, J.-Q., & Zheng, N. (2017). Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. Journal of Agricultural and Food Chemistry, 65(48), 10464-10472. http://dx.doi.org/10.1021/acs.jafc.7b03390 PMid:29112400.
» http://dx.doi.org/10.1021/acs.jafc.7b03390 - Li, Q., & Zhao, Z. (2017). Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface. Food Chemistry, 232, 697-703. http://dx.doi.org/10.1016/j.foodchem.2017.04.072 PMid:28490130.
» http://dx.doi.org/10.1016/j.foodchem.2017.04.072 - Li, Q., & Zhao, Z. (2018). Interaction between lactoferrin and whey proteins and its influence on the heat-induced gelation of whey proteins. Food Chemistry, 252, 92-98. http://dx.doi.org/10.1016/j.foodchem.2018.01.114 PMid:29478568.
» http://dx.doi.org/10.1016/j.foodchem.2018.01.114 - Lin, T., Dadmohammadi, Y., Davachi, S. M., Torabi, H., Li, P., Pomon, B., Meletharayil, G., Kapoor, R., & Abbaspourrad, A. (2022). Improvement of lactoferrin thermal stability by complex coacervation using soy soluble polysaccharides. Food Hydrocolloids, 131, 107736. http://dx.doi.org/10.1016/j.foodhyd.2022.107736
» http://dx.doi.org/10.1016/j.foodhyd.2022.107736 - Liu, F., Sun, C., Yang, W., Yuan, F., & Gao, Y. (2015). Structural characterization and functional evaluation of lactoferrin-polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances, 5(20), 15641-15651. http://dx.doi.org/10.1039/C4RA10802G
» http://dx.doi.org/10.1039/C4RA10802G - Liu, F., Wang, D., Ma, C., & Gao, Y. (2016). Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH. Food Hydrocolloids, 58, 49-59. http://dx.doi.org/10.1016/j.foodhyd.2016.02.011
» http://dx.doi.org/10.1016/j.foodhyd.2016.02.011 - Liu, F., Zhang, S., Li, J., McClements, D. J., & Liu, X. (2018). Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: complexes, emulsions, and nanoparticles. Trends in Food Science & Technology, 79, 67-77. http://dx.doi.org/10.1016/j.tifs.2018.06.013
» http://dx.doi.org/10.1016/j.tifs.2018.06.013 - Liu, L., Jiang, R., Liu, J., & Lönnerdal, B. (2020a). The bovine Lactoferrin-Osteopontin complex increases proliferation of human intestinal epithelial cells by activating the PI3K/Akt signaling pathway. Food Chemistry, 310, 125919. http://dx.doi.org/10.1016/j.foodchem.2019.125919 PMid:31841940.
» http://dx.doi.org/10.1016/j.foodchem.2019.125919 - Liu, Y., Xiong, L., Kontopodi, E., Boeren, S., Zhang, L., Zhou, P., & Hettinga, K. (2020b). Changes in the milk serum proteome after thermal and non-thermal treatment. Innovative Food Science & Emerging Technologies, 66, 102544. http://dx.doi.org/10.1016/j.ifset.2020.102544
» http://dx.doi.org/10.1016/j.ifset.2020.102544 - Lizzi, A., Carnicelli, V., Clarkson, M., Nazzicone, C., Segatore, B., Celenza, G., Aschi, M., Dolo, V., Strom, R., & Amicosante, G. (2016). Bovine lactoferrin and its tryptic peptides: antibacterial activity against different species. Applied Biochemistry and Microbiology, 52(4), 435-440. http://dx.doi.org/10.1134/S0003683816040116
» http://dx.doi.org/10.1134/S0003683816040116 - Lönnerdal, B. (2016). Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. The Journal of Pediatrics, 173(Suppl), S4-S9. http://dx.doi.org/10.1016/j.jpeds.2016.02.070 PMid:27234410.
» http://dx.doi.org/10.1016/j.jpeds.2016.02.070 - Lönnerdal, B., Jiang, R., & Du, X. (2011). Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. Journal of Pediatric Gastroenterology and Nutrition, 53(6), 606-614. http://dx.doi.org/10.1097/MPG.0b013e318230a419 PMid:21832946.
» http://dx.doi.org/10.1097/MPG.0b013e318230a419 - Manzoni, P. (2016). Clinical benefits of lactoferrin for infants and children. The Journal of Pediatrics, 173(Suppl), S43-S52. http://dx.doi.org/10.1016/j.jpeds.2016.02.075 PMid:27234411.
» http://dx.doi.org/10.1016/j.jpeds.2016.02.075 - Mayeur, S., Spahis, S., Pouliot, Y., & Levy, E. (2016). Lactoferrin, a pleiotropic protein in health and disease. Antioxidants & Redox Signaling, 24(14), 813-836. http://dx.doi.org/10.1089/ars.2015.6458 PMid:26981846.
» http://dx.doi.org/10.1089/ars.2015.6458 - Ménard, O., Bourlieu, C., De Oliveira, S. C., Dellarosa, N., Laghi, L., Carrière, F., Capozzi, F., Dupont, D., & Deglaire, A. (2018). A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chemistry, 240, 338-345. http://dx.doi.org/10.1016/j.foodchem.2017.07.145 PMid:28946281.
» http://dx.doi.org/10.1016/j.foodchem.2017.07.145 - Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D. J., Ménard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S., Weitschies, W., & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function, 5(6), 1113-1124. http://dx.doi.org/10.1039/C3FO60702J PMid:24803111.
» http://dx.doi.org/10.1039/C3FO60702J - Morel, J., Zain, S. N. M., & Archer, R. (2022). Comparison of drying techniques for bovine lactoferrin: Iron binding and antimicrobial properties of dried lactoferrin. International Dairy Journal, 124, 105142. http://dx.doi.org/10.1016/j.idairyj.2021.105142
» http://dx.doi.org/10.1016/j.idairyj.2021.105142 - Moreno-Expósito, L., Illescas-Montes, R., Melguizo-Rodríguez, L., Ruiz, C., Ramos-Torrecillas, J., & de Luna-Bertos, E. (2018). Multifunctional capacity and therapeutic potential of lactoferrin. Life Sciences, 195, 61-64. http://dx.doi.org/10.1016/j.lfs.2018.01.002 PMid:29307524.
» http://dx.doi.org/10.1016/j.lfs.2018.01.002 - Mueller, E. A., Trapp, S., Frentzel, A., Kirch, W., & Brantl, V. (2011). Efficacy and tolerability of oral lactoferrin supplementation in mild to moderate acne vulgaris: an exploratory study. Current Medical Research and Opinion, 27(4), 793-797. http://dx.doi.org/10.1185/03007995.2011.557720 PMid:21303195.
» http://dx.doi.org/10.1185/03007995.2011.557720 - Murray, B. S. (2020). Recent developments in food foams. Current Opinion in Colloid & Interface Science, 50, 101394. http://dx.doi.org/10.1016/j.cocis.2020.101394
» http://dx.doi.org/10.1016/j.cocis.2020.101394 - Navarro, F., Galan-Malo, P., Pérez, M. D., Abecia, J.-A., Mata, L., Calvo, M., & Sánchez, L. (2018). Lactoferrin and IgG levels in ovine milk throughout lactation: correlation with milk quality parameters. Small Ruminant Research, 168, 12-18. http://dx.doi.org/10.1016/j.smallrumres.2018.09.002
» http://dx.doi.org/10.1016/j.smallrumres.2018.09.002 - Nebbia, S., Giribaldi, M., Cavallarin, L., Bertino, E., Coscia, A., Briard-Bion, V., Ossemond, J., Henry, G., Ménard, O., Dupont, D., & Deglaire, A. (2020). Differential impact of Holder and High Temperature Short Time pasteurization on the dynamic in vitro digestion of human milk in a preterm newborn model. Food Chemistry, 328, 127126. http://dx.doi.org/10.1016/j.foodchem.2020.127126 PMid:32492605.
» http://dx.doi.org/10.1016/j.foodchem.2020.127126 - Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Tufail, T., Anjum, F. M., Hussain, S., & Suleria, H. A. R. (2019). Lactoferrin (LF): A natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626-1641. http://dx.doi.org/10.1080/10942912.2019.1666137
» http://dx.doi.org/10.1080/10942912.2019.1666137 - Olszewska, P., Pazdrak, B., & Kruzel, M. L. (2021). A novel human recombinant lactoferrin inhibits lung adenocarcinoma cell growth and migration with no cytotoxic effect on normal human epithelial cells. Archivum Immunologiae et Therapiae Experimentalis, 69(1), 33. http://dx.doi.org/10.1007/s00005-021-00637-2 PMid:34748082.
» http://dx.doi.org/10.1007/s00005-021-00637-2 - Ostan, N. K., Yu, R.-H., Ng, D., Lai, C. C.-L., Pogoutse, A. K., Sarpe, V., Hepburn, M., Sheff, J., Raval, S., Schriemer, D. C., Moraes, T. F., & Schryvers, A. B. (2017). Lactoferrin binding protein B-a bi-functional bacterial receptor protein. PLoS Pathogens, 13(3), e1006244. http://dx.doi.org/10.1371/journal.ppat.1006244 PMid:28257520.
» http://dx.doi.org/10.1371/journal.ppat.1006244 - Park, Y. W. (2010). Goat milk: composition, characteristics. In W. G. Pond and N. Bell (Eds.), Encyclopedia of animal science (2nd ed.). Boca Raton: CRC Press.
- Peled, S., & Livney, Y. D. (2021). Oligosaccharide-lactoferrin shell-crosslinked particles for selective targeting of proteins to probiotic bacteria in the colon. Food Hydrocolloids, 120, 106973. http://dx.doi.org/10.1016/j.foodhyd.2021.106973
» http://dx.doi.org/10.1016/j.foodhyd.2021.106973 - Picaud, J.-C., & Buffin, R. (2017). Human milk—treatment and quality of banked human milk. Clinics in Perinatology, 44(1), 95-119. http://dx.doi.org/10.1016/j.clp.2016.11.003 PMid:28159212.
» http://dx.doi.org/10.1016/j.clp.2016.11.003 - Pieszka, M., Łuszczyński, J., Zamachowska, M., Augustyn, R., Długosz, B., & Hędrzak, M. (2016). Is mare milk an appropriate food for people?: A review. Annals of Animal Science, 16(1), 33-51. http://dx.doi.org/10.1515/aoas-2015-0041
» http://dx.doi.org/10.1515/aoas-2015-0041 - Pomastowski, P., Sprynskyy, M., Zuvela, P., Rafinska, K., Milanowski, M., Liu, J. J., Yi, M., & Buszewski, B. (2016). Silver-lactoferrin nanocomplexes as a potent antimicrobial agent. Journal of the American Chemical Society, 138(25), 7899-7909. http://dx.doi.org/10.1021/jacs.6b02699 PMid:27263865.
» http://dx.doi.org/10.1021/jacs.6b02699 - Prestes, A. A., Helm, C. V., Esmerino, E. A., Silva, R., & Prudencio, E. S. (2022). Conventional and alternative concentration processes in milk manufacturing: a comparative study on dairy properties. Food Science and Technology (Campinas), 42, e08822. http://dx.doi.org/10.1590/fst.08822
» http://dx.doi.org/10.1590/fst.08822 - Pryshchepa, O., Sagandykova, G., Rudnicka, J., Pomastowski, P., Sprynskyy, M., & Buszewski, B. (2022). Synthesis and physicochemical characterization of zinc-lactoferrin complexes. Journal of Dairy Science, 105(3), 1940-1958. http://dx.doi.org/10.3168/jds.2021-20538 PMid:35033339.
» http://dx.doi.org/10.3168/jds.2021-20538 - Rai, D., Adelman, A. S., Zhuang, W., Rai, G. P., Boettcher, J., & Lönnerdal, B. (2014). Longitudinal changes in lactoferrin concentrations in human milk: a global systematic review. Critical Reviews in Food Science and Nutrition, 54(12), 1539-1547. http://dx.doi.org/10.1080/10408398.2011.642422 PMid:24580556.
» http://dx.doi.org/10.1080/10408398.2011.642422 - Rastogi, N., Singh, A., Singh, P. K., Tyagi, T. K., Pandey, S., Shin, K., Kaur, P., Sharma, S., & Singh, T. P. (2016). Structure of iron saturated C‐lobe of bovine lactoferrin at p H 6.8 indicates a weakening of iron coordination. Proteins, 84(5), 591-599. http://dx.doi.org/10.1002/prot.25004 PMid:26850578.
» http://dx.doi.org/10.1002/prot.25004 - Redwan, E. M., Uversky, V. N., El-Fakharany, E. M., & Al-Mehdar, H. (2014). Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biologies, 337(10), 581-595. http://dx.doi.org/10.1016/j.crvi.2014.08.003 PMid:25282173.
» http://dx.doi.org/10.1016/j.crvi.2014.08.003 - Sabra, S., & Agwa, M. M. (2020). Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. International Journal of Biological Macromolecules, 164, 1046-1060. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.167 PMid:32707283.
» http://dx.doi.org/10.1016/j.ijbiomac.2020.07.167 - Santos, G. O., Costa e Silva, G., Souza, R. B., Medeiros, J. S., Brito, I. S., Cardoso Neto, S. P., Leão, P. V. T., Nicolau, E. S., Cappato, L. P., Favareto, R., & Silva, M. A. P. (2022). Effect of milk protein concentrate supplementation on body composition and biochemical markers during a resistance training program. Food Science and Technology (Campinas), 42, e67222. http://dx.doi.org/10.1590/fst.67222
» http://dx.doi.org/10.1590/fst.67222 - Sawale, M., Ozadali, F., Valentine, C. J., Benyathiar, P., Drolia, R., & Mishra, D. K. (2022). Impact of bovine lactoferrin fortification on pathogenic organisms to attenuate the risk of infection for infants. Food Control, 139, 109078. http://dx.doi.org/10.1016/j.foodcont.2022.109078
» http://dx.doi.org/10.1016/j.foodcont.2022.109078 - Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A., & Fichna, J. (2022). Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Critical reviews in food science and nutrition, 62(22), 6016-6033. PMid:33685299.
- Superti, F. (2020). Lactoferrin from bovine milk: a protective companion for life. Nutrients, 12(9), 2562. http://dx.doi.org/10.3390/nu12092562 PMid:32847014.
» http://dx.doi.org/10.3390/nu12092562 - Suzuki, Y. A., Lopez, V., & Lönnerdal, B. (2005). Mammalian lactoferrin receptors: structure and function. Cellular and Molecular Life Sciences, 62(22), 2560-2575. http://dx.doi.org/10.1007/s00018-005-5371-1 PMid:16261254.
» http://dx.doi.org/10.1007/s00018-005-5371-1 - Tadjine, D., Boudalia, S., Bousbia, A., Gueroui, Y., Symeon, G., Mebirouk Boudechiche, L., Tadjine, A., & Chemmam, M. (2021). Milk heat treatment affects microbial characteristics of cows’ and goats’ “Jben” traditional fresh cheeses. Food Science and Technology (Campinas), 41(1), 136-143. http://dx.doi.org/10.1590/fst.00620
» http://dx.doi.org/10.1590/fst.00620 - Tanaka, H., Gunasekaran, S., Saleh, D. M., Alexander, W. T., Alexander, D. B., Ohara, H., & Tsuda, H. (2021). Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochemistry and Cell Biology, 99(1), 159-165. http://dx.doi.org/10.1139/bcb-2020-0087 PMid:32905707.
» http://dx.doi.org/10.1139/bcb-2020-0087 - Troost, F. J., Steijns, J., Saris, W. H., & Brummer, R.-J. M. (2001). Gastric digestion of bovine lactoferrin in vivo in adults. The Journal of Nutrition, 131(8), 2101-2104. http://dx.doi.org/10.1093/jn/131.8.2101 PMid:11481401.
» http://dx.doi.org/10.1093/jn/131.8.2101 - Vega-Bautista, A., de la Garza, M., Carrero, J. C., Campos-Rodríguez, R., Godínez-Victoria, M., & Drago-Serrano, M. E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. International Journal of Molecular Sciences, 20(19), 4707. http://dx.doi.org/10.3390/ijms20194707 PMid:31547574.
» http://dx.doi.org/10.3390/ijms20194707 - Vogel, H. J. (2012). Lactoferrin, a bird’s eye view. Biochemistry and Cell Biology, 90(3), 233-244. http://dx.doi.org/10.1139/o2012-016 PMid:22540735.
» http://dx.doi.org/10.1139/o2012-016 - Voswinkel, L., Vogel, T., & Kulozik, U. (2016). Impact of the iron saturation of bovine lactoferrin on adsorption to a strong cation exchanger membrane. International Dairy Journal, 56, 134-140. http://dx.doi.org/10.1016/j.idairyj.2016.01.008
» http://dx.doi.org/10.1016/j.idairyj.2016.01.008 - Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2019). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580-596. http://dx.doi.org/10.1080/10408398.2017.1381583 PMid:28933602.
» http://dx.doi.org/10.1080/10408398.2017.1381583 - Wazed, M. A., Ismail, M., & Farid, M. (2020). Pasteurized ready-to-feed (RTF) infant formula fortified with lactoferrin: a potential niche product. Journal of Food Engineering, 273, 109810. http://dx.doi.org/10.1016/j.jfoodeng.2019.109810
» http://dx.doi.org/10.1016/j.jfoodeng.2019.109810 - Wotring, J. W., Fursmidt, R., Ward, L., & Sexton, J. Z. (2022). Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. Journal of Dairy Science, 105(4), 2791-2802. http://dx.doi.org/10.3168/jds.2021-21247 PMid:35221061.
» http://dx.doi.org/10.3168/jds.2021-21247 - Wu, Q.-X., Zhang, Q.-L., Lin, D.-Q., & Yao, S.-J. (2013). Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 455(1-2), 124-131. http://dx.doi.org/10.1016/j.ijpharm.2013.07.048 PMid:23891653.
» http://dx.doi.org/10.1016/j.ijpharm.2013.07.048 - Xiong, L., Boeren, S., Vervoort, J., & Hettinga, K. (2021). Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment. Food Chemistry, 337, 127973. http://dx.doi.org/10.1016/j.foodchem.2020.127973 PMid:32927224.
» http://dx.doi.org/10.1016/j.foodchem.2020.127973 - Yan, M., Wang, Y., Shen, X., Dong, S., Diao, M., Zhao, Y., & Zhang, T. (2022). Enhanced foaming properties of lactoferrin by forming functional complexes with ginsenoside Re and Rb1. Food Hydrocolloids, 123, 107159. http://dx.doi.org/10.1016/j.foodhyd.2021.107159
» http://dx.doi.org/10.1016/j.foodhyd.2021.107159 - Yang, M., Song, D., Cao, X., Wu, R., Liu, B., Ye, W., Wu, J., & Yue, X. (2017). Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Research International, 92, 17-25. http://dx.doi.org/10.1016/j.foodres.2016.11.041 PMid:28290293.
» http://dx.doi.org/10.1016/j.foodres.2016.11.041 - Zhang, J., Lee, N. A., Duley, J. A., Cowley, D. M., Shaw, P. N., & Bansal, N. (2022). Comparing the effects of hydrostatic high-pressure processing vs holder pasteurisation on the microbial, biochemical and digestion properties of donor human milk. Food Chemistry, 373(Pt B), 131545. http://dx.doi.org/10.1016/j.foodchem.2021.131545 PMid:34839967.
» http://dx.doi.org/10.1016/j.foodchem.2021.131545 - Zhang, Y., Lima, C. F., & Rodrigues, L. R. (2015). In vitro evaluation of bovine lactoferrin potential as an anticancer agent. International Dairy Journal, 40, 6-15. http://dx.doi.org/10.1016/j.idairyj.2014.08.016
» http://dx.doi.org/10.1016/j.idairyj.2014.08.016 - Zlatina, K., & Galuska, S. P. (2021). The N-glycans of lactoferrin: more than just a sweet decoration. Biochemistry and Cell Biology, 99(1), 117-127. http://dx.doi.org/10.1139/bcb-2020-0106 PMid:32464076.
» http://dx.doi.org/10.1139/bcb-2020-0106
Publication Dates
-
Publication in this collection
20 Jan 2023 -
Date of issue
2023
History
-
Received
12 Nov 2022 -
Accepted
17 Dec 2022