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1 Introduction
Agriculture plays an important role in the deterioration of 

the environmental situation. Animal husbandry and poultry 
farming significantly contribute to environmental pollution in 
particular. Modern production and processing of poultry are 
characterized by high numbers of livestock and, as a result, the 
formation of significant volumes of industrial waste (wastewater, 
manure, waste from incubation and slaughter of poultry, carcasses, 
etc.) (Potapov et al., 2020; Potti & Fahad, 2017).

The production and processing of poultry have been found 
to be relatively environmentally efficient compared to other 
livestock processing (Ritchie & Roser, 2019). However, research 
on processes, the development of new devices, and new methods 
of production waste disposal can serve to reduce the impact on 
the environment even further (Leinonen et al., 2012).

The problem of recycling by-products and waste from 
processing agricultural raw materials in a waste-free production 
cycle is based on the following aspects:

– The costs borne by enterprises for the disposal of hazardous 
organic waste ultimately lead to an increase in the cost of 
manufactured products. The increase in global poultry production 
results in increase the volume of waste up to 68 billion tons 
per year, including litter, feathers, eggshell, carcass, blood, and 
wastewater (McGauran et al., 2021). In addition, it is economically 
feasible to expand resources through deep, complex processing 
of agricultural raw materials into final products such as feed, 
fertilizers, and new food ingredients (Belc et al., 2019).

– Waste production is a key environmental issue (Kumar et al., 
2018; Jakimiuk et al., 2021). Anaerobic fermentation of organic 
waste releases significant methane emissions into the atmosphere 
(Mashur et al., 2021). Dumping waste into the environment or 
improperly disposed waste from poultry processing pollutes 
ground and surface water and the air, as a result of which 
the morbidity of both animals and the population increases. 
Accordingly, organic waste is a favorable breeding ground for 
dangerous microorganisms, including pathogenic microorganisms, 
which can cause great harm to society and the environment 
(Hubbard et al., 2020).

The rational use of by-products from agricultural raw 
materials processing is associated with the ecological policies 
of each country (Khomych et al., 2020).

Considerable quantities of waste and by-products 
generated during the processing of broiler chickens, as well as 
in the technological production in the food industry, contain a 
significant amount of natural polymers and biologically-valuable 
components. It has been scientifically proven that it is essential 
to apply comprehensive, effective methods to make full use 
of animal resources (Galali  et  al., 2020; Kannah  et  al., 2020; 
Voběrkova et al., 2020).

Poultry by-products and waste include bones, viscera, feet, 
head, blood, and feathers. Poultry processing waste can be 
divided into several groups depending on their morphological 
characteristics and biochemical composition (Figure  1). 
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The structure and properties of the raw materials determine the 
specific processing methods, which are presented in a diagram 
(Figure 2).

In addition to traditional technologies such as composting 
and incineration, poultry waste is processed by various methods: 
chemical, physical, microbiological, and complex methods. 
Currently, a great deal of these materials are processed into 
meat and bone meal, feather meal, blood meal, and fats through 

rendering, which is the predominant waste valorization pathway 
for poultry processing by-products. Many researchers recommend 
using hydrothermal treatment to treat poultry waste, during 
which pathogenic microorganisms are deactivated (Dhillon et al., 
2017; Lasekan et al., 2013; Vikman et al., 2017; Volik et al., 2017).

Poultry processing by-products are resources not only for 
obtaining technical and fodder products, but also for the medical 
and food industry (Tram et al., 2021). Enzymatic hydrolysis, 

Figure 1. Morphological classification of poultry waste and by-products.

Figure 2. Methods for processing of poultry waste and by-products.
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chemical, and thermal treatments of raw materials are used to 
obtain biologically active compounds, lipids, flavor enhancers, 
and bioactive peptides (Borrajo et al., 2019; Chakka et al., 2015; 
Khiari et al., 2014; Rivero-Pino et al., 2020).

At the moment, the world production of poultry meat 
is about 136 million tons per year (Food and Agriculture 
Organization, 2021). Taking into account the active growth in 
the consumption of poultry meat, it is especially important to 
apply a scientific approach to the processing of secondary raw 
materials and waste, focusing on the global experience and the 
achievements of leading researchers in this area. The concept 
of deep conversion of animal raw materials is worth studying. 
The overall purpose of this review was to analyze the current 
global practice of recycling poultry waste and by-products, study 
the technological prospects for modifying their properties in 
terms of obtaining value-added products, as well as prevent 
environmental pollution by poultry industry waste.

2 Directions for processing certain types of waste and 
by-products
2.1 Manure recycling

As poultry production increases, so does the amount of 
manure that needs to be processed. When analyzing the types 
of waste from a chicken farm with 100-150 heads, researchers 
found that a large share of the waste was manure (98.45%)—fresh 
manure in particular (73%) (Potapov et al., 2020).

Due to the high content of such components as nitrogen, 
phosphorus, potassium, and others, poultry manure can be 
used as a fertilizer to improve soil and increase soil fertility 
(Fomicheva & Rabinovich, 2021; Samoraj et al., 2022). However, 
excessive use of poultry manure can harm the soil, water, and air. 
Uncontrolled removal of poultry manure can lead to emissions of 
methane, carbon dioxide, and ammonia (Briukhanov et al., 2017; 
Dróżdż et al., 2020). In addition, manure can contaminate soil 
and water with potentially hazardous foreign substances such as 
antibiotics, pesticides, and pathogens (Kyakuwaire et al., 2019). 
According to the FAO, with a world livestock of 18.5 billion 
broiler chickens, the amount of nitrogen released into the 
environment with manure amounted to 6.7 million tons, while 
the share of manure left on pastures accounted for 40.7%, and 
the share of processed manure is 58.4% (Food and Agriculture 
Organization, 2022).

There are biological, physical, chemical, and mixed methods 
for processing poultry manure (Zapevalov et al., 2019.). Many 
scientists are aiming to develop new and more efficient technologies 
for converting poultry manure into energy or value-added 
products (Feng et al., 2019; Blake & Hess, 2014; Liu et al., 2021). 
The main applications of poultry manure are as follows:

	– 	enriching soil without preliminary treatment – according to 
recent studies, this method is undesirable (Kyakuwaire et al., 
2019);

	– 	production of organic fertilizers (Feng  et  al., 2019; 
Purnomo et al., 2017);

	– 	composting or conversion to biogas (Achi  et  al., 2020; 
Hassanein et al., 2019; Ojo et al., 2018; Mehryar et al., 
2017);

	– 	production of feed supplements (Blake & Hess, 2014; 
Jackson et al., 2006);

	– 	conversion to combustion fuel (Zapevalov et al., 2019);

	– 	processing into vermicompost with the help of worms and 
insects (Subbotina, 2020);

	– 	producing biochar (Liu et al., 2021).

Researchers have noted the possibility of using methane 
obtained through anaerobic decomposition of manure in 
household or farmed biogas plants to meet the energy demand 
(Arthur et al., 2020; Dróżdż et al., 2020; Kanani et al., 2020). 
There are also studies on the integrated use of poultry manure: 
first, it is fermented in anaerobic conditions to obtain biogas, 
then the biogas suspension is subjected to additional processing 
to obtain fertilizers (Li et al., 2017).

Promising methods for processing poultry manure include the 
accelerated fermentation of organic raw materials in reactors or 
fermenters of various designs; extrusion (Fomicheva & Rabinovich, 
2021); using an ultrahigh-frequency electromagnetic field for 
drying and disinfecting (Soboleva et al., 2017). The following 
technologies of valorization of poultry manure are recommended 
as priority methods: single-stage anaerobic digestion; anaerobic 
co-digestion (biological technologies); gasification and fast pyrolysis 
(thermal technologies) (Kanani  et  al., 2020). A comparative 
analysis of poultry manure processing technologies is presented 
in Table 1.

2.2 Feather processing

Poultry processing produces tens of millions of tons of 
keratin-containing waste each year (Stiborova  et  al., 2016). 
Poultry feathers and down are resources for obtaining additional 
materials for many industries, such as agro-industrial, food, 
textile, construction, and many others (Ahmad et  al., 2022). 
Numerous studies report on effective methods for recovering 
keratin waste (Kshetri et al., 2019).

Feather and down, as a secondary raw material, contain up to 
85% protein; converting feather keratin into an easily digestible 
form is an important task to obtain native protein components. 
Keratin materials contain a large number of disulfide and 
hydrogen bonds, hydrophobic interactions, which are difficult 
to decompose (Bray et al., 2015; McKittrick et al., 2012). High 
temperature, microwaving, and chemical methods have been 
explored for the decomposition of feathers (Brebu & Spiridon, 
2011; Stiborova et al., 2016). However, aggressive methods of 
exposure lead to a significant loss of essential amino acids in 
the product, as well as considerable energy consumption, which 
imposes a notable burden on the environment (Brebu & Spiridon, 
2011; Coward-Kelly et al., 2006).

Recently, enzyme-based technologies have been significantly 
improved. The efficiency of using new industrial biocatalysts, 
which includes keratinase obtained by microbiological synthesis, 
have been proven. Keratinase is widespread in fungi and bacteria; 
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it can convert keratin materials into soluble proteins, antioxidant 
peptides, and amino acids (Bernal et al., 2018; Peng et al., 2019; 
Verma et al., 2017).

It is reported that keratinases from Bacillus subtilis demonstrated 
high keratinase activity under extreme conditions, such as high 
salinity and high temperature (Tork et al., 2013). However, the 
activity of recombinant keratinase can be greatly enhanced via 
using genetically modified Bacillus subtilis (Peng et al., 2020).

The use of secondary resources of animal origin in modern 
feed production requires deep processing technologies. 
Vasilenko et  al. (2021) proposed an extrusion technology to 
obtain a feed protein supplement, which is recommended in the 
diet of growing poultry, valuable species of fish, and mammals. 
The technology implements the principle of simultaneous 
exposure to high temperature and pressure for processing 
keratin-containing waste. It is noted that extrusion of keratin 

makes it possible to extract up to 80% of this hard-to-reach 
dietary protein (Vasilenkо et al., 2021).

Protein hydrolysates from down feathers have found application 
in cosmetology, skincare creams, hair and nail strengthening 
products, and in the manufacture of detergents. The prospects 
of industrial application of Bacillus sp. CSK2 keratinase are being 
studied. Researchers have worked to optimize the physicochemical 
conditions for obtaining CSK2 keratinase from feathers and 
suggest its application as a bio additive in detergent formulations 
(Nnolim & Nwodo, 2020). Keratin protein solutions can also 
be used for medical purposes, such as in bone replacement and 
bone grafting (Roiter et al., 2019).

The textile industry is a significant consumer of down 
feathers. The raw material is used as filler in blankets, pillows, 
and duvets. The highest category of feathers is used to produce 
coats and overalls, which are light and offer good protection 

Table 1. Comparative characteristics of the directions of poultry manure processing.

Direction of 
use Advantages Disadvantages Reference

Application 
to the soil 
without 
preliminary 
treatment

Minimum financial costs; enhancing soil physical and 
hydraulic properties.

Odors and gaseous emissions (ammonia and 
methane); contamination of soil and water with 
hazardous substances such as antibiotics, pesticides, 
and pathogenic microorganisms; prolonged 
application of poultry manure into the soil can lead to 
contamination with phosphates and nitrates and cause 
phytotoxic effects.

Kyakuwaire et al. 
(2019)

Production 
of organic 
fertilizers

Reduction of the bulk and volume density of the soil 
and penetration resistance; increase in hydraulic 
conductivity and aggregate stability of the soil; growth 
of the content of soil organic matter, the content 
of available water, and the water-holding capacity; 
increase in the infiltration rate.

Obstacles consist of high moisture content and 
varying structure of poultry manure; which depend 
on the type and composition of manure due to 
seasonality and breeding regime.

Feng et al. (2019); 
Purnomo et al. 
(2017)

Composting 
combined 
with drying

Effects on rooting young cuttings, mycorrhization 
and strengthening the root system, insect eradication, 
biological protection of soil.

This leads to nitrogen loss through ammonia 
emission; causing emissions into the atmosphere of 
gaseous products such as methane, ammonia, carbon 
dioxide; high production costs for drying.

Achi et al. (2020); 
Hassanein et al. 
(2019)

Production 
of feed 
supplements

Heat treatment reduces the number of pathogenic 
microorganisms; recycled chicken manure can be 
used in animal feeding.

The challenge is to produce animal feed that meets the 
sanitary and veterinary requirements.

Blake & Hess (2014); 
Jackson et al. (2006)

Using as 
fuel for 
combustion

Poultry manure is used as a fuel to generate heat and 
electricity that can be utilized for the maintenance of 
poultry houses. This results in the reduction of costs 
of transportation and an increase in biological safety

High production costs. Zapevalov et al. 
(2019)

Generating of 
the biochar

The increase in temperature promotes the formation 
and strengthening of the aromatic structure; biochar 
obtained at a pyrolysis temperature of about 300 oC 
is suitable for calcareous and acidic soils. Biochars 
can be used as composting additives, materials 
for immobilization of heavy metals, sorbents, soil 
improvers, or carbon sequestration additives.

An increase in temperature caused a decrease in 
production efficiency. Biochar at 400-500 0C is 
strongly alkaline, which may limit its use in calcareous 
soils.

Liu et al. (2021)

Biogas 
production

Chicken manure is characterized by the high content 
of dry organic matter – about 80%, which affects 
the efficient production of biogas and high methane 
content in biogas.

Low carbon to nitrogen ratio in the poultry manure; 
as well as the ammonia accumulation during the 
process, - results in anaerobic decomposition of uric 
acid and undigested proteins, - the two main forms 
of nitrogen; ammonium ions and free ammonia can 
suppress methanogenic activity; high content of 
hydrogen sulfide reduces the efficiency of anaerobic 
digestion and requires biogas to be processed before 
its further use.

Dróżdż et al. (2020); 
Kanani et al. (2020)
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from frost, wind, and moisture. The hydrolyzed feather waste 
protein can also be used as a modifier to improve the properties 
of cotton fabric and increase the susceptibility to natural dyes 
(Zhang et al., 2020).

Consisting of 90% keratin, feathers are a promising resource 
for the production of biodegradable materials. Ramadhan & 
Handayani; Ramakrishnan et al., have studied the use of ingredients 
made from chicken feather keratin in bioplastics manufacturing 
(Ramadhan & Handayani, 2020; Ramakrishnan et al., 2018). 
They found that the resulting bioplastic had good mechanical 
and thermal properties and was proven to be biodegradable. 
The development of bioplastics from feather waste can solve 
two problems, namely, reducing the amount of plastic and 
agro-industrial waste, thereby contributing to environmental 
sustainability (Ullah et al., 2011). Li et al. performed a complex 
analysis of biocarbon obtained from chicken feathers under 
pyrolysis at different temperatures. They concluded that the 
resulting biocarbon can serve as a cost-effective filler for creating 
sustainable biobased composites (Li et al., 2020).

Feathers can be used quite effectively in the development 
of alternative building materials; adding waste feather fibers to 
fiberboard improved its thermal insulation, sound absorption, 
and biodegradability (Šafarič et al., 2020).

2.3 By-products processing

Poultry slaughter generates a large amount of by-products, 
most of which are unsuitable for human consumption. In many 
countries, poultry by-products such as legs, heads, heart, gizzard, 
liver are consumed directly or used as part of meat products 
as an affordable source of animal protein and other essential 
nutrients (Gorlov et al., 2016; Zhumanova et al., 2018). Another 
common method for processing secondary raw materials is 
to use them in the production of feed flour for livestock and 
poultry (Caires et al., 2010; Silva et al., 2014; Alves et al., 2021). 
One of the by-products from rendering chicken waste for meal 
preparation is chicken fat, which is converted into biofuel 
(Mahyari  et  al., 2021; Sivamani et  al., 2021) or bio lubricant 
(Hernández-Cruz et al., 2021).

Poultry legs, skin, neck, and bones are used to isolate 
collagen proteins (Fisinin et al., 2017). High-quality gelatin can 
be obtained from chicken legs (Almeida et al., 2013). Collagen is 
isolated from chicken legs in a solution of acetic acid using the 
proteolytic enzymes papain and pepsin (Hashim et al., 2014). 
The high yield of collagen from chicken bones is ensured by 
a multistage isolation technology, which includes the stages: 
removal of impurities, cleaning, demineralization, degreasing 
(Cansu & Boran, 2015).

The most rational approach for processing by-products is 
to choose integrated methods. Mechanical deboning produces 
more than just meat. Proteins and lipids are obtained from the 
subsequent enzymatic treatment of the meat-bone residue, 
and during the final hydrothermal treatment of the residues—
phosphorus, calcium, and nitrogen (Vikman et al., 2017).

Enzyme technologies are a promising strategy for waste poultry 
fat and protein reutilization that combines biodegradation and 
the production of enzymes from carbon/nitrogen-rich residual 
biowastes at the same stage and under optimal conditions. 
The major bioconversion products of poultry waste, biodiesel and 
bioactivate hydrolysates, can be used as green biofuel and natural 
bio-additives. Moreover, nutrient-rich animal fat and protein 
wastes can serve as carbon/nitrogen sources for the growth of 
enzyme-producing microorganisms (Cheng et al., 2021).

In recent years, the attention of many researchers has been 
drawn to the production of bioactive peptides from collagen. 
Different methods are used for the proteolysis of collagen, but 
the most physiological, enzymatic method of processing raw 
materials (Iwaniak  et  al., 2020; Romero-Garay  et  al., 2020). 
Poultry skin is rarely processed into valuable products, but 
there are studies examining its processing methods. A method 
of extracting collagen with unique functional properties from 
chicken skin has been proposed (Cliché et al., 2003).

The varied morphological structures and chemical compositions 
of poultry by-products allows for a wide range of products to be 
obtained through modern methods of processing and extraction 
of valuable components (Table 2).

Table 2. Modern technologies for recycling of poultry by-products.

Type of by-product Treatment method Final product Reference
Chicken legs Extraction using the acetic acid in a concentration from 0.320% to 3.68%, 

processing time from 1.0 to 8.4 h and extraction temperature from 43.3 °C 
to 76.8 °C.

Gelatin, collagen 
films

Santana et al. (2020)

Extraction of protein, incorporation of sorbitol, and glycerol as a plasticizer. Edible film Lee et al. (2015)
Extraction using NaOH Gelatin Saenmuang et al. (2020)

Chicken viscera, 
giblets

Hydrolysis of raw materials. Protein hydrolysate 
for shrimp diets

Soares et al. (2020)

Chicken and turkey 
heads

Series of batch extractions at different temperatures (50 and 60 °C). Gelatin Gál et al. (2020)

Mecha-nically 
deboned chicken 
meat residue

Сombination alkaline-acid extraction process (60, 70, and 80 °C). Gelatin Rammaya et al. (2012)
Acid concentration of 6.73% and an extraction temperature of 86.8 °C for 
1.95 h.

Gelatin Rafieian et al. (2013)

48-72 h of enzyme conditioning time, 73-78 °C gelatin extraction 
temperature, and 100-150 min gelatin extraction time.

Gelatin Mokrejš et al. (2021)
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3 Conclusion
The poultry processing industry produces a significant amount 

of by-products and waste containing useful ingredients. Rational 
processing of raw materials is associated with both environmental 
and economic benefits. The variety of morphological structures 
and chemical compositions of poultry by-products allows for the 
creation of wide range of products through modern methods of 
processing and extraction of valuable components.

The use of recycled waste and by-products of poultry 
processing varies widely in different fields: from applications in 
food technologies to the production of biofuels. Collagen and 
keratin proteins, which are components of poultry by-products, 
are a good substrate for the production of hydrolysates and 
bioactive peptides with various functional properties.

Many researchers strive to develop innovative and efficient 
technologies for converting secondary poultry products to obtain 
value-added products; particular attention is paid to enzyme-
based technologies, which have been improved significantly. 
Enzyme technologies are a promising strategy for organic waste 
reutilization, which solves the issue of environmental pollution 
and brings economic benefits.

To reduce the risks associated with poultry waste management, 
it is essential to carry out detailed life cycle assessments to identify 
and compare the economic potential and environmental benefits 
of each technology and to consider regional opportunities and 
limitations to their implementation.
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