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1 Introduction
In Brazil’s primary energy matrix, renewable energy accounts 

for an important 46.9% share, which is larger than the share of 
renewable energy consumed in the world – 13.2% (Companhia 
Nacional de Abastecimento, 2018). In the Brazilian energy 
consumption, 17.5% evince from sugarcane, followed by 12.6% 
of hydroelectric energy and 8% of coal (Empresa de Pesquisa 
Energética, 2017).

The productive chain in the sugar and ethanol sector also plays 
a major role in the country’s development, accounting for 2% of 
the country’s Gross Domestic Product (GDP) (Confederação da 
Agricultura e Pecuária do Brasil, 2017), and Brazil is currently 
considered the largest producer of sugarcane and sugar in the 
world, and the second largest producer of ethanol (Food and 
Agriculture Organization of the United Nations, 2017). With the 
economic downturn (Neves et al., 2016), the optimization of the 
productive process can be used as a strategy to overcome the 
difficulties encountered in the market and in the macroeconomic 
scenario.

The good performance of sugar and ethanol production 
depends not only on environmental, social and cultural aspects, 
but also on the company’s internal effort, modernizing and 
adapting to respond the competitive pressures and challenges 
(Manoel et al., 2016). In this sense, efficiency becomes an important 
competitive differential in the face of such an important and 
highly competitive market.

Considering the high productivity and the worldwide 
appeal for the sustainability of production, the industry has 
directed its efforts in this direction through measures such as 
reduction of water use in the mills and regular use of vinasse 
(Salgado et al., 2017).

The recognition of Brazil’s relevance in the sugar-energy 
sector is in studies conducted over several decades, deriving 
many contributions in the advance of science and technology, 
such as the research elaborated by Humbert (1963) and Jenkins 
(1966). However, occurs a small amount of studies that evaluate 
the efficiency under the productive optics of the sugar and 
ethanol chain.

Farrel (1957) conceptualizes efficiency as being the ratio 
between a quantity of products and a quantity of inputs, becoming 
one of the pioneers in the radial analysis of technical efficiency. 
According to Lemos  et  al. (2016), determining whether an 
enterprise is efficient (or inefficient) and identifying some of 
the reasons for such performance, contribute significantly to 
the definition of appropriate strategies for this sector.

In order to improve industrial efficiency, it is important to 
measure and control the processes, recommending studies that 
use mathematical modeling to identify points of intervention, 
explaining the variation of operational efficiency and, consequently, 
the overall efficiency of the power mills. In this way, this study 
proposes control stages for efficiency analysis in sugar and 
ethanol mills.

It is known that the production process of a sugar and ethanol 
mill can be divided into 3 distinct phases, a first phase common 
to both products, a second phase of sugar production, and a third 
phase of ethanol production (Dias et al., 2015). Throughout this 
manufacturing process, activities of analysis and measurement 
of process data occur, enabling the creation of performance 
indicators for the process, aiming at the decision‑making of 
industrial managers (Duarte, 2017).

Analyzing the processes that occurred in the industry prior 
to the unloading of sugarcane, data are collected on the sucrose 
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content and time of arrival at the mill (Junqueira & Morabito, 
2017). After receipt, the process of grinding and extraction of 
the juice begins, aiming at the extraction of sugars through 
grinders or diffusers (Dias et al., 2015).

In the treatment of extracted juice occurs the removal of 
organic and mineral impurities through the processes of hot 
sulphitation, liming and decanting (Moraes et al., 2016). At the 
end of the treatment process, the juice returns for sugar and/or 
ethanol production (Dias et al., 2015).

For the production of sugar, the treated juice is subjected 
to a process of evaporation and, sequentially, directing it to the 
cooking process, causing crystallization of the sucrose – who 
called cooked mass – and then discharges in centrifuges, occurring 
molasses division from the crystals (centrifugal force), occurring 
after, final operations like drying, sorting, packaging and storage 
receive the resulting sugar (Andrade, 2017).

For the production of ethanol, mills that make sugar and 
ethanol use a mixture of molasses and juice for the preparation of 
the mud, which it is sent to the fermentation vats, transforming 
sugars into ethanol, sending to centrifuges to recover the yeast 
(Manochio et al., 2017). After this process, it sent to distillation 
columns where recovers the ethanol from the juice, and in 
addition to distillation, rectification and dehydration, occurs the 
obtainment of hydrated ethanol, which can be further dehydrated 
using a dehydrating agent, producing, finally, anhydrous ethanol 
(Dias et al., 2015).

2 Materials and methods
The database used in this research comprises information 

from 33 sugarcane mills, collected during the seasons from 
2010/2011 to 2014/2015, stipulating for the chosen mills a 
frequency of at least 2 years of data.

The data refer to 171 indicators, which are the total 
amount of TRS (ton) obtained in ground sugarcane, total sugar 
production (ton) and total ethanol production (m3), followed 
by measurements of variables involved in the sugar and ethanol 
production process.

In the measurement of technical efficiency, used DEA 
tool, which is a non-parametric frontier technique, initially 
developed by Charnes  et  al. (1978). It allows the comparing 
inside homogeneous group of production units, called Decision 
Making Units (DMUs). DMUs represents the smallest unit in 
each analyzed period, receiving different efficiency scores ranging 
from 0 to 1 according to the level of productivity. The best levels 
of efficiency make up the frontier, receiving a score of 1 and called 
efficient. The other units receive a score relative to the distance 
of frontier, called inefficient, aiming to improve productivity in 
order to move to the frontier (Vasconcellos et al., 2006).

The proposed initial model received the CCR or CRS (constant 
returns to scale) nomenclature and has as characteristic the 
non-differentiation of scale gains of the DMUs (Charnes et al., 
1978). Subsequently, Banker et al. (1984) proposed the BCC 
model, which has as main difference from the previous model 
the consideration of the gain of scale in the different levels of 
production. Another option of the DEA analysis consists of the 

two possible ways of moving to the frontier: input orientation 
and output orientation. The first aims at minimizing the inputs 
used at the same output level, thus increasing the efficiency of the 
DMU. In the output orientation, the objective is to maximize the 
quantity of outputs produced with the same amount of inputs, 
thus also generating the highest level of efficiency possible.

In order to carry out this research, it used BCC model, 
with output orientation, considering the producing units have 
different levels of scale. With this model, it was also possible to 
measure the operational efficiency of sugar and ethanol mills 
in order to maximize the production of sugar and ethanol for 
a given quantity of TRS. Model formula follows on Equation 1:
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where rjY  and ijX  are the products and inputs of the jth DMU, ru  
and iv  represent the weightings (weighting coefficients or relative 
importance of each variable) determined by the solution of 
the problem. The weightings ru  and iv  obtained correspond by 
current DMU. This process is repeated for each DMUs, yielding 
different values for ru  and iv .

From the mathematical representation, the aim is maximize 
the outputs (1) for each DMU, given the constraints. In the 
constraints, (2) the sum of the inputs multiplied by their 
respective weightings must be equal to 1. This is necessary to 
solve the problem by linear programming. The second constraint 
(3) represents the outputs must be less or equal than the inputs. 
This problem seeks to optimize the product/input ratio of the 
DMU by freely assigning weightings to them with the constraint 
that, with the same weightings, DMUs do not present this ratio 
greater than 1.

Applying DEA technique orientated to output performed 
an operational efficiency ranking, which was possible to rank 
mills according to their efficiency in transforming TRS (ton) 
into sugar (ton) and ethanol (m3), presented on Figure 1.

The choice of model variables aimed in isolate agricultural 
aspects and considering only factors of industrial production 
process. The detailing the distribution of used data to evaluate 
the technical efficiency is in Table 1.
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Although DEA ​​analysis is a widely used technique, mainly 
in operational research, it may present bias in its score due to 
small samples and the lack of need for statistical assumptions 
(Huang & Eling, 2013). In order to ease this situation, it used the 
Bootstrap method along with the frontier technique, based on the 
idea of ​​repeated simulations with the intention to approximate 
the original distribution of the data (Efron, 1979).

Although, previously use with another frontier technique 
by Simar (1992), the combination of DEA and Bootstrap was 
first used by Simar & Wilson (1998). In order to correct the 
bias and create confidence intervals for the scores, this study 
used the Bootstrap model proposed by Simar & Wilson (2000). 
In addition to the aforementioned benefits, the model allowed 
the normalization of the efficiency distribution scores of the 
units, thus allowing the work to use a two-stage approach, the 
second stage being the application of truncated regression.

The selection of variables is a decisive point because, according 
to Thanassoulis (1996), changes in the set of selected variables 
can have a direct impact on the results and, consequently, on 
the analysis of the evaluation data. Mello  et  al. (2003) agree 
that the criteria and, fundamentally, the methods for selecting 
variables should be decision support tools, which will guide the 
results. Given this, specialists, managers and decision makers 
should use experience, common sense and detachment when 
choosing/selecting variables (Angulo-Meza et al., 2007).

In order to improve the quality of the analysis and the 
mathematical models used, the first step was to reduce the 
explanatory variables from 163 to 71, according to the researcher’s 
opinion, always pondering their relationship with the parameters 
selected in the technical analysis. It was verified that were absent 
data in the 71 chosen variables, however, not exceeding 10% of 
absence considering the total of variables.

Absence of data is a common problem in scientific research 
and has challenged researchers since the early days of field 
research, consisting of a challenge in planning and analysis to 
determine the predictors that contribute to predict the absence 
or presence of characteristics in a population (Schafer & Graham, 
2002; Graham, 2009).

Faced the situation, the utilization of Missing Data Imputation 
was necessary, which is a statistical technique that allows to 
complete the missing data, whether quantitative, categorical, 
ordinal or nominal. It consists in a combination of results 
found by a statistical method in order to obtain the repeated 
imputation inference. In this way, it was possible to analyze all 
the individuals in the study (Pigott, 2001).

Employing the Statistical Package for Social Sciences (SPSS), 
version 22.0 software, the analysis started in order to qualify 
the database of randomness characteristics of the sample, as 
well as the pattern of absence, identifying the MCAR (Missing 
Completely at Random) type, non-monotonic absence pattern, 
and no repetition of absence pattern. Since the absence of the 
data is random and with no established pattern, the data were 
replaced using the Monte Carlo Model (Geweke, 1999; Jamasb 
& Pollitt, 2000).

Before calculating the truncated regression, the correlation 
between the independent variables was verified through the 
multicollinearity test (Wanke & Barros, 2014), which, interpreting 
the variable of statistical regression, the correlation between the 
independent variables must be considered. Ideally, independent 
variables are highly correlated with the dependent variable with 
small correlation with each other. Multicollinearity may affect 
the estimation of regression coefficients and their statistical 
significance (Hair  et  al., 2009) and the multicollinearity test 
resulted in 29 of the 71 original variables, observed in Table 1.

Figure 1. Production model. Source: The authors (2018).

Table 1. Descriptive statistics: input and outputs.

TRS (ton) Sugar production (ton) Ethanol Production (m3)
Minimum 126,030.72 63,881.04 31,819.24
Maximum 958,749.79 703,150.99 246,365.36

Mean 416,347.68 276,746.03 106,080.25
Median 361,585.69 263,242.14 90,134.08

Standard Deviation 209,855.55 160,574.93 54,526.08
Source: The authors (2018).
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To improve the adjustments in models that relate independent 
variables to the efficiency score, truncated regression is used in 
the second stage (Lee & Worthington, 2014; Wijesiri et al., 2015; 
Stewart et al., 2016; Chowdhury & Zelenyuk, 2016; Wang et al., 
2016). The choice for truncated regression is strongly support 
by the work of Simar & Wilson (2007), who proposed, based on 
double bootstrap, consistent inferences with truncated regression 
in the second stage, simultaneously constructing confidence 
intervals and producing standard errors in efficiency score DEA. 
Considering Equation 4:

j a Zj j,  j 1, , nθ = + δ+∈ = …  	 (4)

The constant, j  is the noise, Zj is the vector of a specific 
observation of the DMUj, which expecting relation with the 
DMU efficiency score, θj. Simar & Wilson (2007) replace the 
DEA estimators (Equation 5) and the model becomes:

j a Zj j,  j 1, , n,θ ≈ + δ + = …  	 (5)

Upon ( )2j ~ N 0, εθ  such that j 1≥ − a – Zjδ , j = 1,...,n, is 
estimated by the corresponding maximum likelihood function, 
considering ( )2, εδ θ  and the data collected (Wijesiri et al., 2015).

The control points of sugar energy mills (Table 2) used as 
regression variables to identify which stages of the production 
process are significant for industrial efficiency.

As soon as the goal of this paper is to use mathematical 
modeling to evaluate the main indicators of ethanol and 
sugar production, Figure 2 presents a synthesis of the entire 
methodological process.

3 Results
It is important to note that exists efficient mills of all sizes. 

According to Salgado et al. (2014), the efficiency in DEA analysis 
is independent of the mill size, because what is important is 
the ratio between the inputs and outputs of the model, making 
the DMU efficient or not. Figure 3 illustrates the production 
frontier generated by DEA, demonstrating the productivity for 
each output of the model.

Although the model used to measure efficiency utilizes three 
variables, a fact that increases the discrimination of the units, 
possible to notice that the observed sample does not have much 
disparity between the scores, varying in the range of 0.85 to 1.00. 
In this sense, the study corroborates with Higgins et al. (2010) 
accurate a high sector competitiveness and efficiency parity. 
This small dispersion observed accentuates the importance 
of identifying factors that contribute to the improvement of 
productive process.

Table 2. Indicators of productive processes of sugar and ethanol industry.

Final product Processes Indicators

Common processes in the production of  
sugar and ethanol

Raw material

Chopped sugarcane delivered (%)
Delivery time of the cane (h)
Purity at the press (%)
Dextran (mg/L Brix)
Diatraea saccharalis (%)

Juice extraction

Overall improvement (%)
Fiber (ton/h)
Soaking of the fiber (%)
Total TRS extraction (%)
TRS of the bagged sugar cane (%)

Filter cake
Filter cake (kg/T of sugarcane)
TRS lost (%)

Ethanol production Mud

Impurities (%)
Temperature (°C)
Brix ethanol (%)
Rods x 105/mL
Yeast (%)
Vinasse loss (%)
Flegmass loss (%)

Common processes in the production of  
sugar and ethanol Yield

Total Corrected Recovered (%)
TRS balance – ethanol (L/T)
TRS balance – sugar (kg/T)
TRS balance – water loss in vacuum multijets
TRS balance – losses at multijet filters (%)
TRS balance – residual water losses (%)
TRS balance – indeterminable losses (%)

Ethanol production Yield Antibiotics (mg/L)

Sugar production Analysis of the sugar
Purity of A-molasses (%)
Purity of B-molasses (%)

Source: The authors (2018).
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Figure 2. Research methodology. Source: The authors (2018).

Figure 3. Efficiency frontier. Source: The authors (2018).
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Table 3 shows the average efficiency of DMUs, grouped by 
period, resulting in the average efficiency of five periods previous 
analyzed. As well as the average mill’s evaluation, the bias was 
also correct in the average score of the periods, increasing the 
information reliability while the variable dependent regression. 
According to the sample studied, there was a decrease in efficiency 
in the sector, between the seasons from 2011/2012 to 2013/2014.

The 29 variables were regressed using STATA software, 
generating the truncated regression model (Table 4). This resulted 
in 10 explanatory variables with calculated values lower than 
α=5%, rejecting the null hypothesis, and incorporating them into 
the model, presenting Wald statistical significance of less than 
5% and a standard error of 2.17, with a 95% confidence margin.

According to the regression, it is possible to determine control 
stages throughout the sugar and ethanol production process 
(Figure 4). At the beginning of the process, two variables belonging 
to the raw material process were important: chopped sugarcane 
delivered (1) and total TRS extraction (2). The importance can 
be related to the fact that transport operations of raw material 
withdrawn from the field to the industry, require a limit of hours 
and continuity of the same, and long periods of storage affect 
the quality, the profitability of sugarcane and the extraction 
of TRS (Kadwa & Bezuidenhout, 2015; Carvalho et al., 2016; 
Masoud et al., 2016).

In the agricultural process, the absence of rainfall and the 
transition to the mechanized harvesting system, increased the 
amount of mineral and vegetable impurities taken from the field 
to the industry, causing difficulties in maintaining the quality 
of the final product (Scheidl et al., 2015).

These impurities can interfere, due to bacterial contamination, 
resulting in losses of efficiency in the fermentation process. 

In addition to consume part of the extracted juice, the rods, a 
type of bacteria – variable 5 – also produce toxic metabolites 
that inhibit yeasts, favoring flocculation and causing lower yields 
in ethanol generation (Moraes et al., 2016).

During the fermentation process occurs microbiological 
contamination, responsible for significant losses in ethanol 
production, generating fundamental importance in the use of 
antibiotics (variable 6) to control rods and other contaminating 
microorganisms, due to one of the great challenges of ethanolic 
fermentation process (Lisboa et al., 2015).

Beyond the importance of juice quality (with the lowest 
amount of turbidity, color and lime content), this study highlights 
the variable related to yeast (4) and its control, avoiding solid 
(leaves, shards) and colloidal (waxes, proteins) impurities, which 
in great quantity affect the quality and efficiency of the process 
(Lopes et al., 2015; Bakir et al., 2016).

The sediment impurities in the juice treatment stage are 
filtrated, making essential the rational use of water for this process, 
since the highest percentages of water use are associated with this 
stage, using 36% of the total used in the mill (Cherubin, 2018). 
The objective of this step is to recover the sugar, producing filtered 
juice to return to the process, remaining as residue the filter cake, 
sent to the crop to use as a soil fertilizer (Duarte, 2017). Due to 
this observation, it is necessary to control the water used in this 
process, analyzed in this research as the TRS balance – residual 
water losses (12) – and the amount of produced filter cake (3) 
which can affect the production process.

It is possible to detect the loss of TRS in the analyzed samples 
of sugar and ethanol production processes, being a predictable 
evaluation, taking into account its level, since it has identified in 

Table 3. Efficiency by period.

2010/2011 2011/2012 2012/2013 2013/2014 2014/2015
Minimum 0.8801 0.8491 0.8308 0.8482 0.8722
Mean score 0.9617 0.9415 0.9404 0.9420 0.9577
Bias 0.0066 0.0057 0.0055 0.0063 0.0052
Corrected score 0.9550 0.9358 0.9349 0.9358 0.9524
Maximum 1.0000 1.0000 1.0000 1.0000 1.0000
Source: The authors (2018).

Table 4. Results of the truncated regression.

Variable Coef. Sig. Variable Coef. Sig. Variable Coef. Sig.
V2 -0.0529 0.004a V26 0.0665 0.136 V52 0.1014 0.101
V3 -0.0444 0.000a V27 0.0125 0.994 V53 0.0127 0.859

V10 -0.5121 0.004a V28 -2.9010 0.302 V57 -0.8207 0.331
V14 0.0028 0.001a V29 0.4826 0.000a V58 -3.7086 0.000a

V15 0.5315 0.000a V32 -3.7707 0.072 V59 -1.2378 0.126
V17 -0.0651 0.092 V33 -0.0001 0.950 V60 0.1745 0.480
V21 0.0018 0.791 V43 0.1530 0.000a V61 0.0225 0.257
V23 -0.0015 0.809 V44 -6.1263 0.002a V70 -0.1903 0.001a

V24 0.1579 0.684 V45 -9.4405 0.058 V71 0.1866 0.089
V25 0.0283 0.148 V49 0.2410 0.169 Constant 80.8582 0.040a

Wald statistic 242.52 Log likelihood -25,880,465 Prob>chi2 0.000
aSignificant at the 5 % level. Source: The authors (2018).
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regression analysis as variable 13 – TRS indeterminable losses 
(Fernandes, 2011).

Substantial variables in fermentation process should be 
considered in order to increase the efficiency of sugar and ethanol 
obtaining. In addition to loss of sugar through contamination 
by rods as mentioned before, the measurement of variables such 
as vinasse loss (7) and flegmass loss (8) need to be carried out, 
since if they can increase their volume, consequently decrease 
ethanol production (Dias et al., 2015).

Fermentation represents a significant fraction of sugar 
loss in the sugarcane mills and a weakening of the distillation 
process, assuming that the verification of the treated yeast and 
the percentage of vinasse in the ethanol produced allow the 
increase of ethanol production, as well as the reduction of vinasse 
production (Borodin et al., 2016).

Vinasse is a byproduct of sugar and ethanol manufacturing 
processes, being used in fertirrigation, yeast production for 
industry, energy in the biogas production process and even as 
feed for livestock (Duarte, 2017).

In sugar and ethanol, productive process has a measure of 
total corrected recovered (variable 9) which serves to compare 
the yields obtained in the production of sugar and ethanol among 
the production units, with the purpose of industrial excellence 
(Fernandes, 2011).

Inside a mill, it is necessary to verify the production, made 
by the balance of TRS contained in the final products (Gilio & 

Castro, 2016), therefore is important the continuous monitoring of 
variables 10 and 11 – TRS balance of ethanol and sugar – aiming 
the best quality of sugar and ethanol yield (Chandel et al., 2014).

4 Conclusion
In this study, it was possible, through quantitative analysis, 

to suggest stages for the control and improvement of industrial 
efficiency. In addition, within the limitation of this resource, 
indicates these stages may contribute to the overall efficiency 
of sugarcane mills.

In this way, this study becomes relevant to contribute to 
the increase of efficiency in the sugar and ethanol production 
processes, considering that the productive units are source of 
clean and sustainable energy.

Improvements in the production process should continue 
in the field and in the sugarcane industry, in order to increase its 
competitiveness, allowing the integration of production along 
with prospects for the future of the sugarcane industry.
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