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1 Introduction
Consumers are more demanding in relation to meat 

quality, developing new demands, such as increased shelf life 
and good sensory quality (Lima et al., 2022). The tenderness of 
the meat is one of the most important elements in the choice of 
the product, the modification in the intrinsic structure of the 
meat, for example, increased proteolysis and fragmentation of 
the myofibrils contribute to the improvement of tenderness 
(Alarcon-Rojo  et  al., 2019; Xiong  et  al., 2020; Arruda  et  al., 
2021; Araújo et al., 2022).

There are techniques that cause changes in the physical 
structure of the meat, providing tenderization (chemical, 
mechanical and enzymatic) (Araújo et al., 2022). Among the 
techniques highlighted in the literature are marination by 
immersion, injection and use of equipment such as tambler. 
However, innovative techniques that are considered emerging are 
being investigated by researchers, such as the use of ultrasonic 
waves and their combination with marination technology 
(Alarcon-Rojo et al., 2019).

The application of ultrasonic waves in meat generates the 
formation of cavitations caused by a vibrational sound energy 
within the system, where small collapses in the intrinsic structure 
occur, contributing to the degradation of proteins and removal 
of fibers (Amiri et al., 2018).

Research shows that depending on the time and intensity of 
ultrasound in the meat, myofibrils in the Z line, datroponin and 
myosin denaturation can occur, contributing to the tenderization 
and improving the penetration of liquids in the marination 
process (Yeung & Huang, 2017; Amiri et al., 2018; Wang et al., 
2018; Alarcon-Rojo et al., 2019; Xiong et al., 2020).

In combination with marination, ultrasound causes the muscle 
fibers to break and thus provides better penetration of added 
liquids. In this context, the penetration between the fibers occurs 
more efficiently, leading to an improvement in the dispersion of 
the liquid in the meat (Alarcon-Rojo et al., 2019). The liquids used 
for marination commonly contain substances that lead to the 
proteolytic action of the meat, however, in sum, this liquid can be 
a source of compounds that provide other benefits to the quality 
of the product, such as antioxidant action. (Rezende et al., 2018).

Antioxidants can be both synthetic and natural. However, 
studies have been developed in search of the application of 
natural antioxidants, since the use of synthetic antioxidants 
may be associated with the triggering of chronic diseases in 
the consumer (Silva et al., 2009). In this sense, several studies 
have been engaged in the search for natural antioxidants from 
plants and fruit residues (Barbosa-Pereira et al., 2014; Guerra-
Rivas et al., 2016; Chauhan et al., 2019; Domínguez et al., 2020).
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Abstract
Consumers are more demanding in relation to meat quality, developing new demands, such as increased shelf life and good 
sensory quality. The tenderness of the meat is one of the most important elements in the choice of the product, the modification 
in the intrinsic structure of the meat, for example, increase of the proteolysis and fragmentation of the myofibrils contribute 
to the improvement of the tenderness. However, it is necessary to develop technological strategies so that this ultrasound 
technology can be added to improve meat tenderness. Thus, the objective of this review was to know the main aspects of the 
use of ultrasound and acerola residue in meat tenderness. Overall, existing research demonstrates excellent prospects for this 
new redesign approach.
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Acerola (Malpighia emarginata) is a fruit widely consumed 
in the world and with great economic value in Brazil, recognized 
for being a good source of vitamin C, phenolic compounds, 
flavonoids and anthocyanins, where they have antioxidant 
potential (Silva  et  al., 2019). Rezende  et  al. (2018) indicate 
that residues from fruits have antioxidant potential, being an 
alternative in the reuse of residues and in the replacement of 
synthetic antioxidants (Araújo et al., 2022). Thus, the objective of 
this review was to know the main aspects of the use of ultrasound 
and acerola residue in meat tenderness.

2 Pork meat
The swine production chain is one of the most widespread 

activities and of great socioeconomic importance in the world. 
In 2021, the total volume of pork produced in the world was 
112.200 million tons, of which about 4,701 million tons represented 
Brazilian production. Between 2020 and 2021, there was an 11.03% 
increase in Brazilian pork production, remaining fourth in the 
world ranking of production and exports. Per capita consumption 
exceeded 15.30 kilos per inhabitant/year (Associação Brasileira 
de Proteina Animal, 2021).

In 2019, Brazil had the highest rates of pork exports so far 
(750 thousand tons), of this amount, 85.71% was exported in 
the form of cuts, 9.72% of offal, 1.53% of preparations, 1.41% 
of sausages, 0.84% of carcasses, 0.51% of fat, 0.26% of tripe, 
0.02% of salted and 0.001% of hides and skins (Associação 
Brasileira de Proteina Animal, 2021). When compared with 
the results presented in the previous year, only salted products, 
hides and skins had a drop in values exported while the others 
had an increase in exports. Even with high export values, this 
only represented 19% of annual production, so the domestic 
market absorbed the largest amount of production with 81% 
(Associação Brasileira de Proteina Animal, 2021).

Pork is recognized for being a food with an optimal 
distribution of essential compounds that perform important 
functions for the body, such as the construction and maintenance 
of tissues. Proving to be an excellent source of essential amino 
acids, vitamins, minerals and lipids (Silva et al., 2015). Among 
these nutrients, fat is a determining factor in meat quality and 
consumer choice. On the other hand, fat is a limiting factor in 
triggering lipid oxidation (Shah et al., 2014).

3 Lipid oxidation in meat
Lipid oxidation in meat is one of the factors that most 

influence the quality of the product, changing characteristics 
such as aroma, flavor, texture, color and chemical composition 
(Amaral et al., 2018; Domínguez et al., 2019). In addition to 
the sensory and chemical changes in meat, oxidative rancidity 
contributes to the production of toxic compounds to the body, 
such as malonaldehyde and cholesterol oxides (Estévez, 2021).

The main targets of lipid oxidation in meat are the 
polyunsaturated fatty acids present in the phospholipids of 
cell membranes. However, there are factors that accelerate the 
oxidation process, such as the type of fatty acid, temperature, 
exposure to light, oxygen and metals, considered pro-oxidant 
agents (Leal-Castañeda et al., 2017).

The oxidation process is divided into initiation, propagation 
and termination phases. Initially (initiation), the integration of 
triplet oxygen and light forms singlet oxygen. Singlet oxygen is 
highly oxidative when compared to molecular oxygen (triplet), 
after its activation, it removes a hydrogen molecule from the methyl 
group of an unsaturated fatty acid, promoting the formation of 
the first extremely unstable free radical (Masuda et al., 2010).

Propagation occurs through the reaction of free radicals with 
fatty acids and oxygen, forming peroxides and hydroperoxides. 
After the free radicals cease, the products of the second phase 
begin to decompose (termination) into secondary products: 
alcohols, ketones, aldehydes, hydrocarbons and esters. These 
compounds are responsible for altering the characteristic rancid 
odor, taste, and texture (Li et al., 2015).

Pork is more susceptible to lipid oxidation because it has 
a greater amount of unsaturated fatty acids in its chemical 
constitution when compared to beef, goat and sheep. It is important 
to emphasize that unsaturated fatty acids are more unstable and 
vulnerable to lipid oxidation because they have an odd amount 
of electrons in their structure, making them susceptible to being 
captured by another molecule (Amaral et al., 2018).

In this sense, antioxidants act in the neutralization of free 
radicals, donating hydrogen molecules and stabilizing them. 
On the other hand, some antioxidants act by inhibiting pro-
oxidant agents, delaying lipid oxidation (Kodali et al., 2020).

However, synthetic antioxidants, the most used in the food 
industry, have been reported as a possible precursor of cancerous 
diseases, in exacerbated use (Silva et al., 2009). Studies indicate 
that plants, fruits and agro-industrial residues may contain 
bioactive substances capable of presenting antioxidant activity 
and replacing synthetic additives (Amaral et al., 2018).

4 Acerola agro-industrial waste
Acerola (Malpighia emarginata) is a fruit native to North 

and Central America, belonging to the Malpighiaceae family. 
Brazil is the main producer in the world, the fruit has a pleasant 
flavor and a high content of vitamin C (Xu et al., 2020). Due to 
its perishability, the process of harvesting and processing the 
fruit is very fast, the acerola can be consumed in natura, in 
jellies, juices, juices, etc (Malegori et al., 2017). According to 
Silva et al. (2019) acerola contains bioactive compounds such 
as phenolics, vitamin C and anthocyanins, substances that have 
antioxidant properties and can replace synthetic antioxidants.

The population increase and the demand for food in the world 
is a major challenge, the United Nations Food and Agriculture 
Organization (FAO) indicates that by 2050 the world will have 
to increase its production by 60% to meet the population, 
consequently, greater production of agro-industrial waste (Saath 
& Fachinello, 2018). Rezende et al. (2018) suggests that some 
agro-industrial residues from fruit pulping are rich sources of 
phenolic compounds and possibly antioxidants. Arabine-rich 
polysaccharides found in the acerola pulping residue showed 
antioxidant activity (Malegori et al., 2017).

Considering that a lipidic oxidação is um dos principais 
fatores na redução da vida de prateleira das carnes and o 
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reaproveitazione de resíduos agroindustriais é uma matéria-first 
alternative na produção de extratos com atividade antioxidante. 
A application of extratos antioxidantes naturais auxiliados 
por ondas ultrassônicas em superfícies de flesh can increase a 
preservative oxidative and interact with micro-extruture from 
meat. Araújo et al. (2022) concluiram que a aplicação de ultra-som 
à carne (170 W, 35 kHz) in time of 5 and 10 minutes combined 
with marinating with a natural antioxidant extracted from 
acerola residue improves the quality characteristics, decreasing 
to hardness and to chewability.

5 Ultrasound principles
The technology of application of ultrasonic waves is widely 

studied and discussed in several areas (Demirci, et al., 2022; 
Liao et al., 2022; Monteiro et al., 2022) , in recent years ultrasound 
has become an alternative for improvement in food technology 
in the processes of marination, freezing, drying, emulsification, 
inactivation of microorganisms, softening of meats and improved 
pasta switching (Araújo et al., 2022; Demirci et al., 2022; Liao et al., 
2022; Monteiro et al., 2022).

Precisely ultrasound is energy generated by sound waves, 
where its frequency strength is given in kHz, within an ultrasound 
system mechanical energy is transformed into vibrational energy, 
part of this energy is lost in heat exchange and the other fraction 
contributes in the formation of cavitations. Cavitations within 
the matrix generate small collapses causing chemical, physical 
and biological changes (Alarcon-Rojo et al., 2015).

Ultrasound is divided into frequency and intensity categories: 
high frequency (2-20 MHz) and low intensity (<1 W cm-2) waves 
do not have enough energy to cause changes, normally used in 
non-invasive image analysis and composition (Alves et al., 2013) 
and waves of low frequency (20-100 kHz) and high power (10-
1000 W cm-2) can form cavitations that allow modifications in 
the contact matrix (Piyasena et al., 2003).

There are three ways to apply ultrasound in products: direct 
application, coupled to the device and immersion in an ultrasound 
bath (Chemat et al., 2011). The form of ultrasound application 
directly influences the cavitations, the ultrasonic bath is considered 
an indirect application, where the ultrasonic wave first crosses the 
liquid contained inside the equipment to later cross the sample 
wall. A disadvantage is the loss of energy by the liquid, however, 
the direct application generates a greater cavitational intensity 
being a positive point depending on the food, a negative point is 
the greater exposure to microbiological contamination and losses 
of volatile compounds (Chemat et al., 2011; Singla & Sit, 2021).

5.1 Effect of ultrasound on meat

The use of ultrasound in meat began in the 1950s, with the 
objective of evaluating the percentage of fat in the live animal. 
However, in the last decades the application of ultrasonic waves 
has been growing in order to improve the quality of the meat 
in attributes such as flavor, tenderness and improvement in the 
penetration of pasta. Table 1 shows studies from the last few years 
that demonstrate the potential for using ultrasound in meat.

Most of these studies focus on the application of ultrasound 
to improve tenderness, water and salt dynamics in meat and 
assist in marinating. However the form of application, frequency, 
intensity and time of application are highly variable, studies 
indicate promising ultrasound technology in the meat industry 
(Stadnik et al., 2008; Li et al., 2015; Araújo et al., 2022) with positive 
effects up to a certain time (Ojha et al., 2016) but emphasize the 
need for further studies, especially when the ultrasound effect 
interacts with other variables in the meat.

5.2 Modifications caused by the application of ultrasound

Several studies using ultrasound on meats agree that within 
time (33 seconds to 90 minutes), frequency (15 to 130 kHz) and 

Table 1. Studies with the application of ultrasound in meat.

Meat Intensity/frequency/time Ultrasound effect on meat Reference
Pork 1MHz, 150w and 25kHz, 500w for 40 minutes The application of ultrasound and actinidia 

decreased the shear force.
Jørgensen et al. (2008)

Bovine 2 W cm-2, 5 kHz, 120 seconds Reduced shear force and decreased rigor mortis 
time

Stadnik et al. (2008)

Pork 40 kHz; 37.5 W/dm3 Increased penetration of salt into meat Ozuna et al. (2013)
Pork 0.2 Wcm-2 and 0.4 W cm-2, 25 kHz Decreased freezing time without physicochemical 

changes
Gambuteanu & Petru (2013)

Pork 0, 40, 56, 72 W/cm-2, 34–40 kHz, (2, 4, 6 hours) Better dough exchange in salting without 
modifying sensory atributes

McDonnell et al. (2014)

Chicken 300 W, 40 kHz on time 
(10, 20, 30 and 40 minutes)

After 10 minutes of ultrasound, the hardness 
decreased, improving the texture.

Li et al. (2015)

Pork 54.9 W cm2, 20 kHz in time (90 and 120 minutes) In 90 minutes of ultrasound there was a better 
mass exchange with the brine, after 120 minutes 

the water holding capacity decreased.

Ojha et al. (2016) 

Pork 2200 W, 15 kHz on time 
(0, 0.5, 1, 2, 3, 4 and 6 minutes)

After 6 minutes of treatment there was a decrease 
in hardness

Yeung & Huang (2017) 

Bovine 11 W cm2 40 kHz in time 
(0, 40, 60 and 80 minutes)

The application of ultrasound (from 40 minutes) 
on the seventh day of storage improved the 

tenderness of both muscles

Gonzalez-Gonzalez et al. (2020) 
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intensity (1.89 to 64 W cm2) there is an improvement in meat 
tenderness (37, 39, 60, 61).

The application of ultrasound in meats triggers positive 
intrinsic effects, combined with other technologies or applied 
alone. Depending on the intensity, it promotes the rupture of 
the myofibril in the z line, degraded to troponin and denatured 
to myosin. On the other hand, the application of ultrasound 
favors an increase in the activity of enzymes, such as calpains, 
which modify the internal structures of the meat and contribute 
to tenderization (Yeung & Huang, 2017; Amiri  et  al., 2018; 
Wang et al., 2018; Alarcon Rojo et al., 2019).

The water holding capacity, leakage and cooking loss are quite 
variable, (Kang et al., 2017; Wang et al., 2018) in a study with 
high-intensity ultrasound applied during the meat brine process 
observed an increase in ability to retain water and a decrease in 
leakage and cooking loss, however (Gómez-Salazar et al., 2018) 
in a study with rabbit meat 2.25 W/cm2 for 20 minutes observed 
a decrease in water holding capacity and increased exudation 
loss. This variability can be attributed to the type of ultrasound 
application, frequency, intensity, different application times, 
type of muscles and animal.

Color is an attribute of great importance when choosing 
meat, meat consumers make a direct link between bright red 
color and quality. Sikes et al. (2014) in research observed that 
the temperature generated by the application of ultrasound was 
not sufficient to denature proteins and pigments. On the other 
hand, at the intensity (22 W/cm2) there was a decrease in the 
red color when compared to the control treatment (Stadnik & 
Dolatowski, 2011).

The applications of ultrasound are numerous and, especially 
in the last decade, they have been reviewed by researchers and 
professionals in the field, both alone and in combination with 
other methods, for uses ranging from improving quality attributes 
such as softness, modifying functional properties of proteins, 
restructuring of meat products, increase in shelf life and yield 
and reduction of sodium chloride (Figure 1).

6 Conclusion
The application of ultrasound favors the modification of 

important parameters in meat, however, its use as a facilitator 

in the penetration of antioxidant extracts is little studied. 
Therefore, it is a viable strategy to help the application of natural 
antioxidant extract of acerola in pork, improving its penetration 
and consequently the shelf life of the product.
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